
D11.2

An Evaluation of Current Protocols
based on Identified Model

Project number: 609611
Project acronym: PRACTICE

Project title: Privacy-Preserving Computation in the Cloud
Project Start Date: 1st November, 2013

Duration: 36 months
Programme: FP7/2007-2013

Deliverable Type: Report
Reference Number: ICT-609611 / D11.2 / 1.0
Activity and WP: Activity 1st / WP11

Due Date: October 2015 - M24
Actual Submission Date: 3rd November, 2015

Responsible Organisation: BIU
Editor: Benny Pinkas

Dissemination Level: PU
Revision: 1.0

Abstract:

This document describes a set of application scenarios for se-
cure multi-party computation, a performance comparison of se-
cure multi-party computation systems written by members of
the PRACTICE project, and conclusions based on the results of
the performance comparison.

Keywords: Secure multi-party computation

This project has received funding from the European Union’s Seventh Frame-
work Programme for research, technological development and demonstration
under grant agreement no. 609611.



An Evaluation of Current Protocols based on Identified Model

Editor

Benny Pinkas (BIU)

Contributors (ordered according to beneficiary numbers)

Florian Kerschbaum (SAP)
Florian Hahn (SAP)
Thomas Schneider (TUDA)
Michael Zohner (TUDA)
Reimo Rebane (CYBER)

PRACTICE D11.2 Page I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided "as is", and no guarantee or warranty is given that the information 

is fit for any particular purpose subject to any liability which is mandatory due to applicable law. The users use 

the information at their sole risk and liability. 



An Evaluation of Current Protocols based on Identified Model

Executive Summary

This deliverable analyzes the performance of existing secure multi-party computation systems
based on identified application scenarios and models. The systems that are compared are the
ABY, FRESCO/SPDZ and Sharemind systems for generic secure multi-party computation,
and the SEEED system for queries on encrypted data. All systems were implemented by
members of the PRACTICE project. The deliverable benchmarks the run time of primitive
operations in these systems, and uses an emulation to estimate, based on these results, the run
time of complex protocols using these systems.
The main conclusions of the experiments are that (1) The performance of systems that are
secure against malicious (active) adversaries is considerably slower than the performance of
systems that are only secure against semi-honest (passive) adversaries. (2) There is therefore
a need for improving the efficiency of systems providing security against malicious adversaries.
(3) The performance of a protocol for a specific task can greatly exceed that of generic secure
computation protocols that are applied to the same task. Therefore efforts should be invested
in designing specific protocols for tasks of high importance where the required computation
does not have an efficient representation in a format that is suitable for generic protocols for
secure computation. This conclusion can apply to search on encrypted data, and for computing
private set intersection.
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Chapter 1

Application Scenarios and Models

Different application scenarios define different models for secure computation solutions. Deliv-
erable D12.2, “Adversary, Trust, Communication and System Models”, specified such different
models in different domains:

• The adversary model captures the strength of realistic adversaries,which typically can be
either semi-honest (also known as passive adversaries), or malicious (also known as active
adversaries). This model helps in providing an adequate level of security for a particular
application.

• The trust model determines which levels of trust can be assumed. The possibility of
leveraging trusted hardware in a scenario is also evaluated in the trust model.

• The communication model defines the different communication channels and their related
explicit and implicit assumptions.

• The system model describes the capabilities and functional properties of different partici-
pants, including properties such as computation power, connection bandwidth, relevance
of parallelism, etc.

1.1 Application Scenarios
Deliverable D12.2 defines thirteen application scenarios, covering a wide range of use cases
for secure computing. The scenarios were collected among the project partners and represent
real-world applications for which secure computation is an enabling technology, due to their
intrinsic security and trust requirements.
The application scenarios are described in detail in Chapter 4 of D12.2. We provide here a
concise description of the scenarios. The scenarios are grouped into four different categories:
joint business applications, joint studies applications, location sharing applications and end user
applications.
The first category, joint business applications, involves companies that are interested in coop-
erating with each other without revealing sensitive internal data of their company. Scenarios
from this category use secure computation to jointly evaluate calculations, e.g., supply chain
optimization, based on sensitive company data without revealing the data itself. Joint business
applications that are investigated in this deliverable are:

• Aeroengine Fleet Management: This scenario describes a system that enables the
optimization of the maintenance repair and overhaul process for the engine sector of
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the aeronautic supply chain. Maintenance plans can be calculated without revealing the
participating companies data. An in-depth analysis of this use case as well as a prototype
implementation are the objectives of Work Package (WP) 24.

• Consortium Gathering Information from Its Members: A consortium would like
to gather information from its members, e.g., benchmarking economic results. Secure
computation enables competing companies to contribute their private data to the consor-
tium without risking disclosure of the individual data.

• Platform for Auctions: Multiple parties negotiate in an auction without revealing their
bids. Exemplary markets are spectrum and electricity auctions.

• Platform for Benchmarking: A privacy preserving platform for benchmarking be-
tween business partners enables a trustworthy assessment. Partners can evaluate each
other regarding different factors, i.e., credit card rating, without divulging losing sensi-
tive company data.

• Tax Fraud Detection: Detecting tax frauds is an important scenario in which state
entities are interested in analyzing precise financial data of companies. With the help
of secure computation, a precise analysis of money flows can be executed without the
necessity to reveal the companies’ sensitive financial data to the revenue office.

In the second area, namely joint studies applications, sensitive data of many individuals or
entities is used for studies and statistics without exposing the individual’s data at any time. In
this area we discuss the following scenarios:

• Joint Statistical Analysis Between State Entities: In some cases the law forbids
the compilation of so-called super-databases from the individual datasets of different state
entities. To enable a joint study across different entities, secure computation can be used
to join databases in a privacy-preserving manner that fulfils the legal requirements.

• Privacy-Preserving Genome Studies Between Biobanks: Biobanks from different
countries can perform a joint genome-wide association study using each other’s data
without breaching the donors’ privacy using secure computation.

• Privacy-Preserving Personal Genome Analyses and Studies: Similar to the ser-
vice offered by companies such as 23andMe, donors can submit their genome data and
enter their phenotype data to receive feedback on genetic associations with specific ill-
nesses and disorders. Secure computation can be used to prevent any mishandling of the
donors’ data.

• Surveys on Sensitive Data: A cloud system that provides a platform for privacy-
preserving surveys. A survey creator submits a survey to the platform that is then filled
with opinions from invited participants. Using secure cloud computing, the survey is
evaluated and only the result is sent back to the creator. Thus, with the help of secure
computation, the participants’ input data can be protected.

Privacy-preserving location sharing is of relevance in the following two scenarios:

• Location Sharing with Nearby Contacts: Location information of smart phone users
is sensitive, yet useful for social activities where contacts meet. With the help of secure
computation, proximities can be calculated without revealing actual location data.
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• Privacy-Preserving Satellite Collision Detection: Different countries wish to fore-
cast collisions between their satellites without revealing the exact location and trajectory
of their satellites.

The last group of scenarios is of end user applications. These scenarios aim towards increasing
the end user’s privacy when using cloud services. The described applications in this area are:

• Key Management: With the increasing number of devices used by an end user, cryp-
tographic keys need to be shared between different devices more and more frequently.
To avoid a centralized trusted third party, i.e., key server, a solution based on secure
computation is preferable and is described in this scenario.

• Mobile Data Sharing: This scenario provides privacy-preserving data sharing between
different mobile devices and users through the cloud. Data are stored in the cloud only
encrypted (i.e., not inspectable by the cloud service provider) but still sharable between
users, even if the users have their data stored on different cloud storage providers.

1.2 Models
Adversary model Different applications require different levels of security and thus different
adversary models can be assumed for the underlying protocols so that the required security level
for each application scenario is met. The adversary model identifies an adequate level of security,
because a higher security level usually has negative impacts on the efficiency.
The security requirements in the setting of multi-party computation must hold even when some
of the participating parties misbehave. Aumann and Lindell [1] distinguish three adversary
models that are used to describe the attacker model in each scenario:

• Malicious adversaries (also known as active adversaries) are adversaries that may behave
arbitrarily and are not bound in any way to follow the instructions of the specified pro-
tocol. Protocols that are secure in the malicious model provide a very strong security
guarantee for the user.

• Covert adversaries have the property that they may deviate arbitrarily from the protocol
specification in an attempt to cheat, but do not wish to be “caught” doing so. Protocols
secure in the covert model guarantee that an adversary is caught cheating with at least a
defined probability ε.

• Semi-honest adversaries (also known as passive, or honest-but-curious, adversaries) cor-
rectly follow the specified protocol, yet they may attempt to learn additional information
by analysing the transcript of messages received during the execution. Security in the
presence of semi-honest adversaries provides a weaker security guarantee, yet might al-
ready be sufficient if the adversary is given limited access to the computation, e.g. through
defined interface to framework executed in isolation (like trusted hardware).

In settings with more than two parties, it is also possible to consider an adversary model with
an honest majority, where multiple participants (of the same type) are involved in a protocol
and it is assumed that most of them (the majority) act in a benign way.
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Trust model Depending on the base problem of a scenario and the solution approach chosen
in the scenario, different levels of trust in the participating components and parties can be
assumed. The trust model identifies trusted parties and components and the degree of trust
one can place in them. A party is called trusted, if it behaves exactly as requested by the
protocol. It is important to note that sometimes there are some implicit trust assumptions,
such as in Certificate Authorities when using Public Key Infrastructure.
A special case which should be considered in trust model is the use of trusted hardware, which
can increase both security and efficiency. This refers to the usage of cryptographic functional-
ities in dedicated hardware devices such as smartcards, Hardware Security Modules (HSM) or
integrated into complex hardware components like processors (like Trustzone, or Intel’s SGX).

Communication model The communication model specifies which parties can communicate
between themselves, and also finer characteristics of the communication channels. For example,
the requirement that a cloud provider is always online. Or the requirement for simultaneous
communication, or for messages to be transferred within a specific maximum delay.

System model The system model reflects the capabilities and properties of the parties par-
ticipating in the application scenario. The model considers system benchmarks such as compu-
tational power, amount of memory, network connection properties, parallelism of computation,
reuse of services, etc.

1.3 Relation
The application scenarios describe the most promising usages of secure computation technology.
The adversary, trust, communication and system models were defined based on these applica-
tions, and model how different secure computation solutions should be evaluated. The task of
the work reported here was to examine the existing secure computation solutions according to
these models, and identify gaps where new and improved protocols are needed.
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Chapter 2

Performance Comparison

Our performance analysis compared three systems for generic secure multi-party computation,
that were designed by partners of the PRACTICE project: ABY, SPDZ/FRESCO and Share-
mind. We provide in Section 2.1 a brief description of these systems. In addition, in Section 2.4
we describe the performance of the SEEED system for queries on encrypted databases. (This
system is not for generic multi-party computation and therefore is no directly comparable with
the other systems.)

2.1 The Systems that were Compared
This section describes the three systems for generic secure multi-party computation that were
compared in our tests.

2.1.1 The ABY System
ABY(for Arithmetic, Boolean, and Yao sharing), introduced in [9], is a novel framework for
developing highly efficient mixed-protocols that allows a flexible design process. ABY was de-
signed using several state-of-the-art techniques in secure computation and by applying existing
protocols in a novel fashion. It uses optimized sub-routines based on a detailed benchmark of the
primitive operations. ABY is intended as a base-line on the performance of privacy-preserving
applications, since it combines several state-of-the-art techniques and best practices in secure
computation. The source code of ABY is freely available at http://encrypto.de/code/ABY.
ABY provides security only against semi-honest adversaries.
On a very high level, the ABY framework works like a virtual machine that abstracts from the
underlying secure computation protocols (similar to the Java Virtual Machine that abstracts
from the underlying system architecture). The virtual machine operates on data types of a given
bit-length (similar to 16-bit short or 32-bit long data types in the C programming language).
Variables are either in Cleartext (meaning that one party knows the value of the variable, which
is needed for inputs and outputs of the computation) or secret shared among the two parties
(meaning that each party holds a share from which it cannot deduce information about the
value). The ABY framework currently supports three different types of sharings (Arithmetic,
Boolean, and Yao) and allows to efficiently convert between them, see Figure 2.1. The sharings
support different types of standard operations that are similar to the instruction set of a CPU
such as addition, multiplication, comparison, or bitwise operations. Operations on shares are
performed using highly efficient secure computation protocols: for operations on Arithmetic
sharings it uses protocols based on Beaver’s multiplication triples [4], for operations on Boolean
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sharings it uses the protocol of Goldreich-Micali-Wigderson (GMW) [34], and for operations on
Yao sharings it uses Yao’s garbled circuits protocol [74].

A

C

B Y

A2YB2A

Y2B

B2Y

Figure 2.1: Overview of our ABY framework that allows efficient conversions betweenCleartexts
and three types of sharings: Arithmetic, Boolean, and Yao.

Flexible Design Process A main goal of the ABY framework is to allow a flexible design
of secure computation protocols. The framework abstracts from the protocol-specific function
representations and instead uses standard operations. This allows to mix several protocols,
even with different representations, and allows the designer to express the functionality in
form of standard operations as known from high-level programming languages such as C or
Java. Previously, designers had to manually compose (or automatically generate) a compact
representation for the specific protocol, e.g., a small Boolean circuit for Yao’s protocol. As
the framework focuses on standard operations, high-level languages can be compiled into our
framework and it can be used as backend in several existing secure computation tools, e.g., L1
[44], [71], [72], SecreC [11], [12], or PICCO [75].
By mixing secure computation protocols, the ABY framework is able to tailor the resulting
protocol to the resources available in a given deployment scenario. For example, the GMW
protocol allows to pre-compute all cryptographic operations, but the online phase requires
several rounds of interaction (which is bad for networks with high latency), whereas Yao’s
protocol has a constant number of rounds, but requires symmetric cryptographic operations in
the online phase.

Efficient Instantiation and Improvements Each of the secure computation techniques
is implemented in ABY using the most recent optimizations and best practices such as batch
precomputation of expensive cryptographic operations. For Arithmetic sharing ABY generates
multiplication triples via Paillier with packing or DGK with full decryption, for Boolean sharing
it uses OT extension, and for Yao sharing it uses fixed-key AES garbling.

Feedback on Efficient Protocol Design The work on ABY performed benchmarks of
the framework, from which new best-practices for efficient secure computation protocols were
derived. it was shown that for multiplications it is more efficient to use OT extensions for
pre-computing multiplication triples than homomorphic encryption. With the new OT-based
conversion protocols of ABY, converting between different share representations is considerably
cheaper than the methods used in previous works, and scales well with increasing the security
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parameter. In fact, on a low latency network, the conversion costs between different share
representations are so cheap that already for a single multiplication it pays off to convert into
a more suited representation, perform the multiplication, and convert back into the source
representation.

2.1.2 The FRESCO System
FRESCO is a Java framework for efficient secure computation that is being jointly developed
by The Alexandra Institute and Aarhus University. The goal of the FRESCO framework
is to support the implementation of secure computation applications, and to make it easy
to experiment with and compare different approaches to secure computation. To this end
the framework is designed to be modular so that various components involved in a secure
computation can be replaced and reused. These components include such things as

• Underlying secure computation protocols.

• Circuit construction and evaluation strategies.

• Network communication strategies.

A FRESCO application consists of two main parts: a circuit description of the function to
be securely evaluated, and a run-time system that evaluates the circuit according to some
underlying protocol for secure computation.

FRESCO Circuit description In FRESCO functions to be securely evaluated are described
as circuits. In order to decouple the circuit description from the underlying protocol, the circuits
are abstract in that they are not explicitly taken to be e.g. boolean or arithmetic circuits. The
framework supplies a library of interfaces for basic circuits, such as circuits computing arithmetic
and boolean operations. The application programmer can combine these basic circuits into a
generic circuit that computes whatever function she desires. It is then up to the implementer
of the run-time system to provide implementations of the circuits for the basic operations.

FRESCO Run-Time Systems Run-time systems in FRESCO specify how circuits are eval-
uated, and are thus highly dependent on the underlying protocol for secure computation that
they support. The run-time system must define the notion of a gate used by the protocol and
how each gate type is to be evaluated. There is no restriction that a gate must implement spe-
cific arithmetic or boolean operations. In fact a gate is simply seen as an unit of computation
that requires at most a single round of communication. From the gates it provides a run-time
system also provides implementations of (at least a subset of) the basic circuits described above.
Additionally a run-time system may provide a number of strategies for gate evaluation and
network communication. Such strategies may control how gates are scheduled for evaluation,
whether they are evaluated sequentially or in parallel an many other aspects of the evaluation.
Currently run-time systems written for FRESCO includes support for the following protocols
for secure computation:

• The TinyOT protocol by Nielsen et al. for maliciously secure two-party computation
based on boolean circuits [14].

• The Bedoza protocol by Bendlin et al. for maliciously secure multi-party computation
based on arithmetic circuits [2].
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• The SPDZ protocol by Damgård et al. for maliciously and covertly secure multi-party
computation based on arithmetic circuits [8, 7].

• The protocol by Gennaro et al. for semi-honest secure multi-party computation based on
arithmetic circuits [11].

• The protocol by Katz and Malka for semi-honest secure private function evaluation based
on boolean circuits [13].

2.1.3 The Sharemind System
Sharemind [4, 5, 3] is a secure service platform for data collection and analysis. Designed
as a distributed secure database and application server, it is capable of collecting, storing and
processing confidential data without compromising the privacy of individual records.
At its core, Sharemind uses secure multiparty computation technology to achieve the necessary
cryptographic security in data storage and computations. More specifically, it is based on 3-
party additive secret sharing scheme in the ring of 32-bit integers, i.e., a secret s ∈ Z232 is
split into three random shares s1, s2, s3 ∈ Z232 such that s1 + s2 + s3 ≡ s (mod 232). In this
particular implementation the computation protocols are provably secure in the honest-but-
curious security model with no more than one semi-honest corrupted party.
Sharemind can be programmed to perform various secure computations, thus enabling the
development and execution of custom data processing applications. Its protocol suite is uni-
versally composable, allowing the basic secure operations to be composed sequentially to form
programs, and in parallel to achieve efficient SIMD (single instruction, multiple data) operations
on vectors. Sharemind implements a distributed virtual machine that provides a consistent
instruction set for accessing secure computational resources, while abstracting away most of
the low-level protocol implementation details. The secure computation algorithms can be spec-
ified either in the low-level Sharemind assembly language interpreted directly by the virtual
machine, or in the high-level privacy-aware programming language called SecreC.
The protocol suite of Sharemind covers basic arithmetic and comparison on integers. All
operations are designed to be performed pointwise on vectors of inputs. Both unary and binary
operations are supported.
Sharemind enables users to choose which underlying secure computation method suits them
best. In the following we describe the protection domain kinds currently implemented for
Sharemind .

• Public virtual machine controls the public execution flow and powers the public pro-
tection domain in Sharemind 3, allowing to store and process data publicly. The VM
supports signed and unsigned integers (8, 16, 32 and 64 bit) and floating point values (32
and 64 bit), as well as heap manipulation functionality. The booleans and public strings
are simulated types on the SecreC level.

• additive3pp is the 3-party MPC protocol suite based on additive secret-sharing in the
semi-honest model. The supported data types include booleans, signed and unsigned
integers (8 to 64 bit), floating point values (32 and 64 bit) and xor-shared strings.

• additive2pp is the 2-party MPC protocol suite based on additive secret-sharing and
additively homomorphic Paillier cryptosystem in the semi-honest model. It supports
arithmetic on 32-bit integers. [18]
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• additive2pa and additive2pa_sym are the 2-party MPC protocol suites similar to
additive2pp, but achieve malicious security by protecting the shares with MACs. Both
support arithmetic on 32-bit integers. [17]

2.2 Main Features of the Systems
There are major differences in the features and the security levels that are guaranteed by the
different systems.
Before describing these differences, we quickly recall the notions of security against semi-honest
adversaries (also known as passive adversaries, or honest-but-curious adversaries), and security
against malicious adversaries (also known as active adversaries): Semi-Honest adversaries are
guaranteed to operate according to the specification of the protocol that they should be running.
Namely, it is assured that they will run the program that they are asked to run. However, they
might examine the messages that they receive and try to obtain from these messages information
about the inputs of other participants in the protocol. Malicious adversaries, on the other hand,
may act arbitrarily. That is, they might run an arbitrary program, send arbitrary messages,
and might not follow the operation specified for them by the protocol.
Malicious adversaries are often a more realistic threat model. However, protocols which guaran-
tee security against malicious adversaries are typically considerably less efficient than protocols
which only offer security against semi-honest adversaries.

The systems that we examined The systems that we examined differ in the setting in
which they work and the security level that they guarantee:

• ABY is a system for two-party computation, which is secure against semi-honest adver-
saries.

• FRESCO/SPDZ can work both in the two-party and the multi-party settings (i.e., in a
setting with strictly more than two parties). It is secure against malicious adversaries.

• Sharemind is mostly focused on a setting where data is shared between 3 parties (i.e.,
works in a 3-party setting). It mostly provides security against semi-honest adversaries.

It is therefore apparent that ABY and Sharemind work in different settings (two-party vs. 3-
party computations), whereas FRESCO/SPDZ can work in both of these settings. Furthermore,
ABY and Sharemind provide security against the weaker notion of semi-honest adversaries,
whereas FRESCO/SPDZ provides security against stronger, malicious adversaries. This ad-
ditional security of SPDZ/FRESCO obviously comes at a cost, which will be apparent in the
performance comparison.

2.3 Performance Comparison of Systems for Generic Se-
cure Computation

For each of the three secure computation systems that were examined, ABY, SPDZ/FRESCO
and Sharemind, we used a benchmarking tool to measure the computation time of the prim-
itive operations. We ran benchmarks for a range of input sizes starting from 1 operation to 1
million operations. We increased the inputs size by powers of 10, from 1 operation to 1 million
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operations. The benchmarking was run on machines with 2x Intel X5670 2.93 GHz CPUs and
48GB RAM, and 1 Gbit network links between each of the machines.
The benchmarking provided the running time of the primitive operations for the different input
sizes. With this information we built mathematical (regression) models to estimate the running
time of these operations in an emulator which emulated time of complete protocols based on
these operations.
We provide two type of performance results. First, we describe the run time of the basic
operations. Then, we describe the emulated run time of complete protocol based on these
operations.

2.3.1 The Performance of Primitive Operations
We describe in this section both the performance of single operations, and the amortized perfor-
mance. The single operation performance is computed when running the operation on a single
value (or a pair of values) at a time. This case parallelizes poorly and is shown as a worst case
performance. An example of this case would be when it is needed to chain two multiplications,
where the result of the first multiplication is the input for the second one.
The amortized performance is computed when running the operation on a larger number of
input values that do not depend on each other. This case parallelizes very well and is shown
as a best case performance. We have taken the best performance for each operation from all of
the input sizes.

The tables A performance comparison between the primitive operations of the ABY, Share-
mind and SPDZ/FRESCO secure computations systems is shown in Table 2.1 and Table 2.2.
The results for SPDZ/FRESCO include only the runtime of the online phase.
The performance is shown in computed operations per second. Note that the number suffixes
used in the table are K = 103, M = 106 and G = 109. Table 2.1 shows the performance of
running the operation on a single value. The results in Table 2.2 show the amortized best
performance for running the operation on 1 to 106 values.
The ABY system uses multiple secure computation schemes (such as arithmetic circuits, boolean
circuits and Yao’s garbled circuits). As a result, operations have implementations in more than
one scheme, and we therefore only show the result for the best performing protocol. (When
measuring the performance of a single basic operation, rather than their amortized overhead or
an evaluation of many basic operations, there is no scheme that performs consistently better
than the others.)
Sharemind does not have a separate protocol for the MUX operation. The operation is done
using 1 MUL and 2 ADD operations.
A detailed analysis of the results appears in Section 2.5.1. We only comment FRESCO/SPDZ
has lower performance than ABY, which has lower performance than Sharemind. The rela-
tively low performance of FRESCO/SPDZ is obvious given the fact that it is the only system
providing security against malicious adversaries. The implementation of the Sharemind sys-
tem is the more mature of all protocol implementations and is therefore more efficient than
the other implementations. Note that Sharemind does not work in a setting with only two
parties, and therefore the performance in this setting is inferior to that in a setting with three
or more parties.
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Operation Bit ABY SPDZ/FRESCO Sharemind
length (ops/sec) (ops/sec) (ops/sec)

ADD 8 204 (arith) – 143K
16 160 (yao) – 333K
32 116 (bool) 45 333K
64 170 (yao) 50 333K

CMP 8 160 (bool) – 1.40K
16 168 (yao) – 1.21K
32 119 (bool) 4 950
64 118 (bool) 3 914

EQ 8 149 (yao) – 2.14K
16 152 (yao) – 1.44K
32 137 (yao) 7 1.49K
64 138 (bool) 8 1.24K

MUL 8 166 (arith) – 3.98K
16 144 (arith) – 4.27K
32 106 (yao) 43 4.27K
64 142 (arith) 43 4.23K

MUX 8 154 (yao) – –
16 171 (yao) – –
32 177 (bool) 40 –
64 128 (bool) 40 –

Table 2.1: Single operation performance

Operation Bit ABY SPDZ/FRESCO Sharemind
length (ops/sec) (ops/sec) (ops/sec)

ADD 8 9.01M (arith) – 617M
16 3.86M (arith) – 1.05G
32 1.27M (arith) 800K 1.02G
64 350K (arith) 746K 803M

CMP 8 255K (bool) – 699K
16 118K (bool) – 410K
32 56.5K (bool) 248 240K
64 27.2K (bool) 208 129K

EQ 8 608K (bool) – 3.00M
16 310K (bool) – 2.32M
32 158K (bool) 137 1.68M
64 79.1K (bool) 135 1.17M

MUL 8 486K (arith) – 18.0M
16 262K (arith) – 11.3M
32 132K (arith) 78.4K 6.56M
64 60.8K (arith) 76.9K 3.45M

MUX 8 591K (bool) – –
16 298K (bool) – –
32 154K (bool) 991 –
64 77.3K (bool) 1.00K –

Table 2.2: Amortized operation performance
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2.3.2 The Emulated Performance of Chosen Protocols
We emulated the run time of two simple protocols which are representative of the core tasks of
secure computation applications:

• An auction. The auction has n inputs. The output is the largest value, and its index.

• A filtered average task. The inputs for this function are values x1, . . . , xn, y1, . . . , yn and
the output is the filtered average ∑n

i=1 xiyi/
∑n

i=1 yi, where the xi values are integers and
the yi values are equal to either 0 or 1.

The performance was emulated using the benchmarking results of the single operations. (There-
fore, the performance corresponds to the same machines and setting that were used in the
benchmarking.) The emulation includes only the run time of the secure computation, and not
the run time of public computation and of the system overhead. The computations were done
on 64 bit integers.
We note that the auction task could be implemented either by a multiplexer protocol (based
on oblivious choice), or by a protocol based on additions and multiplications. For ABY and
FRESCO/SPDZ we tried both variants and chose to report the results of the better perform-
ing variant: In ABY we implemented the multiplexer protocol, and in FRESCO/SPDZ we
implemented the protocol based on additions and multiplications.
Table 2.3 reports the emulated run times of all three systems for each of the computation tasks.
The results are reported for input sizes of up to 106 items. Tables 2.4,2.5 and 2.6, report the
distribution of the running time between the different cryptographic operations that are used
in each of the protocols.

Task Input size ABY (ms) SPDZ/FRESCO (ms) Sharemind (ms)
Auction 1 0 0 0

102 194 4059 7
104 1479 57122 90
106 51681 19370383 8347

Filtered 1 8 25 1
average 102 208 413 1

104 773 1224 3
106 51681 15500 281

Table 2.3: Comparison of emulated task running times

2.4 SEEED Queries on Encrypted Data

2.4.1 SEEED Description
SEEED is a database that allows running SQL statements over encrypted data that is out-
sourced to the cloud, and achieve this functionality without intermediate decryption [12]. Data
ownership is maintained by ensuring that only the client is able to access unencrypted data,
and primary keys stay with the data owner.
SEEED is not a system for generic secure multi-party computation, like the other systems that
we examined, but rather a system for the specific task of working on outsourced encrypted
data. It is unsuitable for general computation but performs much better than generic systems
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Task Input Total Operation Time per
size time (ms) operation (ms)

Auction 1 0 CMP (bool) –
MUX (bool) –

102 194 CMP (bool) 68
MUX (bool) 126

104 1479 CMP (bool) 1003
MUX (bool) 476

106 51681 CMP (bool) 24323
MUX (bool) 27358

Filtered 1 8 ADD (arith) –
average MUL (arith) 8

102 208 ADD (arith) 198
MUL (arith) 10

104 773 ADD (arith) 404
MUL (arith) 369

106 51681 ADD (arith) 6166
MUL (arith) 12427

Table 2.4: Emulated task running times for ABY

at the task it was designed for. We therefore analyzed and describe the performance of the
SEEED system.
SEEED is based on the idea of adjusting the encryption levels with the help of onions of
encryption presented by Popa et al. [16]. Different types of encryption mechanisms are used,
each having different characteristics that SEEED makes use of:

Randomized encryption (RND) produces different ciphertexts for the same plaintext, and
provides the strongest security of the used encryption schemes. (Example: encryption
using AES-CBC.)

Deterministic encryption (DET) produces the same ciphertext for the same plaintext, and
enables usage of the SQL expression = (equal, not join) and of GROUP BY. (Example:
encryption using AES-ECB.)

Order preserving encryption (OPE) preserves the plaintext order on ciphertexts, and en-
ables the usage of the SQL expression < and >, ORDER BY and GROUP BY. (Example: the
encryption schemes of Boldyreva et al. [6].)

Homomorphic encryption (HOM) enables addition on ciphertexts, and therefore the SQL
expression SUM. (Example: the encryption scheme of Paillier [15].)

An onion of encryption is a mechanism to make encrypted data available in a structured way
by nesting the ciphertext of the encryption schemes, e.g. encrypting a plaintext with OPE, then
with DET and finally with RND. (Namely RND(DET(OPE(plaintext)))). Due to the structure
of HOM a separate onion is needed for data aggregation.
The SEEED driver analyzes the operator tree of a given SQL statement, and decrypts the
onion by peeling off its layers until reaching the first encryption scheme that supports all
SQL expressions specified in the statement. Then the driver rewrites the SQL statement by
encrypting the statement values according to the uncovered encryption scheme, and runs the
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Task Input Total Operation Time per
size time (ms) operation (ms)

Auction 1 0 ADD –
CMP –
MUL –

102 4059 ADD 600
CMP 2981
MUL 478

104 57122 ADD 1350
CMP 53272
MUL 2500

106 19370383 ADD 10032
CMP 19328253
MUL 32098

Filtered 1 25 ADD –
average MUL 25

102 413 ADD 352
MUL 61

104 1224 ADD 774
MUL 450

106 15500 ADD 5200
MUL 10300

Table 2.5: Emulated task running times for SPDZ/FRESCO

statement on the encrypted SEEED database. In a final step, the retrieved (encrypted) result
set is decrypted and processed on the client side.

2.4.2 The SEEED Hardware Testbed
We executed all experiments on an SAP HANA database (SP05 release) [10] running on an HP
Z820 workstation with 128GB RAM und 16 dual cores (Intel Xeon CPU running at 2.60GHz).
There was no network access, connections were performed via the loopback interface. Our
performance measurement is solely based on the database execution time and hence independent
of network performance. Our client is implemented in Java 1.7 as a JDBC driver and running
on the 64-bit JVM. The crypto routines are implemented in C++, compiled with GCC 4.3 and
accessed via JNI.

2.4.3 SEEED Performance Analysis
Two types of representative queries were considered in the performance analysis of the SEEED
database: Equality queries such as

SELECT DEALS.DEAL_ID FROM TEST_SCHEMA.DEALS WHERE DEALS.PRODUCT_ID = 1

and Greater-Than queries, e.g.

SELECT DEALS.DEAL_ID FROM TEST_SCHEMA.DEALS WHERE DEALS.ORDER_QTY > 3.
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Task Input Total Operation Time per
size time (ms) operation (ms)

Auction 1 0 ADD –
CMP –
MUL –

102 7 ADD 0
CMP 7
MUL 0

104 90 ADD 0
CMP 88
MUL 2

106 8347 ADD 4
CMP 7761
MUL 582

Filtered 1 0 ADD –
average MUL 0

102 0 ADD 0
MUL 0

104 3 ADD 0
MUL 3

106 281 ADD 2
MUL 279

Table 2.6: Emulated task running times for Sharemind

The analysis was performed for 100, 1,000, 10,000 and 100,000 records as shown in the columns
of Tables 2.7, 2.8, 2.9 and 2.10. The measurements are averaged values from multiple runs
measured in milliseconds for different number of records. The first column shows the timing
results for 100 records, the second column shows the results for 1,000 records and so on. The
size of the result set of the Equal query was around 10% of the database records, and the results
set of the Greater-Than query was approximately 60% of the database size.
In the first query run – see Tables 2.7, 2.9 – the encryption of the requested database records
had to be adjusted for the query; e.g. the encryption layers RND (randomized) and DET
(deterministic) had to be removed for the Greater-Than queries which require OPE (order-
preserving encryption). Therefore, the SEEED interpreter, database updater and encrypter
needed more time in the first run than in the second run – see Tables 2.8, 2.10. The last row
shows how the workload was shared between the server and the client, e.g. in Table 2.7 for
100,000 number of records the server used 56% of the combined processing time (client and
server) and the client the remaining 44%. It has to be noted that the client runtime heavily
depends on the size of the result set, since some processing (especially decryption) can only be
performed on the client.
In the following, a short description of all benchmarked components is given. For a more
detailed description of the used algorithms, the used database scheme as well as a specification
of the architecture we refer to Deliverables D22.2 and D22.1.

• SEEED total: The time consumed for complete query execution; i.e. this runtime is
composed of the runtime of SEEED interpreter, and of the runtime of SEEED plain
query.
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• SEEED interpreter: This component analyzes the plain SQL query, transforms it to its
encrypted version and updates the meta data; i.e. this runtime is composed of the SQL
query analysis, the runtime of SEEED encrypter in addition to SEEED dbstate updater.

• SEEED encrypter: Encryption of all values that have occurred in plaintext in the initial
query.

• SEEED dbstate updater: Updates of the metadata regarding the database structure,
e.g. after “peeling off” one onion layer, the algorithm used for the newly extracted layer
is stored for future SQL queries.

• SEEED plain query: Execution time of an unencrypted query utilizing the underlying
database engine (e.g. MySQL, SAP Hana). Note, that after transforming the plain query
to its encrypted form, this database engine is used.

• SEEED result set: The decryption time of the retrieved result set consisting of encrypted
values.

number of records 100 1,000 10,000 100,000
SEEED total 1,892 21,837 169,154 2,740,506

SEEED interpreter 1,849 21,790 169,094 2,740,329
SEEED encrypter 146 213 186 185

SEEED dbstate updater 1,702 21,576 168,907 2,740,143
SEEED result set 1,819 17,876 181,676 1,780,472

plain query 42.97 47.48 60.57 176.72
Server 1,260 16,004 149,027 2,534,478
Client 2,451 23,709 201,803 1,986,500

Server/Client 33.95% 40.30% 42.48% 56.06%

Table 2.7: Greater-Than query (OPE), First Run (times in milliseconds)

number of records 100 1,000 10,000 100,000
SEEED total 66.95 78.34 76.00 142.91

SEEED interpreter 33.94 30.66 30.71 32.02
SEEED encrypter 33.31 30.11 30.11 31.46

SEEED dbstate updater 0.01 0.01 0.01 0.01
SEEED result set 1,943 17,651 176,989 1,838,091

plain query 32.88 47.57 45.18 110.75
Server 33.54 49.60 49.98 110.75
Client 1,976 17,679 177,015 1,838,123

Server/Client 1.67% 0.28% 0.03% 0.01%

Table 2.8: Greater-Than query (OPE), Second Run (times in milliseconds)
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number of records 100 1,000 10,000 100,000
SEEED total 732 4,336 39,188 574,603

SEEED interpreter 699 4,291 39,155 574,548
SEEED encrypter 103 99 131 153

SEEED dbstate updater 594 4,190 39,023 574,393
SEEED result set 414 3,226 33,713 303,903

plain query 33.71 45.14 32.38 55.30
Client 675 3,819 36,551 340,108
Server 471 3,743 36,350 538,397

Server/Client 41.11% 49.50% 49.86% 61.29%

Table 2.9: Equal query (DET), First Run (times in milliseconds)

number of records 100 1,000 10,000 100,000
SEEED total 75.65 49.58 42.73 57.73

SEEED interpreter 31.48 31.54 30.17 33.81
SEEED encrypter 30.85 30.95 29.60 33.19

SEEED dbstate updater 0.01 0.01 0.01 0.01
SEEED result set 371 2,813 29,133 304,506

plain query 44.04 17.92 12.48 23.81
Server 44.18 18.57 16.83 36.31
Client 403 2,844 29,159 304,527

Server/Client 9.87% 0.65% 0.06% 0.01%

Table 2.10: Equal query (DET), Second Run (times in milliseconds)

2.5 Conclusions

2.5.1 The Results
When examining the results of the experiments, it is important to recall that the different
systems work in different settings and guarantee different levels of security, as was described in
Section 2.2.
Following are conclusions from the results of the experiments:

• In almost all experiments, FRESCO/SPDZ has a lower performance than ABY, which
has a lower performance than Sharemind .
FRESCO/SPDZ typically has a performance that is slower by orders of magnitude than
the performance of the other systems. This result is explained by the fact that FRESCO/SPDZ
is the only system which provides security against malicious (active) adversaries. As was
described earlier, guaranteeing security against malicious adversaries comes at a perfor-
mance cost. This is apparent in the performance results.

• The performance of the ABY system is relatively stronger in computing equality and com-
parison operations. This result is explained by the fact that ABY combines computation
of Boolean and arithmetic circuits, whereas the other two systems work on arithmetic
circuits which can only implement arithmetic operations in a field.
Arithmetic circuits excel at computing addition and multiplication operations (which are
each implemented using a single gate). However, they perform less well in computing
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operations which depend on the bit-wise representation of values, such as comparisons
and equality checks. The ABY system is designed to easily translate data between the
two representations and therefore use the best implementation of the two worlds.

• The MUL operation, consumes the bulk of the run time on ABY. This is not surpris-
ing, since multiplication is relatively inefficient on Boolean circuits. Similarly, the CMP
(comparison) operation takes the bulk of the runtime on FRESCO/SPDZ and Share-
mind . This is also not surprising, since this operation is hard to implement on arithmetic
circuits.

2.5.2 Recommendations
• It is evident from the results that the performance of protocols that are secure against

active adversaries (exemplified by the SPDZ/FRESCO protocol) is much slower than that
of protocols that are only secure against passive. On the other hand, security against
malicious adversaries is a much more realistic security model. Therefore there is a need
for new and improved protocols with security against malicious adversaries.

• Even the performance of protocols secure against semi-honest adversaries only, should be
improved. This is particularly true for the case of two-party protocols, since Sharemind ,
which had the best performance, only works in a setting with more than two parties.

• The performance of a specific protocol, such as SEEED, can greatly exceed that of generic
protocols that are applied to the same task. Therefore efforts should be invested in
designing specific protocols is cases where the following two conditions are met:

– The task is of high importance.
– The problem does not have an efficient representation in a format that is suitable for

generic protocols for secure computation (i.e., as a Boolean or an arithmetic circuit).

The outsourced encrypted database application obviously satisfies these two requirements,
due to its importance and the large size of the database.
Another specific task for which these conditions are met is private set intersection (PSI),
where two parties with private input sets wish to compute the intersection of their sets.
This problem is highly important for applications of joint research or information sharing.
It also does not have an efficient representation as a circuit (all known circuit represen-
tations have a size of n2 or n log n gates for a problem with n inputs). The PSI task is
therefore a prime candidate for efficient specific secure computation protocols.
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List of Abbreviations

2PC Two party computation
ABY Arithmetic-Boolean-Yao
AES Advanced encryption standard
BMR the Beaver-Micali-Rogaway protocol
DH Diffie-Hellman
ECC Elliptic curve cryptography
FHE Fully homomorphic encryption
GC Garbled circuit
GMW the Goldreich-Micali-Wigderson protocol
GRR Garbled row reduction
MPC Multi-party computation
OT Oblivious transfer
SCS Sort-compare-shuffle
SPDZ the Damgard-Pastro-Smart-Zakarias protocol
PRF Pseudo random function
PSI Private set intersection
ZK Zero knowledge
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