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Ágnes Kiss (TUDA)
Michael Stausholm (ALX)
Cem Kazan (ARC)
Sander Siim (CYBER)
Manuel Barbosa (INESC PORTO)
Bernardo Portela (INESC PORTO)
Meilof Veeningen (TUE)
Niels de Vreede (TUE)
Antonio Zilli (DTA)
Stelvio Cimato (UMIL)

PRACTICE D12.2 Page I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer 

The information in this document is provided "as is", and no guarantee or warranty is given that the information 

is fit for any particular purpose subject to any liability which is mandatory due to applicable law. The users use 

the information at their sole risk and liability. 



Adversary, Trust, Communication and System Models

Executive Summary

This deliverable defines different security models (i.e., adversary, trust, communication and system
models) for the real-world use-case scenarios of secure computation technologies. The security
models are provided for thirteen application scenarios identified in deliverable D12.1 of the project.
After identification of the participants’ roles, their behaviour is evaluated in an adversary model, in
order to determine which participants can be assumed to act in a malicious or benign way in each
application scenario. Akin to the adversary model, the trust model indicates the level of trust given
to each participating party as well as trust assumptions that are oft made implicitly. The impact of
using trusted hardware is also examined in the trust model. The communication model states explicit
and implicit assumptions about different communication channels among participants. This model
investigates features such as online availability of the participants, simultaneous and transactional
communication as well as bandwidth, latency and reliability of the communication channel. The
system model deals with the capabilities and properties of the parties participating in the application
scenario regarding today’s heterogeneous computation landscape. It considers benchmarks such as
computational power, amount of memory, parallelism of computation, reuse of services, etc. Further, a
list of security goals such as correctness, verifiability, confidentiality, privacy and indistinguishability
are specified for each application. Achieving these security goals guarantees that the algorithm in
question executes as expected and correct results are generated.
To show the ability of the PRACTICE architecture to implement a broad range of secure computation
applications, the thirteen use case scenarios examined in this deliverable are mapped to the overall
architecture of the project. The potential implementation of each application scenario in the project’s
architecture is evaluated by identifying the tools and components of the architecture that are involved
in the implementation of each scenario. This mapping shows that the PRACTICE architecture is
general and suitable to implement a wide range of business applications with its comprehensive
architecture.
The use of trusted hardware is an orthogonal approach when computation on private data needs to
be outsourced. This document provides a summary of the various trusted hardware devices and the
functionalities they provide. It then elaborates how secure multi-party computation can be performed
in the cloud environment using trusted hardware (Intel SGX in particular).
The provided models play an important role in development and implementation of solutions for
the problems mentioned in the studied application scenarios. The collected per-application security
models are summarized and compared with each other in order to derive general conclusions. These
results provide insight into the possible implementations and highlight important criteria for the
development of applications which benefit secure computation techniques in the era of distributed,
cloud and mobile computing.
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Chapter 1

Introduction

1.1 Scope of the Deliverable
There are many real-world application scenarios which would benefit from secure computation techniques
and concepts. Successful and usable implementation of these use cases requires exact and detailed
models for specification of adversaries, trusted parties/components, communication channels and
system requirements. The goal of this document is to capture these models for various application
scenarios. We specify an adversary model with the aim of capturing the strength of realistic adversaries.
This model will help in providing an adequate level of security for a particular application. The trust
model is defined to determine which levels of trust can be assumed. The possibility of leveraging
trusted hardware in a scenario is also evaluated in the trust model. Different communication channels
and their related explicit and implicit assumptions are combined in the communication model of each
application scenario. We describe the capabilities and functional properties of different participants
of every scenario in an individual system model for each scenario. This includes investigation of
properties such as computation power, connection bandwidth, relevance of parallelism, etc.
We provide a summary of the application scenarios which are considered as the basis of this deliverable.
Then we define the terms used in the document and provide a tabular template for compilation of the
different models (adversary, trust, communication and system models) for every scenario. Chapter 2
is devoted to describing the meaning and specifics of any of the models discussed in this deliverable.
The connection between application scenarios and the overall architecture of the project is presented in
Chapter 3. The tabular representation of the individual application scenarios and their related models
comprises the main part of this document (Chapter 4). A precise real/ideal-world formalisation of
the security model is presented in Chapter 5. Chapter 6 describes how trusted hardware can be used
as a(n) alternative/complement to SMC techniques to perform secure computation, particularly in the
cloud. The deliverable ends with a summary, comparison of security models provided for different
scenarios and concluding remarks in Chapter 7.

1.2 Relation to Other Parts of the Project
This deliverable has a close and tight relationship with a number of other tasks in different work
packages of the project PRACTICE. The application scenarios identified in the first deliverable of
WP12 serve as input to this deliverable. These scenarios are analysed in more details in this deliverable,
with focus on their individual adversary, trust, communication and system models.
The analysis results of this work packages will feed into the work package about the Analysis of
Existing Techniques (WP11). Furthermore, the results of this work package will be input along with
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the results from WP11 to WP13, which is concerned with Protocol Specification and Design. This is
according to the interdependency chart for the activity A1 from the project depicted Figure 1.1.

Figure 1.1: Interdependency chart for Activity 1

The application scenarios defined by WP12 and documented in the deliverables D12.1 and D12.2 of
this work package are analysed in WP11. The goal of the application scenario based analysis is to
evaluate the performance of existing protocols in these scenarios.
The results collected and compiled in this deliverable will be used to enable the mapping of the
known techniques and results of secure computation to the targeted applications. The adversary, trust,
communication and system models described in this deliverable are fed to the work package WP13.
The goal of WP13 is to design protocols which close the the gaps existing between the existing
protocols and protocols needed to achieve the desired solutions. The security models collected and
specified in this deliverable will be considered in WP13 in order to construct protocols that fit more
closely the needs of a specific application with regard to the models provided for that application.
The results mentioned in this document are used in design, development and optimization of efficient
protocols for applications of specific interest, like application scenarios specified in the results of
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the current project deliverable. Evaluating the effect of using (trusted) hardware in an application
scenario helps in designing lightweight hardware-assisted protocols or trust anchors for large-scale
and distributed applications.

1.3 Application Scenarios
This deliverable contains thirteen application scenarios, which are introduced in this section. The
application scenarios were collected in D12.1 and reflect a wide range of use cases for secure computing.

1.3.1 From Analysis to Implementation
The scenarios of this deliverable were collected among the project partners in the deliverable D12.1
and represent use cases which are interesting for the partners but also for the members of the project’s
advisory board.
Furthermore, considering a broad variety of scenarios in the analysis and design of the projects helps
in building with PRACTICE a universal framework for SMC in the cloud. This is why all application
scenarios form D12.1 were analysed in this deliverable.
Among the scenarios considered in this deliverable are the two scenarios which are evaluated in depth
in the work packages Secure Statistics (WP23) and Supply Chain (WP24). The remaining scenarios,
although not designed and implemented in the same detail as those in WP23 and WP24, build a
valuable starting point for further exploitation of the project results.

1.3.2 Categorization of Application Scenarios
The application scenarios are grouped thematically into four different categories. These categories
are joint business applications, joint studies applications, location sharing applications and end user
applications.
A short overview of all scenarios and categories is given in this section. The application scenarios are
analysed in detail and illustrated in Chapter 4 as well as in the referenced work packages.
The first category joint business applications involves companies that are interested in cooperating
with each other without revealing sensitive internal data of their company. Scenarios from this
category use secure computation to jointly evaluate calculations, e.g., supply chain optimization,
based on sensitive company data without revealing the data itself. Joint business applications that
are investigated in this deliverable are:

• Aeroengine Fleet Management: This scenario describes a system that enables the optimization
of the maintenance repair and overhaul process for the engine sector of the aeronautic supply
chain. Maintenance plans can be calculated without revealing the participating companies data.
An in-depth analysis of this use case as well as a prototype implementation are the objectives of
Work Package (WP) 24.
• Consortium Gathering Information from Its Members: A consortium would like to gather

information from its members, e.g., benchmarking economic results. Secure computation enables
competing companies to contribute their private data to the consortium without risking disclosure
of the individual data.
• Platform for Auctions: Multiple parties negotiate in an auction without revealing their bids.

Exemplary markets are spectrum and electricity auctions.
• Platform for Benchmarking: A privacy preserving platform for benchmarking between business

partners enables a trustworthy assessment. Partners can evaluate each other regarding different
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factors, i.e., credit card rating, without divulging losing sensitive company data. A prototype will
be implemented in WP 23.
• Tax Fraud Detection: Detecting tax frauds is an important scenario in which state entities are

interested in analyzing precise financial data of companies. With the help of secure computation,
a precise analysis of money flows can be executed without the necessity to reveal the companies’
sensitive financial data to the revenue office.

In the second area, namely joint studies applications, sensitive data of many individuals or entities
is used for studies and statistics without exposing the individual’s data at any time. In this area we
discuss the following scenarios:

• Joint Statistical Analysis Between State Entities: In some cases the law forbids the compilation
of so-called super-databases from the individual datasets of different state entities. To enable
a joint study across different entities, secure computation can be used to join data bases in a
privacy-preserving manner that fulfils the legal requirements.
• Privacy-Preserving Genome Studies Between Biobanks: Biobanks from different countries

can perform a joint genome-wide association study using each other’s data without breaching the
donors’ privacy using secure computation.
• Privacy-Preserving Personal Genome Analyses and Studies: Similar to the service offered

by 23andMe [5], donors can submit their genome data and enter their phenotype data to receive
feedback on genetic associations with specific illnesses and disorders. Secure computation can be
used to prevent any mishandling of the donors’ data.
• Surveys on Sensitive Data: A cloud system that provides a platform for privacy-preserving

surveys. A survey creator submits a survey to the platform that is then filled with opinions from
invited participants. Using secure cloud computing, the survey is evaluated and only the result is
sent back to the creator. Thus, with the help of secure computation, the participants’ input data can
be protected. This scenario is elaborated further in WP 23.

Privacy-preserving location sharing is of relevance in the following two scenarios:

• Location Sharing with Nearby Contacts: Location information of smart phone users is sensitive,
yet useful for social activities where contacts meet. With the help of secure computation, proximities
can be calculated without revealing actual location data.
• Privacy-Preserving Satellite Collision Detection: Different countries wish to forecast collisions

between their satellites without revealing the exact location and trajectory of their satellites.

The last group of scenarios described in this document are end user applications. These scenarios
aim towards increasing the end user’s privacy when using cloud services. The described applications
in this area are:

• Key Management: With the increasing number of devices used by an end user, cryptographic
keys need to be shared between different devices more and more frequently. To avoid a centralized
trusted third party, i.e., key server, a solution based on secure computation is preferable and is
described in this scenario.
• Mobile Data Sharing: This scenario provides privacy-preserving data sharing between different

mobile devices and users through the cloud. Data are stored in the cloud only encrypted (i.e., not
inspectable by the cloud service provider) but still sharable between users, even if the users have
their data stored on different cloud storage providers.
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Chapter 2

Model Description

This document uses the tabular representation of application scenarios as already used in deliverable
D12.1 of the project PRACTICE. Besides the general information about each application scenario
specified in D12.1, the table includes the adversary, trust, communication and system models. Furthermore
it lists the guarantees required in every application scenario, in order to achieve the desired security
objectives. The models and guarantees are specified for every individual application scenario separately.
The template used is presented below in Table 2.1 and structured as follows:
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Scenario: Name of the scenario
Summary:
A short description of the scenario
Scenario Illustration:

User

Party D

Party C

Party B

SMC

interaction

interaction

interaction

interaction

interaction

interaction

in
te

ra
ct

io
n
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te
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ct
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n

Participants:
The participating parties and their roles.
• P1: < Party 1 > – I (e.g.)
• P2: < Party 2 > – IC
• P3: < Party 3 > –R
• ...

Communication Channels: The
communication channels between the
participating parties.
• P1↔ P2 (Description, if required)
• P2↔ P1 (Description, if required)
• P3→ P1 (Description, if required)
• ...

Adversary Model:
Pa

rt
y
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nd
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nt
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es
)
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aj
or

ity

P1 2 2 2 4 P1 4
P2 2 2 4 2 P2 2
P3 2 4 2 2 P3 4

Trust Model:
P1 malicious
P2 covert
• Impact of using trusted hardware
• . . .

Communication Model:
• Which parties (e.g. server(s)) need to be online/reachable all the time?
• Do parties need to respond immediately or within time limits?
• What happens if no answer is received within the specified time limit?
• . . .

System Model:
• Examples for architectural constraints are:

Execution time (CPU), latency, bandwidth, synchronization
• . . .

Required Guarantees:
• A list of security goals for the participating parties.
• . . .

Workpackage References: WP <xx.x> Literature References: [R1][R2][R3]

Table 2.1: Application scenario template.PRACTICE D12.2 Page 6 of 106
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Each scenario is motivated and explained in a short summary. Further, each scenario is illustrated by
a figure that shows the interaction and communication behaviour between the different participants
of the scenario. The participants are also separately listed to show their assigned roles in the Secure
Multi-party Computation (SMC) model. The different roles are introduced in the following sections.
Furthermore, the security, privacy and verification goals are described informally. To analyze the
capabilities of the adversaries, an attacker model is defined for every participant. The attacker model
is further elaborated in the next sections. Moreover, the technical requirements, e.g., hardware and
network limitations, are listed. Finally, references to related work packages and literature are given,
if available.
The technical notations and definitions that are used for each scenario are described in the remainder
of this section. We begin by introducing the different roles of parties participating in an application
scenario. Afterwards we provide descriptions for the security models and guarantees being discussed
in this document.

2.1 Participant Roles
The participants in each scenario can be assigned with a role. In the article [16], Bogdanov et al.
introduce three fundamental roles to describe an SMC system—the input party I, the computation
party C and the result party R. Input parties collect and send data to the SMC system. The SMC
system itself is hosted by computation parties who carry out the SMC protocols on the inputs and
send results to result parties (in response of queries).
For the scenarios description in this deliverable we use the following notation. Let Ik = (I1, . . . , Ik)
be the list of input parties, Cm = (C1, . . . , Cm) be the list of computing parties andRn = (R1, . . . ,Rn)
be the list of result parties.
A special kind of result party is the external verifier, denoted V , who is not active in the system at
the time of the computation. Instead, it later receives a transcript of the computation, typically sent
by a result party or published on a public location. Although both result parties and external verifiers
learn the result of a computation, there is an important difference in the trust assumptions they make.
Whereas result parties receive a result whose correctness depends on trust assumptions on the protocol
parties (e.g. the computation parties), an external verifier needs to be able to verify the result long
after the computation, regardless of who performed it. Hence, the correctness of its results is required
to hold even in a setting where all computation parties behave maliciously.
Real world parties can have more than one of these roles assigned to them. Thus, Bogdanov et al.
argue that all deployments of SMC can be expressed using combinations of the above three roles. See
Table 1 of [16] for examples of typical SMC deployment models inspired by published research on
SMC applications.
In the following, ICR refers to a party that fills all three roles, similarly, IC refers to a party with
roles I and C. We use superscripts (k,m, n ≥ 1) to denote that there are several parties with the same
role combination in the system.
In conclusion, the three roles (or combinations of them) are sufficient to describe each participant in
the SMC model. Because of this, all participants in SMC-based scenario descriptions are annotated
with a subset of the three fundamental roles I, C,R.

2.2 Adversary Model
Different applications require different levels of security and thus different adversary models can be
assumed for the underlying protocols so that the required security level for each application scenario
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is met. The adversary model should help to identify an adequate level of security, because a higher
security level usually has negative impacts on the efficiency. Hence, the capabilities of realistic
adversarial participants are captured by the adversary model.
In the setting of SMC, multiple parties with private inputs wish to jointly compute a function of
their inputs. Informally speaking, the security requirements of such a computation are that nothing
is learned from the protocol other than the output (privacy), the output is distributed according to the
prescribed functionality (correctness), and parties cannot make their inputs depend on other parties’
inputs [10].
The security requirements in the setting of multi-party computation must hold even when some
of the participating parties misbehave. Cryptographic tools have been proven to withstand strong
adversarial behavior. However, the computational performance of computations crucially depends
on the adversaries’ strength. Therefore, an analysis of the attacker model is of importance when
describing an application scenario.
Aumann and Lindell [10] distinguish three adversary models that are used to describe the attacker
model in each scenario:
• Malicious adversaries are adversaries that may behave arbitrarily and are not bound in any way to

follow the instructions of the specified protocol. Protocols that are secure in the malicious model
provide a very strong security guarantee for the user.
• Covert adversaries have the property that they may deviate arbitrarily from the protocol specification

in an attempt to cheat, but do not wish to be “caught” doing so. Protocols secure in the covert model
guarantee that an adversary is caught cheating with at least a defined probability ε.
• Semi-honest adversaries correctly follow the specified protocol, yet they may attempt to learn

additional information by analysing the transcript of messages received during the execution.
Security in the presence of semi-honest adversaries provides a weaker security guarantee, yet
might already be sufficient if the adversary is given limited access to the computation, e.g. through
defined interface to framework executed in isolation (like trusted hardware).

We also annotate some parties as trusted parties which do not ‘attack’. A Trusted Third Party (TTP)
is a party that is not in control of the honest party (user) but is assumed to behave according to the
protocol specifications.
The adversary model honest majority refers to the case, where multiple participants (of the same type)
are involved in a protocol and we assume that most of them (the majority) act in a benign way. This
means that for a particular participant there is no guarantee that he is not malicious. However, we
assume that the number of honest participants is larger than the number of malicious participants.

2.3 Trust Model
Depending on the base problem of a scenario and the solution approach chosen in the scenario,
different levels of trust in the participating components and parties can be assumed. The trust model
identifies trusted parties and components and the degree of trust one can place in them. A party is
called trusted, if it behaves exactly as requested by the protocol. It is important to note that sometimes
there are some implicit trust assumptions. For example, we implicitly trust the Certificate Authorities
when using Public Key Infrastructure. Such implicit trust assumptions must be considered in the trust
model as well.
A special case which should be considered in trust model is the use of trusted hardware, which
can increases both security and efficiency. Using cryptographic functionalities included in dedicated
hardware devices such as smartcards and Hardware Security Modules (HSM) or integrated into
complex hardware components like processors can help to amplify operations performance or relax
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assumptions. The trust model should also specify the assumptions made on the use of trusted hardware;
for instance, it should declare which operations of a trusted hardware are used for a particular problem
and what is the cost and performance gain of using those operations.

2.3.1 Trusted Hardware
Smartcards are dedicated hardware devices which can be used to protect data and code from unauthorized
access. The data and code inside a smartcard is protected by the hardware-based protection of the
smartcard from the rest of the system (i.e., it is dedicated hardware). Usually a smartcard is tamper
resistant, protecting its data and code also from physical attacks on the smartcard. The chip inside
a smartcard enables secure implementation of cryptographic protocols and algorithms. A smartcard
can also be used for storing encryption keys. However smartcards can be vulnerable to side channel
attacks such as power and timing attacks. The main limitation of smartcards is their low computational
performance.
A Hardware Security Module (HSM) is a device which is plugged into a (network) computer or
attached to it externally in order to provide a tamper-resistant environment for performing secure
cryptographic processing. Digital keys can be securely stored, managed and processed within a
hardware security module. HSMs are used in a variety of applications which perform operations
on cryptographic keys including generation, storage and management of keys, en/decryption, digital
signing and authentication services.
Since HSMs are required for several use cases, mostly for compliance reasons, providing HSMs in
the cloud is of concern to the cloud service providers (CSP). Different CSPs already provide access
to HSMs in the cloud or plan to do so in the near future, e.g., Amazon already offers a service called
CloudHSM1, and Microsoft announce a service called Azure Key Vault2 which will provide HSM
access within their clouds.
A Trusted Platform Module (TPM) [49] is a hardware security module which nowadays is present
on most enterprise platforms. It provides a random number generator, asymmetric key generator,
SHA-1 hash algorithm and secure storage amongst other capabilities.
One of the most common use cases for a TPM is to capture the configuration of a platform and store
this information inside the TPM. The platform configuration is represented by cryptographic hash
digest calculated for every software component loaded. The hash digests are stored in the TPM in
register dedicated for this purpose, called Platform Configuration Registers (PCRs). These PCRs can
only be manipulated by an extend operation. This means whenever a new value is stored in a PCR
the previous value of the PCR is concatenated with the new value and the cryptographic hash of both
is the new value of the PCR. By this, all values ever stored before in the PCR are represented by the
current value. The PCRs are only reset when the system is restarted. This means, the TPM provides
a write only log of the software loaded on the system.
The TPM further provides means to digitally sign the PCRs values as a report for attesting the software
configuration of the system. An external verifier can verify the origin of the attestation report by
the signature of the TPM. The verifier who got a detailed log of all loaded software along with the
attestation report can recompute the PCRs values and verify that all software is indeed included in the
log. This gives the verifier certainty about the configuration of the platform.
Modern CPUs include a set of instructions to enable dynamic root of trust for measurement, e.g., Intel
Trusted Execution Technology (TXT) [36] and AMD Secure Virtual Machine (SVM) [7]. This
allows to minimize the dependence of software on other software executed before and/or with higher
privileges. DRTM allows to reset the state of a CPU at runtime before execution of a certain software.

1http://aws.amazon.com/cloudhsm/
2http://azure.microsoft.com/blog/2015/01/08/azure-is-now-bigger-faster-more-open-and-more-secure/
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This has the effect that all possible influences of software which executed before is nullified. With the
CPU reset also a set of dynamic3 PCRs is reset and the hash of the executing code is extended to one
of these PCRs. Hence, the software configuration of a platform consists only of the software executed
after the CPU reset. Therefore, the attestation report and log sent to a verifier is reduced which allows
a more efficient and more meaningful verification of the system configuration.
Texas Instrument’s M-Shield [11] and ARM TrustZone [6] provide architectures for mobile devices
which allow isolated code execution. To execute code in isolation the processor can be switched into
a secure mode in which only trusted code is loaded. Software executed in the non-secure mode like
the operating system or the user’s applications cannot influence the state of the secure mode and do
not need to be trusted. To ensure the integrity of the code in the secure mode it is loaded protected by
secure boot. Hence, the secure mode executed only a small, integrity-checked code in isolation from
the rest of the system.
The most recently announced secure execution technology is Intel’s Software Guard Extensions
(SGX). As explained in detail in [22], SGX consists of a set of instructions and mechanisms for
memory accesses control. These extensions will be included in future Intel Architecture (IA) processors,
i.e., they will be available in most processors used by cloud service providers. These extensions allow
an application to instantiate a protected container, called an enclave. An enclave is a protected area
in the application’s address space, which provides confidentiality and integrity even in the presence
of privileged malware or a malicious system administrator. Noteworthy, SGX is designed such that
an enclave is protected from all other software on the system, including the operating system and
the hypervisor, and by this also from the administrators operating those. Hence, SGX allows the
execution of enclaves which are inaccessible to the cloud service provider.
The SGX-enabled processors are not available on the market to date. However details on SGX
technology are already published in Intel’s whitepapers [40, 8, 33] and the Software Guard Extensions
Programming Reference.4

2.4 Communication Model
Understanding the real-world communication model used in different scenarios is necessary to ensure
that solutions meet the underlying requirements. The communication model should first of all specify
the parties that communicate with each other in an application scenario. For any communication
channel between parties, we then declare the assumptions made for the channel, including both
explicit and implicit assumptions.
The assumptions to be made on the communication might depend on the application scenario. The
following list gives a non-complete selection of assumption which need to be considered for the
communication models of the individual application scenarios: Capabilities of the communication
parties and channels. The requirements may differ for the different parties/channels, e.g., the cloud
service provider is expected to be always online. Hence, it the need to be captured separately for each
party/channel. The capabilities for the communication channels include, for instance:
• The requirement for simultaneously communication of all participants or a subset of participants.
• The requirement a party to be always online, i.e., reachable.
• Parties might need to respond within certain time limits or a delay might have some unwanted

effects.
• The protocols might relay on the network layer for providing transactional communication. A

violation of this property could potentially leak information or break the system.

3only present on v1.2 and higher TPMs
4https://software.intel.com/sites/default/files/329298-001.pdf
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• The before mentioned capabilities are of special interest when some of the participants are expected
to have limited capabilities, e.g., because they use mobile phones with unreliable network reception.

The communication model also needs to specify assumptions that are made on the communication
channels with focus on security properties.
• The authenticity of the sender and/or receiver can be relevant for the correct working of a protocol

(authenticity of communication).
• Manipulations during the transmission of messages between participants can lead to unwanted

effects (integrity of communication).
• When the communication is not encrypted during transport an eavesdropper on a communication

channel might obtain information which he should have access to (confidentiality of communication).
• If the freshness of a message is not guaranteed, e.g., by the use of nonces, replay attacks can be

used to attack the system (freshness).

2.5 System Model
The system model reflects the capabilities and properties of the parties participating in the application
scenario regarding today’s heterogeneous computation landscape. The model considers system benchmarks
such as computational power, amount of memory, network connection properties, parallelism of
computation, reuse of services, etc.
The following list elaborates on these capabilities/properties which are studied for the application
scenarios in this document.
• Computational power and system memory requirements should express if there are special requirements

for a scenario. In general every system benefits from higher computational power or more memory
available, i.e., the system can operate faster. However, in some cases, e.g., when responses need
to be provided within constrained time frames, a minimum of computational power or memory
must be available to meet the deadlines. Furthermore, special cases such as smartphones or laptop
computers should be considered. They are limited in their computational power but additional also
in their energy, i.e., they are running on battery.
• With regard to network connection the properties such as bandwidth, latency and network reliability

should be considered. One important special case are connections over mobile networks which
might not be sufficient in their reliability, latency or bandwidth in a specific scenario.
• The parallelism of computations is a special variant of computational power. However, not every

computation can benefit from massive parallelism provided in distributed systems or by cloud
computing.5 Using cloud services may have positive effects such as speed-up and negative effects
such as loss of control/trust. Both positive and negative impacts must be addressed in the system
model. In particular it is important to evaluate, what an attacker can achieve by leveraging the
massive computational power of the cloud. For instance, if the input provider stores its input in the
cloud (e.g., Dropbox) the input data might not be trustworthy any more under the assumption that
the cloud provider (i.e., Dropbox) is malicious.
• Concurrent usage of services can have different effects. For instance, for scaling a solution multiple

instance of the same protocol/service can be used on the same device (e.g., server). However,
sharing resources like a server might lead to security risks, for instance, by reusing keys.

5Computations might be adapted to benefit from parallelism but this usually requires significant implementation effort.
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2.6 Guarantees
In this section we provide a list of security goals for the participating parties which must be guaranteed.
This list includes, but is not limited to, the following:
• Correctness and Verifiability

The correct execution of the function/algorithm in question is required, i.e., it must produce the
correct output. This seems to be an apparent goal in every application. However, it may not be
achieved easily when some parts of the computations are performed in the cloud. Therefore, this
requirement should be explicitly mentioned for the different application scenarios.

In [30] Genarro et al. introduce the notion of Verifiable Computation, which enables a computationally
weak client to outsource the computation of a function on various dynamically-chosen inputs to
one or more workers. The workers return the result of the function evaluation as well as a proof
that the computation of the function was carried out correctly on the given value. Considering the
cloud as worker, it should be specified if the computations must be verifiable and if yes, what kind
of verifiability is required: public (universal) verifiability or designated verifiability. In the public
verifiable scheme, any verifier can perform the verification, while in designated scheme, only a
chosen verifier with specific characteristics, such as the capability of authenticated interaction, is
able to perform the verification.

Implicit assumptions in the context of verifiability should be specified as well, e.g., the assumption
that a majority of participants are honest.
• In-distinguishability of inputs/parties (anonymity of participants)

In some cases the inputs of a function and/or the parties participating in an application scenario
require to be indistinguishable from one another, so that their anonymity can be preserved. Therefore,
it should be declared if in-distingusihability and anonymity of inputs and participants are a requirement
to be guaranteed in any of the application scenarios.
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Chapter 3

Integration of Application Scenarios in the
Project Architecture

This work package identified and evaluated several application scenarios. The motivation for considering
a broad range of scenarios and capturing their (security) requirements is based on multiple reasons.
These reasons are
• These miscellaneous application scenarios show real-world and practical use of secure computation.
• Providing several use cases from various fields attract the attention of end users by showing the

applicability of the project efforts and results in practical applications.
• Most scenarios are cloud computing based which is in line with the goal of the project. Considering

several scenarios highlights the role of the cloud service provider and the need for thinking of
solutions for privacy-preserving computation in the cloud.
• The evaluation of multiple scenarios shows that the final PRACTICE framework will not be limited

to the two scenarios which will be implemented as part of the project. Rather the PRACTICE
solution will be able to cover a wide range of applications.

In this chapter a connection between application scenarios and the overall architecture of the project
is presented. For each application scenario from this work package it is shown how it fits into the
PRACTICE architecture design.
Different tools and platforms for secure computation are developed in this project and are included
in the overall architecture. Each platform consists of several components which are distributed over
different layers of the overall architecture.
Our goal is to identify which components are required to implement every specific use case scenario.
It is possible that one application can be implemented using several tools. In this case all candidate
tools will be listed along with those components of each tool that need to be used to implement the
application scenario.

3.1 Overall Architecture
The overall architecture of the project is depicted in Figure 3.1. This diagram shows the components
of a Platform as a Service (PaaS) for performing secure computation in the cloud. It consists of
several layers and incorporates a number of secure computation engines and tools, namely VIFF [3],
SAP HANA [1], Compiled L1 [45, 46], Fresco1, SCAPI [29], FairPlayMP [14], ABY [26] and
Sharemind [2]. These tools use different technologies and provide multiple interfaces of different
types with the end user. They also differ in their support of secure computation schemes (e.g.,

1Fresco is a tool developed and used internally at the Alexandra Institute http://alexandra.dk/
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two-party vs. multi-party) and the adversary models of participating parties. The goal of PRACTICE
is to present a unified architecture which can support implementation of wide variety application
scenarios in the context of secure computation in the cloud. The detailed features and capabilities of
these engines and the whole architecture are described in the deliverable D21.2 of the project.
In this document a path is specified on the architecture for each application scenario, which can
represent those components of the architecture that are required for the implementation(s) of an
application. It represents how a wide variety of use case scenarios can be implemented in PRACTICE.
Whereas no single tool is suitable for implementing all application scenarios, there is at least one tool
in the architecture of the project which can be used to implement each of the presented scenarios. The
tool may be used as it is or may need to be adapted with new protocols and combined with other tools
and interfaces to realise the implementation of the applications.

3.2 Implementation of Application Scenarios: An Overview
Table 3.1 represents a mapping between application scenarios and secure computation tools and
platforms which potentially can implement each scenario. The implementation paths on the architecture’s
big picture are highlighted in chapter 4 for every individual application scenario. In most cases at least
one component from each layer of the architecture is used to have a complete path beginning from the
end user and ending at the cloud infrastructure.

Application Scenario Tools Remarks
Aeroengine Fleet
Management

Fresco The current version of Fresco is not suitable
for implementing this scenario, because it has
only one computing party and Fresco only
supports secure computation with two or more
parties. However, this issue could be handled by
implementing appropriate protocols in Fresco.

Platform for Auctions Sharemind
Fresco

Assuming that a number of the computing parties
can behave maliciously, this application can be
implemented on Sharemind using passively secure
computation protocols along with SGX hardware
for correctness guarantees, if the cloud service
providers are trusted not to collude with each other
and also other data providers.

Platform for
Benchmarking

Sharemind
HANA/SEEED

The application could be implemented in
Sharemind when computation servers are hosted
by non-colluding cloud service providers and
correctness is guaranteed by the use of trusted
hardware (SGX).

Consortium Gathering
Information From its
Members

ABY
Sharemind

ABY is suitable for applications that perform
secure two-party computation. This scenario
can be implemented by ABY, if the number of
computing parties is two.
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Tax Fraud Detection ABY
Sharemind
Fresco

ABY is suitable for applications that perform
secure two-party computation. This scenario
can be implemented by ABY, if the number of
computing parties is two.
Fresco can implement all parts of this scenario
except correctness verification which is not
currently supported by Fresco.

Joint Statistical Analysis
Between State Entities

ABY
Sharemind
Fresco

ABY is suitable for applications that perform
secure two-party computation. This scenario
can be implemented by ABY, if the number of
computing parties is two.
Fresco can implement all parts of this scenario
except correctness verification which is not
currently supported by Fresco.

Privacy Preserving
Genome-Wide
Association Studies
Between Biobanks

Sharemind
Fresco

Fresco can implement all parts of this scenario
except correctness verification which is not
currently supported by Fresco.

Privacy Preserving
Personal Genome
Analyses and Studies

Sharemind
HANA/SEEED
Fresco

For implementation of this scenario in Fresco
much work is required in the upper layers of the
architecture to ensure against a corrupt lab.

Platform for Surveys on
Sensitive Data

ABY
Sharemind
HANA/SEEED
Fresco

ABY is suitable for applications that perform
secure two-party computation. This scenario
can be implemented by ABY, if the number of
computing parties is two.
This scenario can be implemented on Sharemind
assuming honest majority and using secure
hardware.
This application could use techniques of SEEED,
but this would require the introduction of
asymmetric cryptography schemes and even then
things wouldn’t be simplified a lot.
This scenario could be implemented by Fresco in
an instantiation with two computing parties, since
currently Fresco supports only two-party secure
computation with malicious security. However,
the currently supported protocol (SPDZ) for this
setting can easily be extended to multiple parties.

Location Sharing with
Nearby Contacts

Sharemind This scenario can be implemented on Sharemind
assuming honest majority and using secure
hardware.
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Privacy Preserving
Satellite Collision
Detection

Sharemind
Fresco

This scenario can be implemented on Sharemind
assuming honest majority and using secure
hardware.
This scenario could be implemented by Fresco
in an instantiation with two computing parties
(number of hosts chosen among the satellite
operators should be two), since Fresco currently
only supports two-party secure computation with
malicious security.

Key Management Sharemind This scenario can be implemented on Sharemind
assuming the cloud service providers are
non-colluding. However, since there are no
actual secure computations taking place in this
application, implementing it with Sharemind does
not make much sense.

Mobile Data Sharing Sharemind This scenario can be implemented on Sharemind
assuming the cloud service providers are
non-colluding. However, since there are no
actual secure computations taking place in this
application, implementing it with Sharemind does
not make much sense.

Table 3.1: Candidate Tools for Implementation of
Application Scenarios
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Secure Platform for Enterprise Applications and Services (SPEAR)

Distributed Aggregation and Security Services (DAGGER)
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Chapter 4

Application Scenarios
In this chapter the individual application scenarios are presented and their adversaries, trust, communication
and system models are described per scenario. The tabular representation in which the scenarios are
presented serves to create an overview of each use case scenario and its models. It also enables the
reader to compare the investigated application scenarios with one another.
The tabular representation of each scenario is followed by a figure of the overall architecture in which
those tools and components of the architecture are highlighted which can be used to implement the
scenario within the PRACTICE architecture. The candidate tools for implementing each application
scenario are marked on the architecture with a distinguished colour to show the diversity of possible
implementations. The involved components of the architecture are also coloured accordingly, so
that the reader can identify which components are required for the implementation of a specific use
case scenario using a particular tool. If a component is required in more than one tool, then it is
marked with a combination of colours so that the reader can recognize its involvement in multiple
implementations. Figure 4.1 shows the colours used for highlighting the components required for the
implementation of application scenarios with one or several secure computation engine(s).

Secure Computation Tool(s) Colour of Required Components 

HANA/SEEED 

Fresco 

ABY 

Sharemind 

HANA/SEEED + Fresco 

Fresco + Sharemind 

ABY + Sharemind 

HANA/SEEED + Fresco + Sharemind 

Figure 4.1: Colours Used For Different Tools
The application scenarios are grouped into four categories. First, joint business applications are
described followed by joint studies applications. Next, different location sharing applications are
evaluated and finally end user applications are described.
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4.1 Joint Business Applications

Scenario: Aeroengine Fleet Management

Summary:
The scenario aeroengine fleet management describes an online system enabling the optimization of
the maintenance, repair, and overhaul (MRO) process for the engine sector of the aeronautic supply
chain. Three parties are involved in this scenario: fleet owners (i.e., airlines or air forces), MRO
service provider and suppliers. Each of the three parties provide inputs to optimize engine service
works. Fleet owners provide their engine work load and status data, MRO service providers contribute
their current work plan and inventory status, and the suppliers provide their production plans and
inventory data. Given all data in encrypted form, the system can compute an optimal service plan
for the engines. This involves computing of supply plans as well as delivery orders for the involved
suppliers. Moreover, spontaneous changes in the supply plans, e.g., production delays, are fed in to
the calculations to update the plans on demand.

Scenario Illustration: Participants:
• P1: Cloud Service Provider Cl
• P2: Airline Companies IkRk

• P3: MRO Service Provider ImRm

• P4: Suppliers InRn

Communication Channels:
• Channel1: P1↔ P2
• Channel2: P1↔ P3
• Channel3: P1↔ P4

Adversary Model:
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P4 2 2 4 2 P4 2
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Trust Model:
• The different actors in this scenario generally do not trust each other. All actors could gain

advantages from accessing the confidential information of other actors. Hence, every actor might
try to violate the privacy of one or all other actors.
• The cloud service provider (CSP) is generally not trusted, but it is assumed that the majority of CSP

is not colluding. The CSP might be identical with one of the actors (i.e., the MRO service provider)
or collaborate with one of the actors. Consequently, the CSP should not be able to reconstruct any
secret information.

Communication Model:
• The participants do not need to be online for communication.
• There is no need for simultaneous communication in sending input to the cloud service provider

from distinct input entities (P2, P3 and P4). However P1 must provide the computations results to
P2, P3 and P4 at the same time.
• P1 must be reachable and responsive all the time.
• Transactional communication is required since incomplete input data can lead to erroneous results.
• Input and output data are provided in encrypted form, therefore, transport encryption is not required

for preserving confidentiality.
• All parties must be authenticated before exchanging data.

System Model:
• Due to the large size of data being communicated a high bandwidth is required for all actors.
• The cloud service provider must have high computational power and large memory capacities in

order to be able to process the huge amount of input data and produce output in an acceptable
amount of time.
• This application does not require a highly reliable network connection because communication

may be performed offline.
• The complexity and time-consuming nature of computations in this application scenario limits the

size of groups of cooperating input and result parties which can be handled in practice.

Required Guarantees:
• The system must guarantee correctness of the results. However, neither universal nor designated

verifiability is required.
• A majority of participants behave honestly.
• The number of participants in the market is limited and are known by all participants. Therefore,

indistinguishability is not a relevant requirement.
• The participants input data may not be decrypted by the cloud service provider, neither by any

other participants.
• Computed results can only be decrypted by the designated receivers.

Workpackage References: WP 24.1, 24.2
and 24.3

Literature References: [39]
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Implementation within PRACTICE overall architecture:

Secure Platform for Enterprise Applications and Services (SPEAR) 

Distributed Aggregation and Security Services (DAGGER) 
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Remarks:

• This scenario can potentially be implemented using Fresco, if new protocols are added to it. The
scenario has only one computing party. Currently Fresco supports only secure computation with
two or more parties. Therefore, some protocols could be implemented in Fresco to handle this
situation as well.
• Sharemind turns out to be a tool which can implement a wide range of application scenarios.

However, since the computing party is a single entity in this scenario, this application cannot
be implemented on Sharemind, as this tool only provides support for two- or multi-party secure
computation.
• This application can be implemented using secure outsourcing methods such as Fully

Homomorphic Encryption.
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Scenario: Platform for Auctions

Summary:
Auctions are means to control the ways information is coordinated on a market and most auctions
have elements of sealed bidding. Apart from the submitted bids, confidential data may also concern
private like information describing the commodities or services traded, e.g., a consumption profile
in procurement of electricity. As such, auctions may be interlinked with secure statistics. Secure
multi-party computation is used commercially for handling confidential bids in some of the most
common types of auctions, the double auction known from most exchanges for financial as well
as physical commodities and the classical first price sealed bid auctions used in many procurement
scenarios.

Scenario Illustration:

Buyer	  1	  

Buyer	  N	  

Servers	  

Cloud	  

Seller	  

“Start”	  

“Buyer	  1	  
Wins”	  

Auc9on	  Service	  

Participants:
• P1: Cloud service providers Ck
• P2: Auction service provider C
• P3: Buyers one or more – InRm Vn
• P4: Sellers one or more – InRn Vn
• P5: Competition regulator – V

Communication Channels:
• Channel1: P1↔ P2
• Channel2: P1↔ P3
• Channel3: P1↔ P4
• Channel4: P2↔ P3
• Channel5: P2↔ P4
• Channel6: P2↔ P5

Adversary Model:
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Trust Model:
• All participants (except the competition regulator V V ) might have an interest in cheating in the

auction. Therefore, they are considered untrusted.
• The secure multi-party computation is carried out by the cloud service providers, hence, it has to

be assumed that the majority of them is trusted.
• For the authentic and private exchange of data between the participants there is a need for managing

and distributing keys among them. If this is done with a public key infrastructure (PKI) the
certification authorities of the PKI need to be trusted.

Communication Model:
• P1 and P2 need to be online, reachable and responsive all the time.
• Each auction has a due date, up to this due date buyers can submit their bids. Simultaneous

communication for sending input is not required. After the due date, P2 should immediately finish
the auction round and results must be declared all the other parties immediately after.
• If no input is provided by a participant in set P3, then this participant automatically loses auction.
• Input should be transmitted in encrypted form for privacy of the data.

System Model:
• Execution time to evaluate the prices and determine the winner of the auction is important for the

acceptance of the system.
• Synchronization between P1 and P2 must be satisfied.
• Bandwidth is not critical because shared data is not huge.

Required Guarantees:
• The inputs of the sellers and buyers must stay confidential.
• The result of the auction must be correct, i.e., the buyer with the highest bid wins.
• The correct functioning of the system must be verifiable by the Competition regulator.

Workpackage References: W24 (to some
extent)

Literature References: [19]
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Implementation within PRACTICE overall architecture:
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Remarks:

• Semi-honest secure multi-party computation is supported currently by Fresco. Therefore, this
system could be implemented easily.
• Assuming that a number of the computing parties can behave maliciously, this application can

be implemented on Sharemind using passively secure computation protocols along with SGX
hardware for correctness guarantees, if the cloud service providers are trusted not to collude with
each other and also other data providers.
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Scenario: Platform for Benchmarking

Summary:
Benchmarking, understood as relative performance evaluation of ”alternatives” (typically decision
making units), is widely used to generate insight, planning as well as motivation. Keeping private
information that describes the decision making units is typically critical. One exemplary deployment
is the benchmarking of commercial bank customers. Here, benchmarking economic efficiency of the
commercial customers can function as a complement to traditional credit rating. The value-added
may e.g. come from a richer data foundation (which may also be used for credit rating) and/or
the possibility to explore how exposed a given bank is. This solution requires a third party to
confidentially handle information and no natural third party institution exists.

Scenario Illustration:

Data	  Providers	  

Benchmarkee	  

Benchmark	  
Recipient	  

Perform
ance	  

Servers	  

Cloud	  

Benchmarking	  Service	  

Participants:
• P1: Cloud service providers Ck
• P2: Benchmarkee (entity to be

benchmarked) I
• P3: Data providers (providing data to

benchmark against) In
• P4: Benchmark recipientR

Communication Channels:
• P1↔ P1
• P1↔ P2
• P1↔ P3
• P1↔ P4

Adversary Model:
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Trust Model:
• Economic efficiency of the commercial customer is very important across his competitors.

Because, if his economic weakness is shown by his rivals, this data can be used to take advantage
in the race of gaining more market share.
• Provided data may be used by P4 to increase its prices if the customers’ economic efficiency is

strong. Thus, P4 try to get directly whole data provided by P3.
• P1, P2 and P3 must declare and point out their privacy preserving methods, systems and policies.

Communication Model:
• P2 and P4 do not need to be online all the time, but other participants must.
• P1 and P3 must be reachable and responsive all the time.
• There is need for simultaneous communication between P1 and P3.
• Input data must be encrypted and output data cannot include direct financial data about the P2 but

it only includes P2’s economic efficiency grade.
• All parties must be authenticated before exchanging data.
• Communication between all parties must be well protected.

System Model:
• Large amounts of data need to be shared in this scenario (e.g., analysis and reports). Hence, a high

network bandwidth is required.
• System needs a highly reliable network because some of the participants must be online all the

time.
• Execution time to evaluate the economic efficiency of P4 is important to take action.
• Synchronization between all parties should be satisfied, especially the synchronization between P1

and P3 is of importance.

Required Guarantees:
• P3 share correct and objective data about P2.
• Analysis and given grades can only be decrypted by P4 and never shared with any other party. On

the other hand, input data cannot be decrypted by anyone under the assumption that the majority
of CSP is honest.
• Any P3 member cannot see any other P3 member’s data. Moreover, information that demonstrated

which companies are analyzed should be kept secret.

Workpackage References: WP23 Literature References: [48]
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Implementation within PRACTICE overall architecture:
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Remarks:

• The application could be implemented in Sharemind when computation servers are hosted by
non-colluding cloud service providers and correctness is guaranteed by the use of trusted hardware
(SGX).
• SEEED can be used to additionally protect data provided by the data providers while it is stored

in the cloud. The key(s) must be provided to Benchmarkee only in order to be able to selectively
access data for comparisons.
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Scenario: Consortium Gathering Information From its Members

Summary:
Considering a scenario where a consortium would like gather information from its members,
e.g., benchmark their joint economic results. However, consortium members might be competing
companies and are, thus, reluctant to share that kind of information with the consortium board,
which may consist of consortium members. Since, the consortium board should only be interested in
aggregate results, a privacy breach can be alleviated by using SMC without losing functionality.

Scenario Illustration:

Board

SMC

Member #1 Member #2 Member #n

Form

Results

Participants:
• P1: Consortium board –R,V
• P2: Consortium members – In,Vn, where
n is the total number of members
• P3: Consortium members that execute the

SMC for all members – Ck, k ≤ n

Communication Channels:
• P2→ P3 (P2 provide user credentials and

inputs to the SMC service)
• P1→ P3 (P1 provides user credentials to

access the system)
• P3 → P1 (SMC service provides

aggregate results to P1)

Adversary Model:
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Trust Model:
• P1: Consortium members might consider P1 more trustworthy if participation is not mandatory.

(With voluntarily participation results will be partial, however, if a certain participation level is
achieved results are still statistically valuable).
• P1: Consortium members might consider P1 more trustworthy if all of participants receive part of

results (i.e., all entities of P2 will be also entities of P1), maybe personalized results (i.e., personal
position in the aggregate results).
• P2: in the case results are private, trust is increased if smartcard access is required for them
• P3: is responsible for maintaining the privacy of the result data, e.g., P3 may not distribute the

results.
• P1, P2 and P3: The use of trusted hardware can lead to relaxed assumption for the participants’

adversary models, e.g., by giving guarantees on the correctness of the executed operations.

Communication Model:
• It is required that P1 and P2 are authenticated prior to any communication so that malicious

external behaviour can be avoided.
• P2 is required to be online before the protocol execution to provide input, P1 is required to be

online when the result is provided.
• If computation results are expected to be a huge quantity, specific bandwidth should be required to

P1 (to download) to reduce communication time.
• P3 has to be always reachable (online) to facilitate user access.
• Time limitation (few weeks) for input providing is recommended, at the end of the time period

computation starts (if a certain percentage of input were received results are statistically valuable).
• Communication between P1 and P3 must be protected, e.g., from modification of input data can

lead to wrong results.
• In the case results are private, communication between P2 and P3 must be protected.

System Model:
• Bandwidth is the a critical issue if input or output data are a huge amount which need to be

transferred within tight time frames

Required Guarantees:
• Correct execution of the function/algorithm in order to produce correct outputs.
• Designed scheme so that a chosen verifier (with specific characteristics) can perform verification.
• Anonymity of input data is a mandatory requirement.

Workpackage References: WP22.1 Literature References: [47, 18]

PRACTICE D12.2 Page 32 of 106



Adversary, Trust, Communication and System Models

Implementation within PRACTICE overall architecture:
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Remarks:

• ABY is suitable for applications that perform secure two-party computation. This scenario can be
implemented by ABY, if the number of computing parties is two. k trusted consortium members
execute the secure computation for all consortium members, where k ≤ n with n being the
total number of members. In the special case when k = 2, ABY can be used in this scenario.
ABY assumes semi-honest computing parties, so the trusted consortium members can perform the
computation.
• If we assume the covert model for consortium members executing SMC, the application can be

implemented using Sharemind’s passively secure protection domain and additionally allowing
other consortium members to audit the computation servers or provide secure remote attestation of
running software to the verifying consortium members. To protect against malicious adversaries,
secure hardware can be used.
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Scenario: Tax Fraud Detection

Summary:
Detecting tax fraud is one of the cases where state entities, e.g., the revenue office, are interested
in analyzing precise financial data of companies. However, such a risk analysis would require the
creation of so-called super-databases, which might be prohibited by law. With the help of SMC, a
precise analysis of cash flows can be executed that follows the law without the necessity to reveal
the companies’ sensitive financial data to the state entities. Moreover, the state entities can input data
from other sources to improve the risk analysis results.

Scenario Illustration:

CompaniesRevenue
office

Financial
data

Data about
companies
from other

sources

Risk
analysis
results

SMC

Participants:
• P1: Private companies – In
• P2: State cloud – Ck
• P3: Revenue office – ICR
• P4: Referee – V

Communication Channels:
• P1↔ P2 – Companies upload data to state

cloud
• P3↔ P2 – Revenue office inputs auxiliary

data and performs risk analysis queries
• P2 – State cloud servers communicate to

perform risk analysis computations using
SMC protocols
• P4↔ P2 – Referee verifies computations

Adversary Model:
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Trust Model:
• An implicit trust assumption is that all parties have certificates signed by a trusted authority to

allow setting up secure authenticated communication channels.
• P1: The companies are naturally assumed malicious and can provide incorrect inputs. The goal

of the risk analysis algorithms is to later find discrepancies in the companies’ provided data as to
detect tax fraud. Some initial consistency checks can be performed by comparing private aggregate
statistics of the uploaded data to companies’ public financial reports.
• P2: The state cloud servers are assumed to be non-colluding to guarantee the privacy of the

data. This requires the cloud servers to be maintained by different organizations with clearly
non-colluding relations to enhance the direct perception of security to the data owners (companies).
A possible deployment model is the following. One server can be hosted by the revenue office itself
or a similar state agency (e.g., the country’s Department of Finance). Another server should be
hosted by a non-government organization representing the interests of the private sector. For using
multi-party SMC protocols, a suitable neutral party should host the third server, e.g., a country’s
data protection authority. Alternatively, the cloud servers could all be hosted by government
agencies provided that authorized private sector representatives or designated referees are allowed
to monitor and audit the server deployment and running software.
• P2: The state cloud servers are assumed to perform computations in a semi-honest manner.

Semi-honest behaviour can be enforced through auditing the software and setting up strict physical
and organizational security measures in addition to stating clear legal responsibilities for the
hosting parties.
• P2: Using secure trusted hardware in the state cloud servers such as Intel’s Trusted Execution

Technology and SGX can greatly enhance the trust in the correctness of the performed
computations since these technologies can provide attestation reports proving to an external verifier
the executed software.
• P3: The revenue office is assumed to behave semi-honestly as its potential malicious activity is

very limited. The types of risk analysis queries and the computations done with private data can
be agreed on beforehand with private sector representatives to ensure that the outputs from the risk
analysis do not harm the privacy of the companies’ input data. A private sector representative
hosting one of the cloud servers can also block excessive queries, negating the possibility of
multiple-query attacks by the revenue office.
• P4: An external referee may be present and is assumed semi-honest to verify the correctness of the

computations using SMC auditing techniques.
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Communication Model:
• All communication between parties must use secure authenticated channels to avoid malicious

external parties to interfere with the system. The state cloud servers and revenue office must use
private channels so that an external malicious party cannot change the content of the exchanged
messages and harm the integrity of the computations. Since companies will upload their data over
the Internet, cryptographic methods to prove the integrity of the uploaded data should be used, e.g.,
message authentication code or digital signatures.
• The state cloud servers need to be on-line at all times to receive and aggregate companies’ data

and process risk analysis queries by the revenue office.
• Uploading companies’ data can be done asynchronously. For companies with very large amounts

of data, the company can receive a message later if the upload was unsuccessful or initial integrity
checks for the data failed.
• Companies must upload their data before a fixed time in each tax declaration period, after which

the revenue office can make risk analysis queries regarding that period’s data. The companies’ data
are pre-processed and aggregated in a background process throughout the data upload phase.
• The risk analysis queries can be processed asynchronously if necessary. After the computations are

complete, the results can be stored in secret-shared form in the state cloud and sent to the revenue
office when it is ready to receive them.

System Model:
• Data collection should be performed via a web-interface provided by the revenue office.
• Data uploading must be fast even if many companies are uploading data simultaneously, since the

deadlines for tax declarations are strict and it can be assumed that most of the uploads will be done
in a few-day period. To allow fast data upload, the cloud servers must be equipped with powerful
hardware and a large number of CPU cores to be able to handle load spikes and efficiently process
and aggregate companies’ data in parallel.
• Small- or medium-sized companies should get fast feedback if the upload or initial integrity checks

for the data failed. For companies with the largest amount of financial data, a delay in the order of
a few minutes is acceptable.
• The data aggregation must be performed seamlessly in parallel with data uploading to reduce the

overall time consumption for performing risk analysis. For a taxing period of one month, the risk
analysis process for a given period should not take more than 10 days to support periodical risk
analysis using up to date data.
• The cloud servers must be connected with high-bandwidth network links to process all the

companies’ data and perform risk analysis in reasonable time as bandwidth is the bottleneck for
most SMC protocols.
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Required Guarantees:
• The revenue office cannot see any financial data of any of the companies.
• Only the revenue office can see the risk analysis results, which are calculated correctly and only

list suspicious companies.
• The risk analysis results must maintain output privacy of the companies’ data to the highest

possible degree.
• Companies cannot see any data about other companies. Not even which companies are being

analyzed.
• A referee or (independent) state entity may need to be involved as designated verifier for the risk

analysis.

Workpackage References: Literature References: [15]
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Implementation within PRACTICE overall architecture:
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Remarks:

• ABY is suitable for applications that perform secure two-party computation. This scenario can
be implemented by ABY, if the number of computing parties is two. This scenario includes k
semi-honest state clouds that perform secure computation for n companies and the semi-honest
revenue office who upload their inputs to one of the state clouds. ABY can be used in the special
case when k = 2.
• This scenario can be implemented using Sharemind’s passively secure multi-party protection

domain. It can additionally use secure hardware (Intel TXT and SGX technologies) to provide
verifiability and enhance the perception of security to end users (data owners).
• Most of this system could be implemented in Fresco. Only the verification is not currently

implemented. However, work is being done in PRACTICE in order to implement correctness
verification on top of Fresco.

PRACTICE D12.2 Page 40 of 106



Adversary, Trust, Communication and System Models

4.2 Joint Studies Applications

Scenario: Joint Statistical Analysis Between State Entities

Summary:
Often, the public administration would like to have an overview of how one of its governance fields
reflects on another, e.g. how does working during university studies influences the drop-out rate of
university students. As the law forbids the compilation of a so-called super-database between the
different state entities, the analysis can only be carried out by using pre-aggregated data or some
other method. This, however, can reduce the quality of analysis results as more subtle nuances can be
overlooked. In this scenario, the state entities combine their databases in a privacy preserving manner
and allow a data analyst to perform pre-agreed queries.

Scenario Illustration:

...Host 1

Host m

Results
State entity 1

State entity k

...

Analyst
Data

Data

Participants:
• P1: Hosts– Cm
• P2: State entities – Ik
• P3: Data analyst(s) –R,V
• P4: Referee – V

Communication Channels:
• P2 ↔ P1 – State entities upload data to

hosts
• P1 – Hosts perform computations using

SMC protocols
• P1↔ P3 – Data analyst receives result of

computation.
• P4↔ P1 – Referee verifies computations

Adversary Model:
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Trust Model:
• As an implicit trust assumption, we assume the prior deployment of a PKI, which allows the public

keys of all parties to be distributed in an authenticated way. This will allow the establishment of
confidential and authenticated channels between all parties. We now describe the trust relations
between the parties.
• P1: The servers (or hosts) performing the computations are independent from any other

participants involved in the protocol (the state entities holding the data, the data analysts
performing queries and the referee evaluating the computation). They are therefore assumed to
be malicious. However, as mentioned in deliverable D12.1, it is plausible that in many scenarios
the hosts can be controlled by state agencies and other organisations that can be assumed to be
semi-honest or, in the worst case, covert adversaries who will be deterred by the possibility of
malicious behaviour being detected and publicised. In this case, more efficient solutions can be
obtained, as reported in [17]. In particular, one may consider a trust model where less than half
of the hosts may be passively corrupted (“honest majority”), which will lead to significantly more
efficient deployments.
• P1: The trust model described in the previous point can be modified in the future, if the hosts are

equipped with trusted hardware, such as Intel’s Software Guard Extensions (SGX), which enables
the execution of (integrity-checked) code in isolated environments. In this case, assurance as to the
correctness of the computations can be built upon the assumption that the trusted hardware offers
adequate protection.
• P2: The state entities are assumed to be semi-honest. In cases where state entities are also

computing parties, multiple servers maintained by different entities with non-colluding relations
will enhance the direct perception of security to the data owners and data privacy authorities. In
particular, semi-honest behaviour can be physically enforced through software auditing and setup
of organizational security measures, in addition to stating clear legal responsibilities for the hosting
parties.
• P3: The data analyst is assumed to behave maliciously. In order to reduce data leakage,

mechanisms that add appropriately chosen random noise to query responses can be employed to
achieve differential privacy [28]. Alternatively, the analyst can be bound by contractual obligations
to follow pre-specified guidelines regarding what queries are allowed by the system.
• P4: An external referee may be present and is assumed semi-honest to verify the correctness of the

computations using SMC auditing techniques.
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Communication Model:
• The assumption of an external PKI enables the use of standard cryptographic technology to

establish secure authenticated channels between all parties, which will exclude the possibility of
tampering with exchanged messages. In particular, the hosts and state entities can be assumed to
communicate through secure confidential and authenticated channels.
• The setup stage of the protocol, consisting in the transmission of data from input parties, requires

online presence of all hosts for a fixed period of time. The requirements for this stage are related
to the amount of information contained in the collection of state entities’ databases, so the protocol
should be prepared for high bandwidth usage.
• Uploading of data can be done asynchronously, i.e. state entities may upload their data at different

times.
• Normal system operation involves hosts responding to queries from a data analyst, which means

that state entities can be absent during the process.
• The referee can verify the correctness of computations asynchronously, and therefore is not

required to be present during setup phase or query evaluation.

System Model:
• The number of state agencies participating in the analysis will typically be small, but each one of

them will provide a large amount of data.
• Given the small number of input parties, it is unlikely that immediate parallel pre-processing or

aggregation of the data as it is uploaded will be required, although this may happen for some
specific analysis algorithms.
• The set-up period during which the input parties will be providing the data can usually be flexible

enough to accommodate asynchronous uploading (e.g., one state entity at a time) so that the
bandwidth and processing requirements during data upload are less demanding.
• The time-critical operation in this scenario will be providing timely answers to the data analyst.
• The hardware requirements for the hosts will be very much dependent on the nature of the analysis

and data sizes. In the most typical cases, using today’s best SMC protocols, bandwidth will be
a more important factor than CPU power, so the hosts should be interconnected with high-speed
links.

Required Guarantees:
• The state entities can only see their own data, and public analysis outputs.
• The hosts can only see public analysis outputs.
• The data analyst can only see the analysis outputs.
• The analysis outputs must be computed correctly, and must leak no more information than the

pre-agreed set of queries allows.
• A referee or (independent) state entity may need to be involved as designated verifier for the

analysis process.

Workpackage References: WP22, WP23
(as this scenario has common traits to secure
statistics)

Literature References: [17, 28]
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Implementation within PRACTICE overall architecture:
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Remarks:

• ABY is suitable for applications that perform secure two-party computation. This scenario can be
implemented by ABY, if the number of computing parties is two. k state entities provide inputs
to m hosts which then perform secure computation. It is mentioned in the description of the Trust
model, that the hosts are generally assumed to be malicious but in some cases can be regarded as
semi-honest. Thus, we assume them to be semi-honest and thus ABY is suitable for this scenario
when m = 2.
• The Trust Model description describes that if suitable state agencies host the SMC servers, then

they can be assumed non-colluding and semi-honest. In this setting, Sharemind is applicable using
a passively secure protection domain. In the honest majority/covert model, secure hardware can
be used to guarantee correctness of computations (assuming still that the hosts are non-colluding).
• Most of this system could be implemented in Fresco. Only the verification is not currently

implemented. However, work is being done in PRACTICE in order to implement correctness
verification on top of Fresco.
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Scenario: Privacy Preserving Genome-Wide Association Studies Between Biobanks

Summary:
Biobanks from different countries wish to perform a joint genome-wide association study using each
other’s data. The biobanks already have collected the data along with signed consent forms from their
donors. To collaborate, and, hence, get more accurate and interesting results, they want to share the
data among each other without breaching the donors’ privacy.

Scenario Illustration:

Biobank 2

Biobank 1 Biobank k

...

Participants:
• P1: Biobanks – ICRk

• P2: Referee or state entity – V

Communication Channels:
• P1↔ P1

Adversary Model:
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Trust Model: Both for the trust model and for the adversary model we have a completely symmetric
setup where all the biobanks are semi-honest.

Communication Model:
• All computation parties should always be online to provide the possibility to have an virtually

instant query result while ensuring that the origin of individual records is not traceable).
• The computation parties communicate over authenticated, secure, private channels.
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System Model:
• Data analysts in biobanks interact with the service through an intuitive web-interface or through

a command line tool that allows only previously agreed queries. The command line tool must
resemble existing statistical analysis tools, such as GNU R, to be intuitive for the analysts.
• The biobanks must have the possibility to delete data of a donors if asked to do so by the donor.

Required Guarantees:
• The donors’ input data cannot be accessed by other biobanks.
• The parties are not able to determine which records were input by which biobanks.
• The result of the analysis is guaranteed to be correctly computed.
• Query privacy is not required.
• A referee or state entity may need to be involved as designated verifier to guarantee correctness of

the results on behalf of the general public.

Workpackage References: WP 22.1 Literature References: [37]
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Implementation within PRACTICE overall architecture:
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Remarks:

• This use case scenario can be implemented in Sharemind using a passively secure protection
domain, since all parties are assumed to behave semi-honestly. No secure hardware is required.
• As semi-honest MPC is currently provided in Fresco this could be implemented. Only the

verification would be missing, as Fresco does not provide this at the moment. However, work
is being done in PRACTICE in order to implement correctness verification on top of Fresco.
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Scenario: Privacy Preserving Personal Genome Analyses and Studies

Summary:
Donors can submit their DNA to a laboratory to receive feedback on genetic associations with specific
illnesses and disorders. This genome data can then be added to a databases for further genome
research. With the help of SMC, donors can also enter their phenotype information so that no involved
organization sees their individual data, while analysts can still perform genome-wide association
studies. Thus, in contrast to the 23andMe project, which is the largest genetic testing service provider,
the sensitive phenotype data is protected. This can be realized by secret sharing the sensitive data
between laboratories and multiple state entities. The probabilities of sate entities colluding with the
laboratories is much lower compared to laboratories colluding among each other which leads to a
higher trust in the honest-majority assumption.

Scenario Illustration:

Laboratory

...
Donor 1

Donor k

State entity 1 State entity m

...

Analyst 1...

Analyst n

Data

Results

Data

Results

Participants:
• P1: Laboratory– C
• P2: Donor(s) – Ik
• P3: State entities – Cm
• P4: Data analyst(s) –Rn,Vn
• P5: Referee or state entity – V

Communication Channels:
• P2→ P1
• P1↔ P3
• P3↔ P3
• P1,P3→ P4

(With respect to communication among each
other and communication to P4 the parties P1
and P3 behave indistinguishable.)

Adversary Model:
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Trust Model:
• The state entities involved as computational parties are assumed to be semi-honest whereas the

laboratories are considered to be malicious.

Communication Model:
• All computation parties should always be online. The donors can provide input to the system

independently from each other at any time. The analysts can access the system at any time.
• The computation parties communicate over authenticated and private channels. The donors

communicate with the laboratory (at least partially) non-electronically. The electronic
communication (e.g. data about their phenotype) takes place over private and authenticated
channels.
• The data analysts obtain the study results over authenticated and private channels.

System Model:
• The laboratory can host one of the servers, state entities can host others. Since the computational

tasks are heavy even in the non-MPC world, both of them need strong computational power and
low latency, high bandwidth communication channels between each other.
• On the other hand the opportunities of parallelization techniques can leveraged since the

computation of study results involves repeatedly applying similar operations independently on
large amounts of data.
• Data donors and analysts interact through an intuitive web-interface provided by the computing

hosts.
• The donors should be able to participate using commodity hardware, e.g. mobile phones,

and their communication capabilities should be assumed to be limited to consumer internet
connection/mobile data subscription. We may also assume the use of commodity hardware and
a normal internet connection but not necessarily mobile phone/data support for the analysts.
• Data donors must have the option and possibility to delete their data from the system.

Required Guarantees:
• The donors’ phenotype data cannot be decrypted by other parties.
• Output privacy is guaranteed for the analysis result to the highest possible degree.
• The survey result can only be accessed by the data analysts.
• Donors learn nothing about other donors.
• A referee or state entity may need to be involved as designated verifier to guarantee correctness of

the results on behalf of the general public.

Workpackage References: WP 22.1 Literature References: [5, 37]
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Implementation within PRACTICE overall architecture:
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Remarks:

• This application scenario can be implemented on Sharemind assuming honest majority and using
secure hardware to protect against malicious adversaries.
• Additional phenotypical data can be stored (by P2/P1) in encrypted form in a cloud database

(HANA). Data analysts (P4) can access this (encrypted) data in order to enhance their studies
of the genome material, which by itself will require MPC methods.
• This use case scenario is likely implementable using Fresco for semi-honest MPC between the

state entities. However, as the scenario is quite complex it would require much work in the upper
layers of the architecture to ensure against a corrupt laboratory.
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Scenario: Platform for Surveys on Sensitive Data

Summary:
An online platform that allows users to design and run surveys while preserving the participants’
privacy. Survey creators can create and upload their surveys to the platform that is also accessible
to the participants. After participation a report generation system compiles a report based on the
participants’ encrypted data for the evaluator. The portal is designed to reduce leaks of private data.

Scenario Illustration:

Cloud
Provider 

recieves result

creates survey re
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es
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calculates result

Creator /
Evaluator

Participants

Participants:
• P1: Cloud service provider – Cm
• P2a: Survey creator – I
• P2b: Survey evaluator –R
• P3: Survey participant(s) – Ik

(One or more of the cloud service providers
may be run by/on behalf of some other
parties, e.g., the survey evaluator or the
participants. In practice, the creator and
evaluator may be the same entity.)

Communication Channels:
• P3→ P1
• P2a→ P1
• P1→ P2b
• P1↔ P1

(All parties need to communicate with
each separate P1; in particular, all P1s
communicate with each other.)

Adversary Model:
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Trust Model:
• We consider two deployments: one in which less than half of the cloud service providers may

be passively corrupted (“honest majority”), and one in which all but one of the service providers
may be actively corrupted (“malicious”). In D12.1, only protection against malicious P1 was
considered; a semi-honest P1 may be preferable for performance reasons.
• In deliverable D12.1, parties P2a, P2b, and P3 were considered to be possibly semi-honest. The

present deployment offers protection even against malicious P2a, P2b, and P3.
• Deliverable D12.1 also mentions the public as a possible result party. For efficiency reasons, the

two deployments described here do not take this party into account.
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Communication Model:
• All computation parties should always be on-line. The survey creator, evaluator, and participants

can use the system independently from each other at any time.
• The computation parties communicate over authenticated and private channels. The participants

communicate with the computation parties over private channels (with authentication if the survey
is not open to everybody). The creator and evaluator communicate with the computation parties
over authenticate and private channels.
• The participants need to communicate their answers while the survey is open. Otherwise, their

answers are not taken into account. In the interest of privacy, if there are not enough participants,
the survey result is not computed.
• The survey answers are communicated in one single transaction to prevent incomplete surveys

from affecting the result

System Model:
• The participants should be able to participate using commodity hardware, possibly even mobile

phones. Similarly, their communication should be limited so they can participate using a consumer
internet connection/mobile data subscription. For the survey creator and evaluator, the use of
commodity hardware and a normal internet connection should also be assumed; mobile phone/data
support is not needed.
• The cloud service providers need strong computational power and low latency, high bandwidth

communication channels between each other.
• Since the computation of survey results involves repeatedly applying the same operation on large

amounts of data, the cloud service providers should benefit from parallelism.

Required Guarantees:
• The participants’ input data cannot be decrypted by the other participants, the cloud provider, or

the survey creator/evaluator.
• The survey result can only be decrypted by the survey evaluator.
• The result of the survey is guaranteed to be correctly computed by the cloud service provider and

computation engine.

Workpackage References: W23.1 Literature References:
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Implementation within PRACTICE overall architecture:
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Remarks:

• ABY is suitable for applications that perform secure two-party computation. This scenario can be
implemented by ABY, if the number of computing parties is two. In this scenario, k (malicious)
participants would like to complete a secure survey using m cloud service providers that perform
the secure computation. In the special case when m = 2 holds and the cloud service providers
are assumed to be semi-honest (as described in the Trust model), ABY can be used for the secure
two-party computation.
• This use case scenario can be implemented on Sharemind assuming honest majority and using

secure hardware to protect against malicious adversaries.
• This application could use techniques of SEEED, but this would require the introduction of

asymmetric cryptography schemes and even then things wouldn’t be simplified a lot.
• This application can be implemented with Fresco in an instantiation with two computing parties,

since currently Fresco supports only two-party secure computation with malicious security.
However, the currently supported protocol (SPDZ) for this setting can easily be extended to
multiple parties.
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4.3 Location Sharing Applications

Scenario: Location Sharing with Nearby Contacts

Summary:
A smart phone app that lets users announce their location to nearby contacts, while not leaking
location information to far away contacts. This is useful when users want to meet up with their
contacts for various activities (dating, networking, etc.). As a user’s location can communicate a lot
of private information (sexuality, religion, occupation, etc.), the users prefer to reveal their location
only to relevant contacts, i.e., those nearby. The system protects the user’s privacy by computing
proximity using SMC.

Scenario Illustration:

User

Contact A

Contact C

Contact B
location location

location

loc
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User	  A	  

Contact	  D	  

Participants:
• P1: Users (reveals her location;

potentially learning other participants
location) – IRCk

Communication Channels:
• P1↔ P1

The communication is supposed to
be peer-to-peer between the parties’
smartphones as implemented in [42] .
A cloud server could act as a medium for
the parties’ encrypted communication or
alternatively the communication could be
truly peer-to-peer.
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Trust Model:
• All participants tend to cheat in order to find out the current location of their contacts without

fulfilling the agreed requirement (physical proximity).
• P1 may attempt to find out if some of her contacts are near a specific location, by claiming that

location to be her current location.
• Running the proximity computations within a TEE such as ARM TrustZone is possible, but not

recommended. The limited computing resources of a smartphone constrain this application. Use
of a TEE introduces more resource limitations and thus makes the application non-responsive, as
the number of users increases. Therefore, introducing more limitations by trusted hardware at the
cost of drastic performance reduction is not a good option.
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Communication Model:
• All participants must be online and reachable. As the location of a user is subject to continuous

change, out of date location information is completely useless and online communication is
required. Participants who are not reachable are left out of the protocol.
• Because the participants may change their locations every few minutes, results must be provided

in a short time (few minutes). Otherwise the location information may not be valid any more.
• No high bandwidth is required for the communications between user’s smartphone and the server,

but reliable communication if required. However, this might be challenging given that the use case
is focused on mobile devices.
• The communication does not need to be transactional.
• The freshness of the location information must be guaranteed.
• Integrity of communication must be preserved, as modified location information produces wrong

and unreliable output.
• The communication between users must be authenticated, so that the participants know to whom

they are sending their location information.

System Model:
• Communication and computation is done on smartphones, with potentially quite limited resources.
• The computation should be quick for the app to appear responsive.
• The network connection must be reliable, so that users can communicate online. The

communication channel is not required to provide very high bandwidth. Use of mobile network
for communication can lead to the failure of the application, if users are located in places without
(acceptable) network coverage, which is a common issue.
• Computational power, amount of memory and network connection play an important role for

practicability of this application scenario. A shortage of each of these factors will result in the
non-responsiveness of the application which will lead to bad user experience.

Required Guarantees:
• No location data should be revealed unless so intended (e.g., locations cannot be permanently

broadcast, or registered at some third party).
• If the user decides to announce her location, only nearby contacts should learn her location.
• The user should not learn the location of her contacts unless they are also sharing their location

and are nearby.

Workpackage References: Literature References: [42]
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Implementation within PRACTICE overall architecture:
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Remarks:

• This application scenario can be implemented in Sharemind using the actively secure two-party
protection domain. Each pair of users would run the required computations separately. However,
the attack of giving wrong input coordinates remains, since active security does not protect against
false inputs. Some sort of central trusted third party would be needed to verify input coordinates
of all parties.
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Scenario: Privacy Preserving Satellite Collision Detection

Summary:
Different countries wish to detect collisions between their satellites without revealing the exact
location and trajectory of their satellite.

Scenario Illustration:
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Participants:
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• P2: Satellite operators – IRn,Vn
• P3: Authority – V

Communication Channels:
• P1↔ P1
• P1↔ P2
• P1→ P3
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Trust Model:
• Satellite operators and host parties may be assumed to be malicious, since they could be interested

in accessing data about the locations and the trajectories of the other satellites.
• Authority is assumed to be semi-honest, since it should be a third-party international organization.

Communication Model:
• Hosting parties should be always online during the computation.
• Satellite operators can submit data independently one from the other, i.e., asynchronously.
• All parties communicate over authenticated, private channels.
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System Model:
• Hosting parties are chosen among satellite operators and perform the secure computation over data

collected from the other satellite operators.
• Satellite operators interact through an intuitive web-interface provided by the computing hosts.

They can be requested to insert data about the location and the trajectories for computing the
probability of collisions. They also get an alarm from the system if a collision is detected over a
threshold of probability.
• If requested, authorities can inspect the provided data and the computations to verify the

correctness.

Required Guarantees:
• Satellite operators and hosts learn nothing about satellite locations or trajectories.
• Only the collision probability is revealed if it exceeds a threshold.
• In case of a collision the operators involved may wish to prove correctness of protocol executions

to a designated authority, relying on verifiable computation.

Workpackage References: WP 22.1 Literature References: [38]
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Implementation within PRACTICE overall architecture:
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Remarks:

• This scenario can be implemented on Sharemind assuming honest majority and using secure
hardware to protect against malicious adversaries.
• This application can be implemented with Fresco in an instantiation with two computing parties,

since currently Fresco supports only two-party secure computation with malicious security.
However, the currently supported protocol (SPDZ) for this setting can easily be extended to
multiple parties.
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4.4 End User Applications

Scenario: Key Management

Summary:
The increasing use of multiple devices by the same person for business and other purposes has
amplified the annoyance of making cryptographic keys available across different platforms and
devices. Typing cryptographic keys into a smart phone interface is at best very impractical. Copying
the key to a media (e.g. USB) is not possible for many devices. Emailing the key, using sharing
services or a central key server is in most cases a security liability. A solution to enable an easy access
to cryptographic keys is to use SMC by delegating the trust to multiple cloud providers. In this way
the required security properties can be achieved.

Scenario Illustration:
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Participants:
• P1: User ICR
• P2: Cloud service providers SSn

Communication Channels: The
communication channels between the
participating parties.
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Trust Model:
• P1 is the owner of the key and is trusted.
• The Cloud Service Provider (CSP) is considered malicious. However, it is assumed that the

different CSPs are not colluding to reconstruct the key from the secret shares stored at different
CSPs.
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Communication Model:
• A number (depending on configuration) of servers must be reachable for the client to obtain keys.
• If one or more servers are unreachable when the client attempts to upload key material, the other

servers can distribute the appropriate key shares to the servers when they get back online. However,
this must happen in a way that never the whole key is stored at a single CSP. For instance, the same
share could be stored on multiple CSPs for reliability, say CSP A and A′. If A′ is offline at the time
of uploading one share of the secret is stored at A. When A′ gets available again, the share from A
is copied to A′

System Model:
• The platform should run on commodity cloud service providers.
• The user can download and access keys from the cloud providers from a range of devices.
• The applications running on clients should be lightweight with regard to memory and cpu usage.

Required Guarantees:
• Ensure that no individual cloud provider can obtain the keys.

Workpackage References: Literature References:
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Implementation within PRACTICE overall architecture:
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Remarks:

• Assuming the cloud service providers are non-colluding, this can be implemented with Sharemind
easily, as Sharemind is based on secret sharing. Authenticity of the shares can be guaranteed by
standard cryptographic methods. However, since there are no actual secure computations taking
place in this application, an SMC platform is not needed at all.
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Scenario: Mobile Data Sharing

Summary:
Mobile Data Sharing enables users of cloud storage services to encrypt their data in the cloud while
still being able to share the data with other (trusted) users. All files are always encrypted while residing
in the cloud; the files are encrypted when stored and also while they are transferred between users.
For the receiver to be able to access the encrypted data she has to get access to the corresponding
keys. These keys are transferred via a secure channel between the sender and the receiver, the secure
channel is established based on a shared secret exchanged between the users smart phones, e.g. via
NFC.

Scenario Illustration:
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Participants:
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(source storage) SS
• P1b: Cloud storage service provider
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• P4: Cloud (storage) service provider

(intermediate storage) C

Communication Channels:
• Channel1: P1a↔ P2
• Channel2: P1b↔ P3
• Channel3: P2↔ P3
• Channel4: P1a↔ P4
• Channel5: P1b↔ P4
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Trust Model:
• Both users who exchange files using this application trust each other which respect to sharing

specific files. However, the users do not fully trust each other, i.e., they do not want to give the
other party full access to all their files. Hence, the users are considered covert, since they might
try to get access to files which were not explicitly shared with them but the personal relationship
between the users will prevent malicious behaviour.
• Each users uses his smartphones as trust anchors. This means that the users trust their smartphones

and the MobiShare application and enable it to access their personal cloud storage.
• The cloud service provider is not trusted. That is why all user files stored in the cloud are encrypted

at all times.
• A security enhancement for this application is to perform critical operations such as key

management inside a Trusted Execution Environment (TEE) with secure I/O feature, e.g., ARM
TrustZone. The level of trust in the user device is reduced this way, because only the code in the
TEE has to be trusted, not the entire smartphone.

Communication Model:
• The participants must be online during the whole process.
• There is no need for simultaneous communication between the parties, except for the key exchange.
• The cloud service provider must be online and reachable only during the communication with

user’s device or another cloud service provider. Delayed response is tolerated in this application
scenario to a large extent. However, if the delay is too high or if no response is received at all, the
process will fail and file exchange won’t complete.
• Because smartphones are used in this application, the existence of a reliable network connection

is required for the communication between sender/receiver and cloud service provider (channel
1,2), but not for the communication between sender and receiver (channel 3), because no Internet
connection is required for the establishment of a session key between sender and receiver, but
other technologies such as NFC or Bluetooth. Due to fast and reliable infrastructure of cloud
service providers, there is no concern about speed and reliability of communication channel 4.
• The file transfer must happen in a transactional communication.
• No (technical) authentication is required for channel 3, because sender and receiver authenticate

each other visually before starting key exchange. Users need to be authenticated prior to accessing
their cloud storage via their smartphones.
• Because user files and secret keys are encrypted, no information will leak if integrity of

communication is violated. The violation of communication integrity is detectable, as the received
encrypted file keys cannot be decrypted with the key exchanged between sender and receiver.
• Transport encryption is not required, but recommended.
• Replay attack is not possible, because the exchanged secret key is chosen randomly during each

session. Moreover, the physical proximity required in NFC prevents data interception.
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System Model:
• The operations on the user side are not resource consuming and thus should run on commodity

smartphones with typical computational power and memory. The mobile application should be
responsive considering limited capabilities of smartphones.
• A high network bandwidth is required for transferring big files in a reasonable time. However

files are transferred among cloud service providers which usually have high and reliable network
bandwidth.
• Users maintain control over their data by encrypting them with random keys before uploading them

to the cloud. For the large files to be uploaded in an acceptable time frame, a certain transmission
rate is required. However in the course of sharing, the amount of data being communicated between
users’ smartphones and cloud service providers is small in size, a low network bandwidth, such as
mobile network, is sufficient for this purpose. The connection must be however reliable.
• Each user has a master key with which file encryption keys are encrypted. This key is kept on

user’s device all the time. If user device is compromised, this master key will be accessible to the
attacker.

Required Guarantees:
• Provide confidentiality for data in the cloud.
• Data is only shared with others when intended by the data owner (sender).
• The sender’s and receiver’s master keys must be kept confidential to the user.
• The received encrypted file key must be decryptable using receiver’s master key.

Workpackage References: WP22.1,
WP21.1

Literature References:
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Implementation within PRACTICE overall architecture:
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Remarks:

• Assuming the cloud service providers are non-colluding, this can be implemented with Sharemind
easily, as Sharemind is based on secret sharing. Authenticity of the shares can be guaranteed by
standard cryptographic methods. However, since there are no actual secure computations taking
place in this application, an SMC platform is not needed at all.
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Chapter 5

Formalizing Security Models

In Chapter 2, we have presented a high-level overview of the participants in secure outsourcing
scenarios, and the way in which security in such scenarios can be described. Indeed, describing
security consists of defining an adversary model (specifying from which of the participants of the
system we have to assume malicious behaviour, and what kind of malicious behaviour should be
assumed); a trust model (specifying trust assumptions that go beyond the adversary, e.g., the use
of a public key infrastructure); a communication model (specifying how and when the participants
communicate); and a system model (specifying general constraints that do not fall into the above
categories).
While the above model is appropriate for describing potential scenarios for secure outsourcing, it is not
sufficiently precise for analysing cryptographic implementations of the underlying secure computation
techniques. In particular, definitions in the literature on what encompasses secure computation do this
using frameworks based on the real/ideal-world paradigm. As discussed in D11.1 [43], this model
demands that the outputs of the participants in a protocol distribution are similar to those outputs in
an ideal world where the function is computed by an incorruptible trusted party. Because in the ideal
world, the result party obtains the correct result and the adversary does not learn anything it should
not learn, the same must be true in the real world. This paradigm captures, in a very precise way, the
adversary model (by stating under which assumptions the outputs should be distributed similarly); the
trust model (by assuming access to external “functionalities” such as a public key infrastructure); and
the communication model (by defining in which way the participants are supposed to interact).
In this chapter, we aim to provide an “implementation” of the informal security model from the
previous chapters into a precise real/ideal-world formalisation. This way, it is possible to formally
prove that secure computation techniques we apply to implement the scenarios, do indeed provide the
appropriate security guarantees. Compared to the mainstream literature on defining secure computation,
we need adaptations to reflect our focus on outsourcing. In particular, the mainstream literature
typically does not distinguish between different participants: all participants provide inputs, participate
in the computation, and receive outputs. Moreover, security guarantees are typically defined symmetrically,
e.g., the protocol works if at most two participants misbehave (regardless of which two parties it
are). In contrast, we have distinguished between input, computation, result, and verifying parties
that each have different roles in the computation; and as our analysis shows, different assumptions
on misbehaviour for these different kinds of parties are appropriate. Hence, we need to redefine
mainstream models to be able to fully define security of outsourcing scenarios.
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5.1 The Overall Security Model: Ideal versus Real
We first present a high-level overview of the ideal/real paradigm used to define security of secure
computation. By instantiating this paradigm in a careful way, it is possible to capture different
adversary, trust, and communication models.
Many technical definition frameworks based on the ideal/real paradigm exist. The seminal work in
this area is Canetti’s model for secure function evaluation [20], that for the first time gave a complete
picture of secure function evaluation using the ideal/real paradigm. This model is the foundation
of most of the practical secure computation techniques in use today, and allows us to express all
aspects of the adversary, trust, and communication models that we are interested in. However, it has
one main limitation: it technically only guarantees security when all protocol participants are only
active in one secure computation at a time. In practice, it needs to be assumed that different secure
computations do not share key material, and that outputs of an ongoing secure computation are not
used as inputs to another secure computation. Canetti later extended his model to overcome this
limitation by defining the concept of universal composability [21]; other more general models also
exist, e.g., [35]. Unfortunately, security in these more general models typically comes at the price
of much less efficient implementations. In this chapter, we will consider Canetti’s original model.
Hence, our security model is an adaptation of the model of [20] to the setting of secure outsourcing.
We first explain the general execution model, which basically follows [20]; we then explain how to
model security guarantees in this execution model as the behaviour of the ideal-world trusted party.

5.1.1 Execution Model: Trust and Communication Models
The general execution model compares protocol executions in the real and ideal world. In the real
world, a protocol Π between m input parties Im, n computation parties Pn, and k result parties
Rk is executed in the presence of an adversary A corrupting parties C ⊂ I ∪ C ∪ R. (We discuss
security in the presence of external verifiers in the next section.) Each input party i ∈ I gets input
xi; the other parties get no input. The adversary gets the inputs {xi}i∈I∩C of the corrupted parties,
and has an auxiliary input a. At the end of the protocol, each honest party outputs a value according
to the protocol; the corrupted parties output ⊥; and the adversary outputs a value at will. Define
EXECπ,A(k, (x1, . . . , xm), C, a) to be the random variable, given security parameter k, consisting of
the outputs of all parties (including the adversary).
By working out the details of the real-world execution model, the trust and communication models are
specified (see, e.g., [20, 23]). The communication model can be captured by imposing restrictions on
the type of communication allowed in the real-world execution: for instance, the parties may or may
not have access to a broadcast channel; or some of the parties may or may not be active at some point
in time. The trust model is typically captured by giving parties access to so-called “functionalities”.
These are parts of the protocol that are only available to the protocol parties as “black boxes”, and that
hence cannot be corrupted. For instance, a public-key infrastructure, or in general, the secure set-up of
keys, are commonly captured by giving parties access to a “set-up functionality”; because adversaries
cannot obtain the keys except by invoking these functionalities, this captures the assumption that
the set-up was performed correctly. (In more recent works based on universal composability, the
broadcast channel is also modelled as a functionality instead of as an integral part of the execution
model.)
The ideal-world execution similarly involves m input parties i ∈ I, n computation parties i ∈ C, n
result parties i ∈ R, and an adversary S corrupting parties C ⊂ I ∪ C ∪ R; but now, there is also
an incorruptible trusted party T . As before, the input parties receive xi as input; the trusted party
receives a list C of corrupted parties and the public key pk. Then, it runs the some code that captures
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the computation to be carried out, as we discuss next. The adversary gets inputs (C, {xi}i∈I∩C),
and outputs a value at will. As in the real-world case, IDEALS(k, (x1, . . . , xm), C, a) is the random
variable, given security parameter k, consisting of all parties’ outputs.

5.1.2 The Ideal-World Trusted Party
The code run by the ideal-world trusted party captures which secure computation takes place. Given
input C, the trusted party performs the following steps:
• Receive inputs xi from all uncorrupted input parties in I \ C
• Receive inputs xi on behalf of the corrupted inputs from S
• Compute (y1, . . . , yn) = f(x1, . . . , xm)

• Send yi to all non-corrupted result parties i ∈ R, or to the adversary if they are corrupted.
As discussed in D11.1 [43], this algorithm for the trusted party indeed implies privacy (the only thing
the adversary learns is the result of corrupted result parties); correctness (the trusted party determines
the result); independence of inputs (the trusted party asks for all inputs before producing any output);
and fairness (the trusted party sends the result to all parties).

5.1.3 Security Definition and Adversary Model
Given the two above mentioned distributions EXECπ,A(k, (x1, . . . , xm), C, a) and IDEALS(k, (x1, . . . , xm), C, a)
that depend on the trust and communication models, the adversary model is traditionally captured by
specifying the conditions under which these distributions correspond. For instance, the adversary may
state that the input parties may be malicious; the majority of the computation parties is honest; and the
result party is trusted. In this case, security is stated by demanding that, for any adversaryA in the real
world that corrupts any number of input parties and a minority of computation parties, there exists an
adversary S in the ideal world such that EXECπ,A(k, (x1, . . . , xm), C, a) and IDEALS(k, (x1, . . . , xm), C, a)
are indistinguishable.
indistinguishability may be perfect (i.e., as probability distributions, REAL and IDEAL are the same),
statistical (i.e., the difference between REAL and IDEAL shrinks quickly as k increases), or computational
(i.e., the ability of an adversary to see the difference between REAL and IDEAL shrinks quickly as k
increases). Proving security in such a model is usually done by, given access to A as a “black box”,
explicitly constructing an adversary S that interacts with the ideal-world trusted party yet simulates the
actions of the real-world computation parties to A. Also, as discussed in deliverable D11.1 [43], the
adversary model in a technical sense should also define the computational complexity of the attacker
(polynomial-time or computationally unbounded) and the corruption strategy (corrupted parties are
known beforehand or not); although the more general case is of course always better, which variant
to choose does not directly follow from the scenario at hand.

5.2 Corruption-Dependent Trusted Parties and Verifiability
While the model presented above is a straightforward translation of existing models to the outsourcing
setting, it is not so easy to define verifiability by performing such a translation exercise. For normal
secure computation, we demand privacy, correctness, independence of inputs, and fairness, all under
the same conditions for the adversary. For verifiability, in effect different properties hold under
different assumptions about the honesty of the protocol participants: privacy and fairness only under
some conditions (e.g., half of the computation parties are honest); but correctness and independence
of inputs should hold under much weaker conditions (even if none of the computation parties is
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honest).1 To be able to capture this more complicated combination of guarantees, we allow the
adversary to let its behaviour depend on which parties are corrupted (cf. [12, 44]). For instance,
if all computation parties are corrupted, then privacy is not guaranteed, which we capture by sending
all inputs to the adversary; but correctness is still guaranteed, which we capture by still letting the
trusted party compute the function at hand.
A second issue arises when modelling universal verifiability [32], where the verifier does not necessarily
learn the output of the computation that it is verifying. The problem here is how to model that a verifier
is sure about correctness of a result, without learning its result. A naive solution would be to simply
let the ideal-world trusted party send a “success” flag to the verifier that captures whether or not the
secure computation was successfully performed. However, this would not enforce a link between
the proof that the verifier sees and the result that result parties obtain. For instance, suppose that, at
the end of a secure computation, the result party obtains the result, as well as a proof of correctness
that it can then forward to a verifier. In this case, the ideal-world success flag for the verifier would
correspond to whether or not the verifier obtains a valid proof, hence such a protocol would indeed
implement the “success flag” ideal functionality. However, a little bit of thought reveals that also a
protocol in which the result party simply decides on the success flag and forwards it to the verifier
would also work: indeed, if the result party is not corrupted then it does this correctly, and if the
result party is corrupted, then it can choose whether or not to convince the verifier any way. The
fundamental problem here is that the verifier’s output in the IDEAL distribution, “yes” or “no”, does
not say anything about what computation the verifier accepts.
To solve this issue, we have chosen to explicitly model the concrete representation of the output that
the verifier obtains. Here, we assume that the representation of the result that a verifier checks may
be an encryption of which it does not have the private key. As a consequence, we need to modify the
execution model slightly so that the secure set-up of the used encryption scheme is performed at the
beginning, and the trusted party obtains the public key of this scheme as one of its inputs.

5.2.1 Model of Universally Verifiable Secure Function Evaluation
Finally, Algorithm 1 shows a possible trusted party for universal verifiability [44]. As discussed
above, adding universal verifiability to a protocol changes the correctness and independence of inputs
properties, but not privacy and fairness. Hence, security of universally verifiable protocols is modelled
by taking an existing trusted party that works under certain conditions, and then ensuring that if these
conditions do not hold, correctness is still guaranteed. In Algorithm 1, we assume abstract “corruption
conditions” under which privacy no longer holds, and under which the computation parties have the
power to block sending the result to the result party. For simplicity, we model here the case when
there is only one result party and one verifier. Security in this model is defined as follows:

Definition 1 ([44]) Protocol π implements verifiable secure function evaluation if, for every probabilistic
polynomial time real-world adversary A, there exists a probabilistic polynomial time ideal-world
adversary SA such that, for all inputs x1, . . . , xm; all sets of corrupted parties C; and all auxiliary
input a: EXECπ,A(k;x1, . . . , xm;C; a) and IDEALTvsfe,SA(k;x1, . . . , xm;C; a) are computationally
indistinguishable in security parameter k.

Note that, while previous definitions captured the adversary model by specifying for whichA computational
indistinguishability holds, this model requires computation indistinguishability for allA. Instead, the
adversary model is now part of the the algorithm of the trusted party.

1One can question whether or not unconditionally demanding independence of inputs should be part of verifiability. In
this chapter, we choose to demand this: essentially, we see independence of inputs as a correctness requirement. It turns
out that indeed, enforcing this property is realistic for practical protocols.

PRACTICE D12.2 Page 78 of 106



Adversary, Trust, Communication and System Models

Algorithm 1 Tvsfe: trusted party for verifiable secure function evaluation

1. // compute f on {xi}i∈I forR with corrupted parties C; V learns encryption
2. Tvsfe(C, pk) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if 〈corruption condition〉 then send({xi}i∈I\C ,S) // send to adversary
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. ifR /∈ C then // honestR: adversary learns encryption, may block result
11. s ∈R 〈randomness〉 ; R := Encpk(r; s); res := (r, s); send(R,S)
12. if 〈corruption condition〉 and recv(S) = ⊥ then res := ⊥; R := ⊥
13. send(res,R)
14. else // corruptedR: adversary learns output, may block result to V
15. send(r,S); s := recv(S)
16. if s = ⊥ then R := ⊥ else R := Encpk(r; s)
17. // proof phase
18. if V /∈ C then send(R,V)

We now discuss the trusted party Tvsfe for verifiable secure function evaluation. Whenever the
computation succeeds, Tvsfe guarantees that the results are correct. Namely, Tvsfe sends the result r of
the computation and randomness s toR (line 13), and it sends encryption Enc(r; s) of the result with
randomness s to V (line 18); if the computation failed, R gets (⊥,⊥) and V gets ⊥.2 Whether Tvsfe
guarantees privacy (i.e., only R can learn the result) and robustness (i.e., the computation does not
fail) depends on which parties are corrupted. Privacy and robustness with respect toR are guaranteed
as long as a certain, protocol-dependent, “corruption condition” is met. If not, then in line 6, Tvsfe
sends the honest parties’ inputs to the adversary; and in line 12, it gives the adversary the option to
block the computation by sending ⊥. Note that the adversary receives the inputs of the honest parties
after it provides the inputs of the corrupted parties, so even if privacy is broken, the adversary cannot
choose the corrupted parties’ inputs based on the honest parties’ inputs. For robustness with respect
to V , another “corruption condition” needs to be met, e.g., the result party needs to be honest. If not,
then in line 15, Tvsfe gives the adversary the option to block V’s result by sending ⊥; in any case, it
can choose the randomness.
Note that this model does not cover the “universality” aspect of universally verifiable MPC. This is
because the security model for secure function evaluation only covers the input/output behaviour of
protocols, not the fact that “the verifier can be anybody”. Hence, we design universally verifiable
protocols by proving that they are verifiable, and then arguing based on the characteristics of the
protocol (e.g., the verifier does not have any secret values) that this verifiability is “universal”.

2 Although we only guarantee computational indistinguishability and the verifier does not know what value is
encrypted, this definition does guarantee that V receives the correct result. This is because the ideal-world output of
the protocol execution contains R’s r and s and V’s Enc(r; s), so a distinguisher between the ideal and real world can
check correctness of V’s result. (If s were not inR’s result, this would not be the case, and correctness of V’s result would
not be guaranteed.) Also, note that although privacy depends on the security of the encryption scheme, correctness does
not rely on any knowledge assumption.
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5.3 Combining Secure Computation Engines for Validation
In this section, we show that it is also possible to formalise security for secure computations in which
different computation engines with different security guarantees are combined. Indeed, combining
different computation engines occurs naturally when making computations verifiable. As discussed
in D11.1 [43], making a full computation verifiable asks for large computational effort for the verifier.
To avoid this, we can exploit [24, 25] the fact that for many practical problems (e.g. integer division,
computation of matrix inverse/eigenvalues), it is easier to check a given solution than to compute
it. Hence, the proposal is to make a computation verifiable by computing the solution using a
normal, fast, secure computation engine; and the computing the validation circuit using a (probably
slower) computation engine that offers verifiability. However, modelling security in this case becomes
challenging: we now have two different secure computation engines, each with different adversary,
trust, and system models; and we need to combine their security guarantees into one overall model.
In more detail, the idea of validation is to combine fast computation of a solution and “certificate”
of its correctness with verifiable validation that the solution is correct with respect to the certificate.
Consider the example of computing an eigenvalue λ of a matrix M . It is not easy to compute λ, but
it is easy to verify its correctness using an eigenvector v as “certificate” by checking that Mv = λv.
Hence, the idea is to compute output λ and certificate v using a normal secure computation engine;
and then check Mv = λv using a verifiable secure computation engine. More generally, suppose we
have four kinds of parties: m input parties i ∈ I, n computation parties i ∈ C, a result party R, and
a verifier V . The computation parties use one secure computation engine to compute (~a, ~r) = f(~x),
where ~x is the input (of length m); ~a is the certificate (say, of length k); and ~r is the output (say, of
length l). Let φ be a certificate such that, if (~a, ~r) = f(~x), then φ(~x,~a, ~r) holds.3 The computation
parties then use a verifiable secure computation engine to compute a proof that φ(~x,~a, ~r) is indeed
the case, and deliver the result to the result party, and an encryption to the verifier. The idea is that the
combined protocol inherits its privacy and robustness properties from the protocols for computing f ;
but guarantees correctness regardless of corruptions.

5.3.1 Trusted Party for Validation
We have developed a trusted party [25] that combines security guarantees of different secure computation
engines to achieve validation. Our trusted party Tval for universal verifiability by certificate validation
is shown in Algorithm 2. As inputs, it receives a set C of corrupted parties, of which those in A are
actively corrupted; and public key pk used to encrypt the result for the verifier. First, the trusted party
receives the inputs of the honest and corrupted parties (lines 4–5). We now need to distinguish two
different “corruption conditions”: one under which the secure computation condition used to compute
f no longer guarantees privacy, and one under which it no longer guarantees correctness. If the former
corruption condition is not satisfied, then Tval sends the inputs to the adversary (line 6). (Note that this
happens after the adversary supplies its inputs, so this model guarantees independence of inputs.) The
computation differs depending on whether the latter corruption condition is satisfied, i.e., on whether
the first secure computation engine may manipulate the computation of f . If not, then the computation
is performed according to function f (line 9). If so, then the adversary might arbitrarily interfere with
the computation of f , which we capture by letting the adversary choose outputs a and r. However,
the adversary can only choose outcomes for which φ holds, so Tval checks this and otherwise sets r to
⊥ (line 11). Finally, the trusted party produces encryptions which it provides to the verifier (line 16);

3Note that we do not demand the converse, i.e., if φ(~x,~a, ~r), then it is not necessarily true that (~a,~r) = f(~x). For
instance, the solution ~r might not be unique: then f is an algorithm to find some solution, and φ merely checks if the
solution is valid. Indeed, this will be the case for some applications.
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Algorithm 2 Tval: trusted party for verifiability by certificate validation

1. // compute f on {xi}i∈I forR with corrupted parties C and check φ; V learns encryption
2. Tval(C,A, pk) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if 〈corruption condition〉 then send({xi}i∈I\C ,S) // send to adversary
7. // computation phase
8. if 〈corruption condition〉 then
9. a1, . . . , rl := f(x1, . . . , xm)

10. else
11. a1, . . . , rl := recv(S); if ¬φ(x1, . . . , rl) then r1, . . . , rl ← ⊥
12. if 〈corruption condition〉 then s1, . . . , sl ← recv(S) else s1, . . . , sl ∈R 〈randomness〉
13. // result phase
14. if r1, . . . , rl 6= ⊥ then R1, . . . , Rl := Encpk(r1; s1), . . . ,Encpk(rl; sl)
15. else R1, . . . , Rl ← ⊥
16. send(R1, . . . , Rl;S); send(R1, . . . , Rl;V)
17. if 〈corruption condition〉 then send((r1, s1), . . . , (rl, sl);R)

and it provides the corresponding plaintext and randomness to the result party (line 17); this latter
step can be blocked by the adversary.
For our formal security definition, note that we need to slightly change the previous definition of the
REAL and IDEAL distributions. Namely, apart from taking the set C of actively corrupted parties, we
now need to refine the adversary model by allowing some parties to be actively corrupted and other
parties only passively. Indeed, in practice, corruption conditions in Tval will require this information.
Hence, we add an argument A that captures which parties are actively corrupted; C \ A are only
passively corrupted. (We do not consider other types of attacker such as covert attackers in this
particular definition, but they could be added in a straightforward way.) We get the following security
definition:

Definition 2 ([25]) Protocol Π implements secure function evaluation with universal verifiability by
certificate validation if, for all adversaries A corrupting set C of parties and actively corrupting
A ⊂ C, there exists an adversary SA such that for all possible inputs x1, . . . , xm to f ,

REALΠ,A(k;x1, . . . , xm;A;C; a)
d
= IDEALTval,SA(k;x1, . . . , xm;A;C; a) .

(Here, d
= denotes computational indistinguishability.)

5.4 Secure Computation in the Random Oracle Model
Finally, we briefly outline how definitions of secure function evaluation can be interpreted in the
random oracle model, and what consequences this has for our security definitions. The random oracle
model [13, 51] is an idealised model of hash functions. In this model, evaluations of the hash function
H are modelled as queries to a “random oracle” O that evaluates a perfectly random function. When
simulating an adversary, a simulator can intercept these oracle queries and answer them at will, as
long as the answers look random to the adversary. Security in the random oracle model does not
generally imply security in the standard model [31], but it is often used because it typically gives
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simple, efficient protocols, and its use does not seem to lead to security problems in practice [51].
Indeed, the random oracle model is used for common constructions of non-interactive proofs, e.g.,
proofs of correctness of a computation. Hence, supported by existing work [24, 12], we expect that
practical constructions for universal verifiability will need to be defined in this model.

5.4.1 Adapting Security Models
More precisely, in the random oracle model, evaluations of hash function H : {0, 1}∗ → {0, 1}2l

are modelled as queries to a “random oracle” O that evaluates a perfectly random function. When
simulating an adversary that operates in the random oracle model, the simulator also simulates the
random oracle with respect to the adversary. In particular, it can choose how to respond to the
adversary’s queries (but, to achieve security, it should provide random values so that the adversary
cannot distinguish between the real world and the simulation based on the output of the random
oracle).
The simplest variant of the random oracle model is the so-called explicitly programmable random
oracle model without dependent auxiliary input [51]. The random oracle is seen as a partial function
that initially has an empty codomain (i.e., it is “without dependent auxiliary input”). In a real-world
execution in this model, both the honest parties and the adversary use the random oracle for hash
function evaluations. Namely, when a party calls the oracle on a value v ∈ dom(O), it receives
O(v); otherwise, a fresh random value is generated and O is updated accordingly. At the end of
the execution, O contains all pairs of oracle queries made during the execution and their responses.
In an ideal-world execution, the simulator can directly modify the pre-image/image pairs in O;
the simulated adversary only has oracle access to O as in the real-world execution. Again, at the
end of the simulation, O contains all values on which the oracle has been set. Computational (or
statistical) indistinguishability between real and simulated executions is defined [51] by stating that no
probabilistic polynomial time (or unbounded) algorithm can distinguish them, where the distinguisher
has oracle access to O.
To use this model in the security model for secure computation, we can add the random oracle to the
IDEAL and REAL distributions defined earlier in this chapter. In particular, define EXECπ,A(k, (x1, . . . , xm), C, a)
to be the random variable, given security parameter k, consisting of the outputs of all parties (including
the adversary) and the set O of actual oracle queries and responses that were performed. In the ideal
execution, there is no random oracle; instead, the adversary chooses the set O of oracle queries
and responses (typically, those used to simulate a real-world adversary). As in the real-world case,
IDEALTval,S(k, (x1, . . . , xm), C, a) is the random variable, given security parameter k, consisting of
all parties’ outputs and O. Note that, when defining security based on these distributions, we get
slightly stronger versions of indistinguishability than mentioned above; namely, instead of giving the
distinguisher oracle access to O, we simply supply it with the full list O. We can then simply use the
normal, non-oracle, definitions for indistinguishability; this is clearly at least as strong.

5.4.2 Consequences for Practical Security
We remark that, while security in non-random-oracle secure function evaluation [20, 23] is preserved
under (subroutine) composition, this is not the case for the random oracle variant presented here.
The reason is that our model and protocols assume that the random oracle is not used outside of
the protocol. Using the random oracle model with dependent auxiliary input [50, 51] might be
enough to obtain a composition property; but adaptations are generally needed to make protocols
provably secure in that model. This technical issue reflects the real-life problem that a verifier of a
non-interactive proof cannot see if the proof has been recently produced, it is simply a replay from
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an earlier computation transcript. As discussed in [50], these technical problems can be solved in
practice by instantiating the random oracle with a keyed hash function, with every computation using
a fresh random key.
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Chapter 6

Secure Multi-Party Computation with
Trusted Hardware

Secure multi-party computation SMC aims at outsourcing computations without revealing the input
data of the computations to the computing entity. However, besides SMC there are other methods to
achieve the goal of outsourcing computations while keeping the input data private. In the simplest
case, if the computing party was trustworthy and would promise not to access the input data in an
unintended way the goal could be considered achieved. However, in general the computing party
cannot be assumed to be fully trustworthy, for different reasons. Those reasons include, that the
computation party might have some inherent interest in revealing the input data. In other cases
the computing party might be trustworthy in general but this trust cannot be fully extended to each
and every of its sub-entities. For instance, a cloud service provider (CSP) might be trustworthy in
general, since violation of customer’s privacy will harm the CSP’s business. But only because for
the CSP as a whole it would be disadvantageous to violate customer’s privacy this is not necessarily
true for all sub-entities of the CSP, like the administrators maintaining the CSP’s data center. An
administrator might violate the customer’s privacy for personal benefit (selling confidential business
data to a comparator) or out of revenge because he was laid off. Another possibility would be that an
external attacker gains administrator privileges and misuses them to violate the privacy of the cloud
customers. Both cases, a malicious administrator and an attacker with administrative privileges, are
consider insider attacks. The actions a computing party is performing on the data cannot be controlled.
At least this is the case for standard computing systems. For the remaining of this chapter we will
focus on the setup where computation of private data should be performed in the cloud. There, the
computing party would be the CSP. For the reasons described above we cannot trust the CSP since we
cannot assume that the CSP is invulnerable to inside attacks.
To face the fact that the cloud service provider cannot be trusted different measures can be taken,
all aiming at preventing the disclosure of the private data that are to be processed. The first option
is the use secure multi-party computation (SMC). With SMC the data are not accessible by the CSP
due to the distribution of the data and/or encryption of the data. The data in question is never fully
and unencrypted in the possession of the CSP, hence, the CSP can never get access to the data. The
second option is to transfer the full data to the CSP and making sure that the CSP never accesses the
data. The first option is described in detail in the project as it is the focus subject of the project. The
second option we will elaborate more on in this chapter, i.e., the use of trusted hardware to perform
computation on sensitive data.
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6.1 Trusted Hardware
Generally speaking there is a wide variety of trusted hardware used in many different use cases. Often
the user of trusted hardware is not fully aware of the fact that he is using trusted hardware, for instance,
smartcards or trusted execution environments in mobile devices. However, trusted hardware is often
designed for special purpose use and limited in the capabilities. Furthermore, trusted hardware is
usually considerably more expensive than commodity hardware.
To enable computing of sensitive data there are two important properties that must be given by a
hardware. The first required property is that the sensitive data cannot be directly accessed by entities
outside the trusted hardware. For instance, the memory content of a trusted hardware component
should not be readable via an uncontrolled external interface. In certain scenarios it is even required
that the data are protected from sophisticated hardware attacks that aim at extracting the data by
physically tempering with the hardware. The second property that must be fulfilled is that there must
be a way to control which operations are executed on the data. Uncontrolled operation on the data
can easily lead to the revealing of the data. In the simplest case the data are outputted from the trusted
hardware. Even if the data are not directly emitted from the trusted hardware indirect information can
leave the trusted hardware which allow an attacker to gain knowledge about the processed sensitive
data. Hence, it must be ensured that only those computations are performed on the data that are
accepted by the data owner or some other entity responsible to prevent data leakage. This means that
all software components that potentially could access the sensitive data must be validated to ensure
that they do not reveal the sensitive data, directly or indirectly.
There are different kinds of trusted hardware which can be grouped in two categories. We will
elaborate on these two different categories of trusted hardware subsequently. The first one is dedicated
hardware like smartcards or hardware security modules. The second type are trusted execution
environments (TEEs) which are built into general purpose processors.

6.1.1 Hardware Security Modules
Hardware Security Modules (HSMs) are used to perform computation on sensitive data in an adversarial
environment. The dedicated trusted hardware is largely independent from all other components of the
environment. There exists a wide variety of HSMs aiming at different use cases. Two main classes
of HSMs can be distinguished: Smartcards and security processors as extensions for servers. While
there is no clear definition telling those two apart there are some criteria which can serve to distinguish
them. Smartcards are usually designed for a special propose and are limited in their functionality to
perform the operations needed for this purpose.

Smartcards

Smartcards are most commonly used for authentication. Companies use smartcards to authenticate
their employees when accessing their IT infrastructure. Cellphone providers use smartcards (known
as SIM which is short for subscriber identity module) to identify their customer when accessing the
cellular network. Banking cards have smartcard capabilities to authenticate the user and allowing
access to her account. Since smartcards are dedicated hardware devices access to the data store and
process on them is not directly possible from outside the smartcard. The interface of the smartcard
prevents uncontrolled access to the data stored on it and physical protections prevent the access
through physical tempering, which fulfills the first requirement stated above. Furthermore, the program
code executed on a smartcard is either fixed or can only be loaded when digitally signed with an
appropriate key. In both cases the code which is executed on the smartcard and which accesses the
sensitive data can be controlled, i.e., it fulfills the second requirement stated above. However, due to
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the nature of smartcards to be designed for a special purpose use they are limited in type of operations
they can perform (e.g., only create digital signatures) and also constrained in their computational
power. Hence, for general purpose computation on not markedly small data they are not well suited.

Security Processors

In contrast to smartcards security processors are usually capable of performing general purpose
computations. They are mainly used in enterprise environments like servers to perform security
critical task, e.g., key management. Security processors are dedicated devices which are independent
of their environment and as for smartcards they have controlled interfaces to the outside world.
Hence, they fulfil also the requirement of preventing direct access to the sensitive data as mentioned
above. Furthermore, security processors are designed to be tamper proof averting physical access
to the sensitive data. And, as smartcards, the code loaded onto security processors can be verified
before execution, fulfilling the second property described above. While security processors are more
powerful than smartcards and are mostly not limited in the operations they can perform they are
nevertheless not suitable for general propose calculation on large data. Secure processors are considerably
slower than commodity computing systems and are equipped with less resources, like random access
memory (RAM). Furthermore, they are more expensive than standard components by orders of magnitude.

6.1.2 Trusted Execution Environments
Trusted Execution Environments (TEEs) describes a runtime environment which is isolated and allows
the protected execution of code. TEEs mainly focus on isolating code and data from other software
components of a system. However, due to the high integration degree of modern computer systems
they are well protected against physical attacks as well. For instance, if the code and sensitive data are
only stored within the boundaries of a system-on-a-chip (SoC) as they are commonly used in mobile
devices like smartphones physically accessing the data requires very high effort and specialized
equipment. Today, TEEs are mainly available on platforms which are most common in mobile
devices, i.e., the ARM architecture.1 ARM processors can be equipped with a trusted execution
environment, called TrustZone.2 The predominant processor architecture in the server segment is
Intel’s x86, which currently does not provide a full-fledged trusted execution environment. This will
change in the future when Intel’s Software Guard Extension (SGX) will get available. Since TrustZone
and SGX are the trusted execution environment solutions with the largest (future) user base we will
discuss those two in more detail below. The focus will be primarily on SGX since this technology is
likely to become widely deployed in server, and thus in cloud environments.

ARM TrustZone

The TrustZone is a set of security enhancements to chipsets based on the ARM architecture. These
enhancements cover the processor, memory and peripherals. With TrustZone, the processor can
execute instructions in one of two security modes at any given time, a normal world and a secure
world. A third monitor mode facilitates switching between the normal and the secure worlds. The
secure and normal worlds have their own address spaces and different privileges. The processor can
switch from the normal world to the secure world via an instruction called the secure monitor call
(smc). When a smc instruction is invoked from the normal world, the processor context switches to
the secure world (via monitor mode) and freezes execution of the normal world.

1http://www.arm.com/
2http://www.arm.com/trustzone
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TrustZone can partition memory into two portions, with one portion being exclusively reserved for
the secure world. It also allows individual peripherals to be assigned to the secure world. For these
peripherals, hardware interrupts are directly routed to and handled by the secure world. While the
normal world cannot access peripherals or memory assigned to the secure world, the secure world
enjoys unrestricted access to all memory and peripherals on the device. It can therefore access the
code and data of the normal world. The secure world can execute arbitrary software, ranging from
simple applications to an entire operating system.
A device with ARM TrustZone boots up in the secure world. After the secure world has initialized, it
switches to the normal world and boots the operating system there. Most TrustZone-enabled devices
are configured to execute a secure boot sequence that incorporates cryptographic checks into the
secure world boot process [4]. For example, the device vendor could sign the code with its private
key, and the vendor’s code in the boot ROM would verify this signature using the vendor’s public
key. These checks ensure that the integrity of the boot-time code in the secure world has not been
compromised, e.g., by reflashing the image on persistent storage. Most vendors lock down the secure
world via secure boot, thereby ensuring that it cannot be modified by end-users. This feature allows
hosts to trust software executing in the secure world and treat it as part of the TCB.
The TrustZone feature fulfil the requirements for trusted execution mentioned above, i.e., (1) isolation
of the sensitive data which is achieved through the memory protection applied with TrustZone and
(2) control over the executed code which is achieved by the secure boot mechanism. However, since
the code executed in the TrustZone is protected by secure boot, and secure boot is controlled by the
device vendor usually TrustZone is not available for use by third parties. This leads to the situation
that, although TrustZone is a powerful TEE (unlike HSMs) it is not available for use in practice.

Intel Software Guard Extension

The Intel x86 processor architecture is the most used computing platform in servers and in cloud
computing. While current generations of x86 processors do not provide a trusted execution environment
Intel has announced such a feature for future generations, called Software Guard Extension (SGX) [41].
SGX enables the isolation of (parts) of an application from the remaining system, including privileged
software like the operating system or a hypervisor. This isolated part is called enclave in Intel’s
terminology. Since not only the enclave is protected from the system but also the other way around
the system is protected from the enclave there is no need for a platform owner to restrict the use of
SGX on a system. This will most probably lead to the situation that cloud customers can freely use
SGX to create enclaves in cloud environments.
SGX enclave memory is not only protected from access through software on the system but also
from physical attacks. Enclave memory which is transferred to the memory modules of a system is
encrypted, the enclave memory is only stored in plaintext inside the processor chip. This significantly
raises the bar for physical attacks on SGX enclaves. The memory protection provided by SGX thus
fulfils the first requirement identified above. Inside an SGX enclave arbitrary code can be executed.
However, SGX provides means to attest the code that is executing in an enclave [34, 9]. This feature
can be used to develop a scheme which fulfils the second requirement state above, i.e., that the
operating performed on sensitive data can be controlled. In short, this can be achieved by providing
sensitive data only to an enclave which was loaded with controlled code. A detailed protocol for this
scenario is provided subsequently.
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6.2 Secure Multi-party Computation with SGX
Subsequently we describe three protocols for SMC with SGX. In the first version the computations
are public but the data which are processed are kept secret. In the second version not only the data are
kept confidential and the computation are only revealed to the input parties of the computation. In the
thirst version also the input is kept confidential while the computations are only known by one party.

Protocol Version 1. Figure 6.1 shows a protocol for performing secure multi-party computation
with SGX. The operations performed are not secret and can be stored in the untrusted cloud. However,
the integrity of the code when loaded into the SGX enclave is verified.

Figure 6.1: SMC protocol with SGX - non-confidential operations

The first step of the protocol is to load the SMC code and some initialization code is loaded into
an enclave. During the load process a measurement of the loaded code is made (this measurement
will be used in step 3 to prove the integrity of the loaded code to the input parties). The code inside
the enclave consists not only of the code which will perform the computations on the private data
but also an initialization routine. The second step is the execution of the initialization routine that is
responsible for generating a key pair for public key cryptography, e.g., RSA or elliptic curves. In the
third step the just generated public key (PK) is transmitted to the input parties. The PK is signed by a
platform key which is only used by the trusted hardware to sign data from an enclave. The signature
also contains the measurement of the enclave. This way the input parties can verify that indeed the
PK comes from an enclave with the correct code loaded. In the fourth step the input parties provide
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their inputs to the enclave. For that they encrypt their data with the PK they received and send the
data out. Since the key pair was generated inside the enclave the secret key never leaves the enclave,
and hence, the input data can only be decrypted inside the enclave. In the last step the computation
on the input data is performed and the result is transmitted to the designated parties (in Figure 6.1 the
receiving parties is User 2).

Protocol Version 2. The second version of the protocol is shown in Figure 6.2. In contrast to the
previous protocol version the code that is executed is confidential and only known to the input parties.
To achieve this the code doing the SMC computation is only stored encrypted while outside of the
enclave.

Figure 6.2: SMC protocol with SGX - operations revealed to input parties

The keyKcode used to encrypt the SMC code is shared between the input parties (step 1 in Figure 6.2).
This way all input parties can decrypt the code locally and inspect it, e.g., to verify that the code does
not leak any of the inputted data. In the second step the encrypted SMC and a loader component is
loaded into the enclave. In the second step a key pair for public key cryptography is generated. Next,
in step four the public key (PK) is transferred to the input parties. The input parties use the PK to
transfer the Kcode to the enclave so that the enclave can decrypt the code (step 5). Afterwards, in step
six, the input parties provide their data to the enclave, again encrypted by PK. In step seven, the SMC
computation is performed and the result is provided to the result party, as in the previous protocol
version.
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Protocol Version 3. The third version of the protocol concerns the case when the computation
performed on the input data should stay confidential, i.e., not all input parties may have access to the
SMC code.

Figure 6.3: SMC protocol with SGX

The third version of the protocol is shown in Figure 6.3. First, as in the previous versions, a loader
is used to initialize the enclave. In the second step it generates a public key cryptography key pair
and loads the encrypted SMC code and will decrypt it once the enclave receives the appropriate key
Kcode. In step three the PK is transferred to the users (in Figure 6.3 its send to User 1 who forwards
PK to User 2). In step four the encrypted code is loaded to the enclave. In this scenario the code is not
stored in the public cloud where the computations are performed but in a private cloud of the party
providing the code. The key Kcode to decrypt the code is sent to the enclave in step five. In the Figure
the party in possession of Kcode is one of the input parties, however, it could be also another entity. In
step seven the input data are sent to the enclave. As before, the input data is encrypted under the PK
generated in the enclave. Finally, in step 8, the computations on the input data is performed and the
results are sent to the result party.

6.3 Adversary and Trust Model for SMC with Trusted Hardware
The adversary and trust model when using trusted hardware have to account for the fact that the trusted
hardware needs to be trusted by definition. This means, that there must be no way to circumvent the
protection mechanism provided by the hardware. The protection could be circumvented ether by a
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hardware fault or modification, or by a software fault or attack. This means, that the manufacturer of
the hardware must be trusted with respect to the correct functioning of the device and with respect to
not including any malicious modifications to the device, e.g., backdoors.
Furthermore, all software executed in an isolated environment must be trusted. This includes for
instance, software libraries, (small) operating systems and other software components which might
be executed in a trusted execution environment. For most trusted hardware the code which is executed
in isolation is verified or attested by means of cryptographic signatures. This requires that the entity
that manages the required keys needs to be trusted to preserve the confidentiality of those keys. In
many cases that entity is the hardware manufacturer.
Lastly, also the software performing the secure multi-party computation must be trusted, if it cannot
be verified explicitly. A malicious software could simply output all inputs to an adversary.
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Chapter 7

Conclusion

This deliverable collects and compares the adversary, trust, communication and system models for
multiple real-world application scenarios which greatly benefit from secure computation techniques.
As such models may be different for every application a per-application approach was taken in this
document. The adversary, trust, communication and system models are specified for every individual
application scenario studied in work package WP12 of the project PRACTICE. A summary of the
application-specific models is presented in this chapter. It also investigates which characteristics are
commonly required in different use cases and what the most important differences are.
The most important and irradiative results of the analyses performed in this work package are summarized
at the end of this chapter as final statements.

7.1 Adversary Model
In order to get a comparative overview of the adversary models provided for different application
scenarios, the specified models are shown collectively in Table 7.1 below.
The relevant adversary models for each application scenario are highlighted in yellow in order to
provide a visual overview of which adversary types are present in different applications. This provides
a comparative overview of the nature of participants of distinguished application scenarios when the
behaviour of those actors is analysed in adversary model. The presence or the absence of particular
adversary models in different application scenarios is a good indicator if there are similarities between
different applications. Comparing the adversary model also helps to discover the major differences
between the adversary models of the different application scenarios. All similarities and differences
are considered to derive a general model that is applicable for all or the majority of application
scenarios studied in this work package.
An important feature of this project is to evaluate the role of cloud in the design and implementation
of privacy-preserving applications that simultaneously take advantage of secure computation and
cloud services. The cloud service provider (CSP) is highlighted in blue in the table below. The
colouring enables the reader to quickly compare the expected behaviour of the cloud party in different
application scenarios based on its adversary model. This helps to draw conclusions and make decisions
on the way that the cloud should be seen in each application scenario. The ultimate goal of performing
privacy-preserving computations in the cloud can only be achieved if the threats and benefits of using
cloud services in the applications of interest are evaluated carefully and described exactly.
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Application Scenario Adversary Model
Aeroengine Fleet Management

• P1: Cloud Service Provider Cl
• P2: Airline Companies IkRk

• P3: MRO Service Provider ImRm
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Consortium Gathering Information From its
Members

• P1: Consortium board –R,V
• P2: Consortium members – In,Vn, where
n is the total number of members
• P3: Consortium members that execute the
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Tax Fraud Detection
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Privacy Preserving Genome-Wide
Association Studies Between Biobanks

• P1: Biobanks – ICRk

• P2: Referee or state entity – V
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Privacy Preserving Personal Genome
Analyses and Studies

• P1: Laboratory– C
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• P3: State entities – Cm
• P4: Data analyst(s) –Rn,Vn
• P5: Referee or state entity – V Pa
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Platform for Surveys on Sensitive Data

• P1: Cloud service provider – Cm
• P2a: Survey creator – I
• P2b: Survey evaluator –R
• P3: Survey participant(s) – Ik
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Location Sharing with Nearby Contacts

• P1: Users (reveals her location;
potentially learning other participants
location) – IRCk
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Privacy Preserving Satellite Collision
Detection

• P1: Hosts – ICRm

• P2: Satellite operators – IRn,Vn
• P3: Authority – V
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Key Management

• P1: User ICR
• P2: Cloud service providers SSn
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Mobile Data Sharing

• P1a: Cloud storage service provider
(source storage) SS

• P1b: Cloud storage service provider
(destination storage) SS

• P2: Sender IC
• P3: ReceiverRC
• P4: Cloud (storage) service provider

(intermediate storage) C
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P1a 2 2 2 4 P1a 2

P1b 2 2 2 4 P1b 2

P2 2 2 4 2 P2 2

P3 2 2 4 2 P3 2

P4 2 2 2 4 P4 2

Table 7.1: Comparative List of Adversary Models

From to the adversary models of the individual application scenarios listed in Table 7.1, the following
conclusions can be drawn:
• Trusted parties are not present in any of the analysed application scenarios, except for one. The

one exception is the scenario Key Management in which the trusted party is the user of the system
who of course trusts himself.
• Semi-honest behavior of participants is very common and can be observed conventionally in the

majority of use case scenarios evaluated in this document.
• At least one participant can be considered malicious in every scenario except for one. This means

that one party can be fully mistrusted. Usually, the mistrusted party is the cloud service provider
(CSP). In some scenarios there is no CSP included, however, in those scenarios the party that
can be considered malicious can easily be outsourced to the cloud. The only exception where no
malicious party is present is the scenario Privacy Preserving Genome-Wide Association Studies
Between Biobanks. In this scenario different biobanks collaborate in order to perform a joint
genome-wide association study. They use each other’s data mutually so as to get more accurate
results. Therefore, none of the biobanks acts in a malicious way. Rather, they are all semi-honest
adversaries that follow the protocol correctly and just attempt to learn additional information.
• Malicious or covert behaviour is an attribute of individual participants. However, in many cases not

the behaviour of an individual participant is relevant but rather the joint behavior of all individuals
of one party. The security properties of the protocol hold if an honest majority can be assumed.
• Cloud service provider (CSP) is assumed to be malicious in all use case scenarios except for the

Tax Fraud Detection scenario, in which the state cloud is used. Considering the cloud service
provider as a malicious actor is perfectly in line with the objectives of the project, which aims at
providing solutions for privacy-preserving computation in the malicious cloud.

7.2 Trust Model
The comparison of the scenario specific trust models shows that using trusted hardware provides a
good means to enhance the security and perform of some actions in an easier and straightforward
way. We elaborated on the possibilities of performing secure multi-party computation with trusted
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hardware in Chapter 6. In some cases trusted hardware can lower the level of trust devoted to one
or multiple participant; using trusted hardware enhances the trust in the correctness of the performed
operations and computations. Table 7.2 lists the application scenarios in which use of trusted hardware
can be beneficial in this sense. It summarizes the types of trusted hardware which can be used in
these scenarios. Further, the purpose or usage of the trusted hardware components in the applications
scenarios is explained in Table 7.2.

Application Scenario Trusted Hardware Type Usage
Platform for Auctions Intel SGX Use on the cloud service

provider

Consortium Gathering
Information From its
Members

Intel SGX Intel SGX can be used to
enhance the level of trust
given to computing parties
that execute SMC protocols.

Tax Fraud Detection Intel TXT, Intel SGX Use in state cloud servers
to enhance the trust in the
correctness of the performed
computations.

Joint Statistical Analysis
Between State Entities

Intel SGX Provide assurance as to
the correctness of the
computations on the servers
(or hosts) by execution of
(integrity-checked) code in
isolated environments.

Mobile Data Sharing Mobile TEE such as ARM
TrustZone

Perform critical operations
such as key management
inside a TEE.

Table 7.2: Application of Trusted Hardware

Intel’s Software Guard Extensions (Intel SGX) is a very comprehensive trusted hardware solution
providing isolated enclaves, i.e., trusted execution environment (TEE), and attestation facilities [41,
34, 9]. This is why it was chosen as potential trusted hardware for use in multiple application
scenarios. Particularly, on cloud servers using trusted hardware such as Intel SGX enhances the trust
in the correctness of computations performed in the cloud (compare Chapter 7.2).
Hardware Security Modules (HSMs), especially smartcards, are a kind of trusted hardware with
extremely limited capabilities. These limitations cause smartcards not to scale appropriately for use
in the servers. Therefore, smartcards are not appropriate when a trusted hardware device needs to be
selected for application in the use case scenarios in question.
Similarly, secure processors, which are another common type of HSMs, are limited in their performance
and capabilities. Furthermore, secure processors are expensive given the limited functionality they
provide. Hence, applicability of HSMs on the protocols used in the investigated use cases is questionable
and thus not easily given.
The usage of trusted execution environments (TEE) on mobile devices can also provide a higher
level of trust in the confidential and correct execution of computations and operations. In contrast
to TEEs in desktop or server environments hardware security features on mobile phones are widely
available today. In particular, the ARM TrustZone feature is available on almost every smartphone
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sold today [4]. However, access to the security features are usually limited by the device vendor,
hence, solutions building on top of TrustZone need cooperation from the device vendor.

7.3 Communication Model
The analysis of the communication models of the different use cases shows that for most use cases it
is necessary for the participants to be online during the operations and computations. Especially the
cloud service provider is assumed to be always online. The users count on the permanent availability
and responsiveness of cloud services which is a reasonable assumption given that it is in line with the
CSP’s business model.
Asynchronous communication is possible in several application scenarios. Even when being online
during the communication is required, data may be communicated asynchronously. For example,
different input parties are allowed to provide their input at different times without caring about other
parties. This enables individual (input) parties to be offline most of the time and send their data (input)
at arbitrary points in time.
The scenario specific models indicate that most of the communication channels established between
the parties must be authenticated, confidential, integrity-protected and provide freshness. However,
this can be achieved with standard methods such as Transport Layer Security (TLS). It is important to
note that authenticity of the communications is an important requirement required for the majority of
the application scenarios.
Network bandwidth is shown to be an important issue in a limited number of use case scenarios
which require the exchange of huge amounts of data. However, for most applications high-bandwidth
network connections are not required, since the volume of input/output data is low.
Network delays are tolerated by the majority of application scenarios. However, the network connection
must be reliable since the protocols cannot operate on incomplete data. Standard network protocols
like Transmission Control Protocol (TCP) can be used to transfer data reliably.
Only two use cases – Platform for Surveys on Sensitive Data and Mobile Data Sharing – require
the data transfers to be transactional. In the former scenario, input data must be transferred in
a transactional way and in the latter scenario, the user files are supposed to be transferred either
completely or not at all.

7.4 System Model
The analysis of the system models of the individual application scenarios shows that high computational
power (CPU) and a considerably large amount of system memory is required in a few scenarios. Not
all participants in these scenarios need to provide these resources, usually the party performing the
secure multi-party computations need to have sufficient resources to be responsive, i.e., finish the
computations within an appropriate time frame. These requirements can be met through computations
in distributed environments, e.g., by using powerful and scalable cloud services. Two scenarios claim
to be suitable for taking benefit from parallelism of computations. This small number of scenarios
is normal, as computations usually need to be adapted to benefit from parallelism and the adaptation
usually requires significant implementation effort.
The computational limitations of smartphones were found to not be restrictive for any of the investigated
application scenarios. This is for two reasons:
(1) In the majority of scenarios smartphones are not used by any of the participating parties.
(2) In the cases where some parties are using smartphones, all computationally expensive operations
of the protocol are performed by the other (not resource constrained) parties of the scenario, e.g., the
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cloud service provider.
A few application scenarios require a high network bandwidth for exchanging data, because a large
amount of data is transmitted in those scenarios. While two use case scenarios declare explicitly that a
low-bandwidth communication channel is adequate, the remaining use case scenarios leave this to the
size of the data being communicated. For large input/output data the bandwidth should be high and
for small data lower bandwidths are acceptable without affecting the responsiveness of the application
in a negative way. The bandwidth requirements for the application scenario Joint Statistical Analysis
Between State Entities can be relaxed, if data is uploaded asynchronously. The analyses of different
use case scenarios indicate that regardless of the network bandwidth, the connection must be reliable
for the system to function properly and achieve the defined goals and get the results in an acceptable
amount of time.

7.5 Guarantees
All application scenarios require the correct execution of the algorithms and functions, regardless of
the location of the computations, i.e., it does not matter, if own computing resources and devices are
used or third party computing resources like cloud services are used. However, only for some use case
scenarios the operations need to be explicitly verifiable. Hence, most of the use cases neither require
universal verifiability nor designated verifiability.
The confidentiality of cryptographic keys and their proper delivery to designated receivers is an
important goal which must be guaranteed in all application scenarios investigated in this document.
The cloud service provider must be prevented from accessing any confidential data of the participating
parties, which is mostly achieved by avoiding the transfer of data to the cloud such that a single cloud
provider can retrieve sensitive information from it.
The confidentiality of input data must be guaranteed in almost all use case scenarios. It means that
the input providing parties want to keep their data secret while it is processed. The input data must
be confidential against the host which executes an algorithm or a function on the data as well as other
parties that provide input. Therefore, if there are several participants in a use case scenario which
provide input to the algorithm, mutual confidentiality of data must be also met in addition to the
confidentiality in relation with the host.
Contrary to the confidentiality of input, which is required by all application scenarios, the need
for anonymity of input was mentioned explicitly for only two applications: Consortium Gathering
Information From its Members and Privacy Preserving Genome-Wide Association Studies Between
Biobanks.
Similar to the input data, the confidentiality of output data (results) needs to be guaranteed as well.
Only the designated receiver/s of the output is/are supposed to get the results and no other participant
is allowed to receive the results of the computations.
The correctness of the computations and the generated results is another security goal which must be
achieved in all analysed scenarios. The analyses performed on different use case scenarios indicate
that the involvement of cloud services is irrelevant in this case. It means that although achieving
correctness gets more difficult when the computations are outsourced to the cloud, this requirement
remains intact for all application scenarios evaluated in this deliverable.
Nearly half of the analysed use cases require the results of the computations to be verifiable by
designated parties. Universal verifiability was not declared as a requirement in the application scenarios
studied in this deliverable. Designated verifiability means that the correctness of the results must be
verifiable only by a specific party, which is normally the designated receiver of the output.
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7.6 Final Statements
In this very last section of this deliverable some concluding statements are made which summarize
the final results of the analyses accomplished in this work package. The activities performed in this
work package include the following:
• Identification of several application scenarios which greatly benefit from secure computation.
• Specification of the adversary, trust, communication and system models for each of the identified

application scenarios.
• Analysis of the feasibility of implementing investigated use case scenarios using different secure

computation engines that are part of the project’s overall architecture.
Based on the analysis of the individual applications scenarios the most important finding are listed
below.
• The security models are diverse, i.e., no general uniform model can be identified.
• The cloud can always be assumed to be malicious or semi-honest.
• Each application scenario can be implemented using at least one of the secure computation engines

form the PRACTICE architecture.
• No secure computation engine exists which efficiently can implement all studied application scenarios.
• Network connections must be reliable regardless of the fact if high or low bandwidth is required.

Unreliable network connections will lead to improperly functioning systems and thus do not
achieving the desired goals.
• The cloud service provider (CSP) is expected to be always online and responsive. This is indeed

one of the reasons for using cloud services instead of own devices and servers which may fail to
respond permanently due to lack of resources or maintenance issues. The strong infrastructure of
CSPs make strong assumption on the quality of services provided by the CSPs reasonable.
• Trusted hardware can be used to perform secure multi-party computation. When combining

trusted hardware and secure computation protocols stronger adversary models can be assumed,
and stronger guarantees on the correctness and verifiability of the computations can be achieved.

As expected, the most desired impact of using cloud and distributed computing is acceleration of
executions and reliability of services (e.g., network bandwidth) due to the powerful infrastructure
of the cloud. This means that the utilization of cloud services is a great benefit in the application
scenarios evaluated in this document while not risking the privacy of the processed data even if the
CSP is considered malicious.
In a nutshell it can be concluded that there is no unique and standard model which can cover all
different application scenarios. The adversary, trust, communication and system models specified for
different application scenarios were analysed in this deliverable. This analysis showed that despite
similarities between the security models of different scenarios with varying number of participants
from miscellaneous business areas, one single model cannot meet the requirements of all applications.
Therefore, individual (per-application) identification and specification of such models cannot be avoided
when one or another of the studied application scenarios is implemented.
Similarly, there is no single secure computation engine/tool which can implement all use case scenarios.
The secure computation engines that are considered for the final implementations in the PRACTICE
project provide different functionalities and advantages. Each tool is suitable for implementing at least
one of the application scenarios in question. Based on the number of participants and the adversary
model of a specific use case scenario, one secure computation engine may or may not be appropriate
for the implementation of that scenario. This shows the importance of exact and thorough security
models. In some cases, use of a particular tool for implementing some scenarios is possible but not
expedient. Factors such as performance, number of participants, presence or absence of colluding
parties, etc. determine whether the use of a tool to implement a use case scenario is suitable or not.
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Chapter 8

List of Abbreviations

CPU Central Processing Unit

CSP Cloud Service Provider

DAGGER Distributed Aggregation and Security Services

EC European Commission

HSM Hardware Security Module

IA Intel Architecture

MPC Multi-Party Computation

MRO Maintenance, Repair, and Overhaul

PaaS Platform as a Service

PK public key

RAM Random Access Memory

SGX Software Guard Extensions

smc Secure Monitor Call

SMC Secure Multi-party Computation

SoC System on a Chip

SPEAR Secure Platform for Enterprise Applications and Services

SVM Secure Virtual Machine

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLS Transport Layer Security

TPM Trusted Platform Module

TTP Trusted Third Party

TXT Trusted Execution Technology

WP Work Package
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Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael I. Schwartzbach, and Tomas Toft. Secure Multiparty Computation Goes Live. In
Dingledine and Golle [27], pages 325–343.

[20] Ran Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of
Cryptology, 13:2000, 1998.

[21] Ran Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
IACR Cryptology ePrint Archive, 2000:67, 2000.

[22] Intel Corporation. Software Guard Extensions Programming Reference, September 2013.
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