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Formal Verification Requirements

Executive Summary

Validating practical solutions of multi-party computation as correct and secure is a non-trivial task.
Practical systems rarely provide provide a formal guarantee that executable code displays the required
security properties specified using high-level abstractions.

An important question in this context is therefore whether state-of-the-art technology in formal veri-
fication has reached a level of maturity that enables constructing implementations for which one can
provide end-to-end formal security and correctness guarantees, connecting a high-level specification
(e.g., extracted from a theoretical paper) and a low-level implementation that can be used in the real
world.

As outlined in Deliverable D22.2, the high-assurance secure computation framework that is being
developed in PRACTICE is meant as a proof-of-concept that the above question can indeed be
answered in the affirmative.

This report is the third deliverable of work package WP12 (Applications Specifications). The objective
of this report is to document the formal verification requirements that have been identified at M22 by
the WP12 team and their mapping onto the high-assurance secure computation framework specified
in D22.2.

The context and motivation are provided by the application scenarios identified in earlier stages of
WP12, and the presentation of the formally verified secure computation framework is framed by the
technical and architectural background established by D21.1 and D21.2.
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Chapter 1

Introduction

1.1 Task description

This report is the third deliverable of work package WP12 (Applications Specifications) in the PRAC-
TICE project. The objective of this report is to document the formal verification requirements that
have been identified at M22 by the WP12 team and their mapping onto the high-assurance secure
computation framework specified in D22.2. These requirements arise in the application scenarios
identified in earlier stages of WP12. We recall the description of this deliverable in Annex I of the
PRACTICE project proposal:

Task 12.3 – Formal verification

Some of the target applications for the technology developed in PRACTICE will likely require
the establishment of strict correctness and security guarantees for critical components, which
go beyond those imposed by common practical scenarios. Such challenges can be addressed
using formal verification techniques. The need for extra assurance often resides in system
components where potential risks justify dedicating additional resources to increasing the level
of trust in the specification and development processes. In other scenarios, such as outsourcing
and certification, assurance needs to be transferred to a third party. Task 12.3 will analyse
the requirements for formal verification in PRACTICE, taking into consideration the trade-off
between potential gains and necessary effort. The results of this analysis will be fed into the
work on formal methods carried out in WPs 13, 14 and 22.

Deliverable D12.3 – Formal verification requirements

This deliverable is the outcome of task T12.3 and contains an analysis of the requirements for
formal verification in PRACTICE.
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1.2 Background

The overarching goal of PRACTICE is to provide efficient, correct and secure solutions for computa-
tions in the cloud. To define objectives, partners from industry observe their customers demands for
applications in daily business, while the academic partners provide input for identifying the needs
that can be answered by current technology and theoretical developments. During this project, sev-
eral tools are being devised to support cloud applications using secure computation methods. Tools
such as language/compiler-based application frameworks, databases, application servers, verification
tools and deployment tools are being combined into an end-to-end secure computation software stack.

Validating practical solutions of multi-party computation as correct and secure is a non-trivial task.
Security models imply abstracting real events and require detailed specification of adversary capabil-
ities, which contributes towards models that tend to deviate from what is actually taking place in the
real world. Additionally, even if the security analysis is adequate for a given application, the distance
between a high-level specification of a protocol and its implementation in software and/or hardware
is difficult to bridge when the goal is to provide a formal guarantee that executable code displays
the required security properties. Practical systems rarely provide this level of formal assurance,
constraining the users into placing trust in the correctness of their implementations.

An important question in this context is whether state-of-the-art technology in formal verification
has reached a level of maturity that enables constructing implementations for which one can provide
end-to-end formal security and correctness guarantees, connecting a high-level specification (e.g., ex-
tracted from a theoretical paper) and a low-level implementation that can be used in the real world.
This deliverable describes the formal verification requirements for the high-assurance secure compu-
tation framework that is being developed in PRACTICE, and is meant as a proof-of-concept that the
above question can indeed be answered in the affirmative. The requirements layed down in this de-
liverable for the different components of this framework will guide the development, implementation
and verification work in the rest of the project.

Background for this deliverable is provided by work in WP12, but also in WP21 and WP22, as
reported in the following deliverables:

• D12.1 – Application scenarios and their requirements: This deliverable was the outcome of task
12.1 and it identified a broad range of applications and scenarios for secure computation and
their basic requirements. (M6)

• D21.1 – Deployment models and trust analysis for secure computation services and applications:
This deliverable describes how different secure computation technologies can be deployed in
information processing systems. Additionally, each description also includes the trust assump-
tions and relations between the stakeholders of the system. (M12)

• D22.2 – Tools design document: This deliverable outlined the design of the tools that will be
developed in PRACTICE, including a specification of the tools that will comprise the high-
assurance secure computation framework. (M12)

• D12.2 – Adversary, trust, communication and system models: This deliverable was the outcome
of task 12.2 and it described in a systematic way the technical requirements for deploying
secure computation protocols for the application scenarios identified in D12.1, based on the
technological overview provided by D21.1. This includes the assumptions on the adversaries,
trust, communication, and system models, etc. (M18)

PRACTICE D12.3 Page 2 of 46



Formal Verification Requirements

• D21.2 – Unified architecture for programmable secure computations: A preliminary version of
this deliverable describes the architecture of the PRACTICE software stack. (M18)

The formal verification requirements for the high-assurance secure computation framework that will
be documented in this deliverable are a refinement of a subset of those identified for the application
scenarios described in the aforementioned WP12 deliverables. We will describe how these require-
ments can be addressed using the formal verification framework outlined in D22.2, and frame this
description within the broader PRACTICE framework deployment models and architecture described
in D21.1 and D21.3.

1.3 Structure of this document

The structure for this document is as follows. Chapters 2 and 3 clarify the motivation and scope
for the formal verification work that is being carried out in PRACTICE: Chapter 2 will recapitulate
the overall objectives and structure of the formally verified secure computation framework sketched
in D22.2, recasting it into the context of the architectural work that was subsequently carried out
in WP21; Then, Chapter 3 will revisit the application scenarios previously studied in WP12 and
examine the extent to which components in the formally verified framework can be deployed in
applications that serve such scenarios (here we will refer back to the deployment models discussed in
D21.1 and D12.2). Chapter 4 then discusses the critical correctness and security properties that must
be guaranteed, providing a detailed description of the formal verification work that will be carried
out at each component of the PRACTICE high-assurance secure computation framework. Finally,
Chapter 5 wraps up the information presented in this deliverable and points out the directions for
future work.

PRACTICE D12.3 Page 3 of 46
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Chapter 2

Verified secure computation framework

In this chapter we recall the description of the formal verification tools that were introduced in D22.2,
place them within the broader context of the PRACTICE architecture introduced in D21.2, and lay
the ground for discussing the requirements that they should meet, in light of the application scenarios
identified previously in WP12.

2.1 Overview

Software verification aims to increase the level of assurance on the functional and non-functional
properties displayed by an implementation. Invariably, software verification implies the allocation
of additional resources to the software development process, and hence is typically employed in
scenarios where this extra effort is justified by a risk analysis of the costs of potential deviations
from the original specification. For some application scenarios, this extra degree of assurance is
imposed/validated by independent third parties (e.g., certification bodies), and it is therefore critical
that software verification techniques enable the demonstration of the obtained guarantees to such
independent bodies.

Depending on the application area, there is a wide range of properties that may justify formal
verification. In the context of PRACTICE, we are concerned with security properties of cryptographic
software implementations. Although this domain-specific setting has been the subject of considerable
attention in the last few years, the complexity of the software stack that is required to enable secure
computation constitutes a significant challenge for existing technology and offers various opportunities
for advances beyond the state of the art. Figure 2.1 presents an abstract view of this software stack
and illustrates the various technology levels that are at play:

• At the lowest level we find the secure computation engine. This designation was purposely cho-
sen to encompass powerful virtual machines offering complex operations, such as those offered
by Sharemind (see [23]), but also simpler APIs that permit executing low-level descriptions of
computations in circuit form (i.e., sequences of simple operations such as Boolean or arithmetic
gates), such as those provided by FRESCO. The purpose of the secure computation engine is
to take secure computation descriptions and to execute them according to a well defined se-
mantics. The formal verification challenge at this level is to formalize such semantics and to
guarantee that, for any given secure computation description, the secure computation engine
offers the correctness and security guarantees implied by the semantics.
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• An intermediate technological level in the secure computation stack is required to bridge the
upper and lower layers. In other words, a transformation step must be introduced to convert
the high-level specifications into secure computation descriptions that can be executed in the
underlying engine. The formal verification challenges at this level are akin to those arising in
verified compilation: the goal is to guarantee that the target code generated from the high-level
specification preserves the relevant functional and non-functional properties displayed by the
latter.

• Finally, at the top level, the developer should be able to use a high-level, possibly domain-
specific, language to describe the secure computations that are needed to meet the functional
and security requirements of the application. The formal verification challenges at this level
include being able to rigorously and naturally specify the relevant requirements, as well as
providing support to formally verify that the high-level implementation meets the specified
requirements. The solutions to these challenges are somewhat facilitated if the selected high-
level language is a general-purpose programming language such as C, for which there exist
a wide range of source code formal verification tools. However, the expressiveness of such
languages is too limiting when the goal is to describe general multi-party interactions, as they
were not designed for this purpose. A set of more interesting and complex challenges arises
when the high-level language of choice is tailored for secure multi-party computation, as is the
case for example of SecreC (see [30]).

It is important to emphasise that many concrete and alternative solutions exist to provide the func-
tionality required at each of the technological layers described above, offering various trade-offs with
respect to efficiency and performance. The PRACTICE project as a whole will be dealing with these
technologies in breadth, covering a wide range of cryptographic protocols, software development tech-
niques and application scenarios. Conversely, when it comes to formal verification, only a fraction
of these solutions can be covered with the available resources. This leads to two possible strategies
when designing a formal verification framework for PRACTICE: i. concentrating on a single layer
in the stack, providing a more extensive coverage of the technologies in that layer; or ii. addressing
all layers, but limiting the scope of the covered techniques at each layer. As described in Deliverable
D22.2, we have opted for the latter option, as we believe that it is more useful to demonstrate the
feasibility of providing end-to-end formal guarantees of correctness and security throughout all stages
of the development process. In the following subsections, we will recall the general formal verification
challenges that arise at each of the technological layers of this secure computation software stack,
and conclude the chapter with an analysis of how the artifacts we will produce will be integrated
into the overall PRACTICE architecture.

2.2 Verified secure computation engine

Developing verified implementations of secure computation engines is an ambitious goal, as their
security hinges on rather sophisticated cryptographic constructions, whose security must itself be
verified formally. We identify at least three significant challenges towards achieving this goal, which
lie at the frontier of the capabilities offered by existing formal verification tools for cryptography.

The first challenge is to provide support for a broader scope of cryptographic proof techniques.
EasyCrypt v0.2 and CryptoVerif (see [23] for a description of both) excel at modelling basic game-
playing techniques such as equivalences, failure events, reductions or eager/lazy sampling. However,
a number of standard concepts and techniques from provable security, such as hybrid arguments or
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rewinding, have thus far resisted formalization in these systems. In addition, comparatively little
work has been done in formalising computational security proofs for simulation-based notions of
security, which are omnipresent in secure computation protocols.

The second challenge is to ensure that the verification tools permit taming the complexity of secure
multi-party computation. CryptoVerif and EasyCrypt v0.2 have primarily been used to verify crypto-
graphic primitives, such as Full-Domain Hash signatures or OAEP, or standalone protocols, such as
Kerberos or SSH. While these examples can be intricate to verify, there is a difference of scale with
secure computation engines, which typically involve several layers of cryptographic constructions.

The third challenge is to enable a new workflow of specification, validation, and prototyping for build-
ing verified implementations of secure computation engines. To ensure that these implementations
can have a practical impact, one must develop integrated environments in which cryptographers
can specify cryptographic algorithms, perform lightweight validation (e.g., using a type-checking
mechanism), formalize security proofs, and generate reasonably efficient implementations. What we
envision here is a formal counterpart to existing prototyping systems for cryptography.

In PRACTICE we will adopt the latest version1 (v1.0) of EasyCrypt, which provides a lightweight
module system that is able to reflect the logical design of secure computation engines and the mod-
ular structure of their proofs. This version also incorporates a new code generation mechanism to
produce reasonably efficient functional implementations of cryptographic algorithms from EasyCrypt
descriptions. These additional mechanisms will enable the development of EasyCrypt libraries that
permit tackling the above challenges.

Our primary goal will be to provide a fully functional verified implementation of a secure computation
engine based on Yao’s two-party secure function evaluation (SFE) protocol based on garbled circuits
and oblivious transfer. This protocol allows two parties holding private inputs x1 and x2, to jointly
evaluate any function f(x1, x2) described as a Boolean circuit and learn its result, whilst being assured
that no additional information about their respective inputs is revealed. This implementation will
be added as one of the available secure computations engines offered by the PRACTICE software
stack implemented in WP14.

The requirements for such a verified secure computation engine are described in Section 4.1.

2.3 Verified generation of computation descriptions

Most software verification tools and technologies, namely the ones described in the previous section,
are deployed at source-code level in some high-level language. The guarantees obtained using these
tools are therefore vulnerable to miscompilation: compiler bugs that cause wrong executable code to
be silently generated from correct sources. Verified compilation addresses this problem by applying
mechanized program verification methods to the compiler itself and proving semantics preservation,
i.e., that the generated code behaves as prescribed by the semantics of the source program.

CompCert2 is an optimizing, multi-pass compiler for a large subset of C that was programmed and
proved to be semantics-preserving using the Coq proof assistant. This achievement demonstrated
that formal verification of realistic compilers is within reach of today’s proof technology, and gener-
ates unprecedented confidence in the compilation process and, indirectly, in source-level verification.
Moreover, the efficiency of produced code is competitive with respect to state-of-art compilers such

1http://www.easycrypt.info
2http://compcert.inria.fr
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as GCC. Verified compilation has attracted much attention from the research community, and several
projects have adopted/adapted/extended CompCert to meet specific goals.

In PRACTICE we will do the same, taking advantage of the fact that CompCert handles ANSI
C inputs, and construct a backend for this compiler that generates computation descriptions as
Boolean circuits that can be executed in the verified secure computation engine described in the
previous section.

The starting point for the implementation of this backend will be the bit-precise Boolean descrip-
tion generation mechanism of CBMC, described in [25], as well as previous work in incorporating
information flow security analysis in the CompCert architecture. Our primary goal will be to offer
a trade-off with respect to the tool described in Deliverable 22.2: correctness of the results will be
guaranteed, at the cost of supporting a smaller subset of ANSI C and possibly generating less efficient
computation descriptions.

The requirements for such a verified computation description generation tool are described in Sec-
tion 4.2.

2.4 Verification of high-level specifications

As mentioned above, the application developer will use a high-level language to specify the compu-
tations that must be evaluated securely. The formal verification tools offered at this level should
enable the programmer to express the intended output of the computations, but also the security
properties that are imposed by the application (these will typically be expressed as information-flow
restrictions). It should then be possible to check that, according to the semantics of the high-level
language, the described computation indeed satisfies the application requirements. Furthermore, it
is often the case that the underlying secure computation stack supports only a restricted class of the
programs that can be expressed using the high-level language. This is particularly important when
a general-purpose language such as C is chosen. In this case, it should also be possible to guarantee
that the expressed program falls within the class of acceptable computations. In this context, we
will consider two high-level languages: ANSI C and the SecreC language.

ANSI C is being considered as the input language for many circuit-based cryptographic primitives
(see [25]). As a general purpose language, C is supported by advanced and mature formal verifica-
tion tools that permit verifying a wide range of functional and non-functional properties (including
security properties). In PRACTICE we will explore how some of these tools, such as FRAMA-C3

and CBMC [25], can be used to tackle the application-specific properties that arise in the project’s
use cases, namely a set of safety properties that are sufficient to guarantee that we have sound secure
computation specifications that can be fed into the computation description generator described in
the previous section. More details on these requirements can be found in Section 4.2.

SecreC is a language designed specifically for the secure computation domain (see [30]). It inherits
some of the syntactic features of C, but its type system permits explicitly distinguishing secret data
from public data, and its semantics captures the concept of multiple parties providing inputs to
and obtaining outputs from a computation, what may entail complex data flows between the various
parties. At the moment, SecreC is not supported by a formal verification tool that permits specifying
and verifying information flow restrictions imposed by an application, expect for the coarse, black
and white distinction between public and (non-declassified) private data enforced by its type checker.
The inception of such a tool will be considered in PRACTICE, and the requirements for high-level
specification verification at this level are described in Section 4.3.

3http://frama-c.com/
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2.5 Integration in the PRACTICE architecture

The successful completion of a verified secure computation engine, together with the formal verifi-
cation of secure computation specifications and their verified compilation into circuit descriptions
that we described earlier in this chapter, will yield the first end-to-end formally verified secure com-
putation software stack. However, this stack is not meant to be used in isolation from the other
technologies developed in PRACTICE. In this Section we clarify how these components fit into the
wider picture of the PRACTICE architecture.

We recall in Figure 2.2 the development view of the PRACTICE general architecture as presented in
the draft version of D21.2 released at M18. This diagram is targeted towards developers needing to
implement an instance of the architecture, and hence it is ideal for our purposes. It contains a more
in-depth view of the different components and how they interact. The formal verification framework
should be seen as providing high-assurance instances of some of the components that are shown in
the diagram, more precisely within the DAGGER package: languages for describing computations,
a compiler for translating these descriptions into computation specifications, and a protocol suite in
which to securely execute these computation descriptions.4

Clearly, our work on the verification of high-level computation specifications and verified generation
of computation descriptions will yield additional instances of the Secure Language & Compiler com-
ponent. The integration of these components into the remainder of the PRACTICE architecture can
be achieved by ensuring that the resulting Secure Computation Specifications are represented in a
way compatible with the underlying DAGGER instance.

An important observation that emerges from Figure 2.2 is that a complete secure computation appli-
cation developed using the SPEAR architecture will require a full instance of the DAGGER package,
which will be structured around a secure computation engine/virtual machine that is integrated with
the rest of the framework via three external interfaces: i. the cloud infrastructure interface, which
it will use to obtain computational resources; ii. the secure storage interface, which it will use to
keep secure state; and iii. the secure service interface, through which it provides secure computation
functionality to the application logic.

The real-world use of the formally verified secure computation engine introduced in this Chapter
therefore requires that we integrate it into (at least) one instance of the DAGGER package. A closer
look at the component diagram in Figure 2.2 permits identifying exactly the interfaces that will
need to be implemented in order to achieve this integration: i. the interface that permits the secure
computation engine to load a verified secure computation specification and ii. the Protocol API that
allows the secure computation engine to load and run the verified protocol suite. Our goal, as will
be detailed next, is to implement such interfaces for at least one of the instances of the DAGGER
package that will be developed in PRACTICE, namely FRESCO as we will detail below.

We observe that the low-level protocol layer in the PRACTICE architecture will be refined within
WP14, and specified in D14.1 (M24). The end goal is that if one implements a protocol following
the refined architecture, it should be portable between the various DAGGER instances following the
PRACTICE architecture. The integration of the formal verified protocol suite will take place within
WP14, and it will follow this refined architecture.

4This is indicated in the diagram by presenting formal verification as an activity that will target the secure com-
putation engine and specification levels, as well as the secure language and compiler component.
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Integration in FRESCO

The FRESCO framework is intended for two different groups of developers, namely the application
and protocol developers.

A protocol developer will have to implement an interface for basic multi-party computation operations
such as inputting and outputting values, as well as a few basic numeric or binary operations such as
add, multiply, and and xor. Building on these simple operations, FRESCO provides generic versions
of more advanced operations such as comparison, equality or even linear program solvers. These
advanced operations will inherit various properties such as performance and security assumptions
from the basic protocol. If a protocol has nice properties allowing for optimizing advanced operations
such as sorting or similar, the generic FRESCO operation can be substituted by a protocol-specific
operation.

The application programmer is offered a library of (secure) operations, operating on a combination
of secret or open primitive types such as integers or booleans. These are implemented as a set
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of Java objects, namely SInt, SBool, OInt and OBool, representing secret and publicly observable
integers and booleans. These objects are used in conjunction with a number of Java operations, to
construct a circuit representing the computation the application is intended to perform. In addition to
constructing the application circuit itself, the application programmer also chooses a runtime (i.e. set
of protocols) that should be used for executing the application. The choice of runtime is, however,
independent of the circuit, e.g., the same 2-party FRESCO application circuit can be executed using
both a Yao-based and a shared secret based implementation.

During evaluation of the application circuit, the advanced operations are broken down into a series
of basic operations supported by the selected runtime, e.g., add and mult in the case of numeric
protocols and and and xor in the case of binary protocols. These basic operations can then be
executed using the runtime.

Network communication does not have to be reimplemented for each runtime protocol suite. FRESCO
offers a generic interface for sending and receiving byte arrays. Each runtime just takes an instance
of this interface and uses it for communication with the other parties in whatever way the protocol
dictates. However, for convenience, the runtime is likely to provide some wrapper around this interface
to convert values of a type natural to the runtime to byte arrays and the other way around.

The formally verified secure computation engine that will be developed in PRACTICE can be in-
tegrated into FRESCO in two different ways. The first option is to implement a verified FRESCO
run-time protocol suite for evaluating Boolean circuits by simply encapsulating the verified secure
computation engine around an appropriate wrapper. In this case, and as was mentioned above, the
verified circuit compiler should be instrumented to generate FRESCO-compatible representations
of the produced Boolean circuits. Another, more modular approach, would be to use the verified
secure computation framework to produce verified implementations of specific operations that could
be seen as higher level gates by existing FRESCO runtimes. In both cases, the underlying FRESCO
communications infrastructure would be used to implement the necessary interaction.
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Chapter 3

Application and deployment scenarios

3.1 Overview

In this chapter, we will revisit the different application scenarios that have been identified in earlier
stages of WP12, and the PRACTICE architecture that is being developed in WP21. Our goal is
to highlight the possible usages that the formally verified secure computation framework can have
and, drawing from these usages, feed the specification of formal verification requirements that will be
presented in the next chapter. For this reason, we will not discuss how our work relates to protocols
that are not yet practical, such as those based on fully homomorphic encryption, nor will we cover
specialized protocols that are only applicable to a very small domain of problems.

Since the higher-level components of our formally verified framwork are totally generic, in the sense
that they simply allow developers to reason about and produce arbitrary specifications following a
given representation, the set of application scenarios that we can address will be essentially that
which can be realized using the underlying verified secure computation engine.

In this direction, we will first consider scenarios in which our implementation of secure function
evaluation based on Yao’s protocol can be used directly. We will consider multi-party computation
approaches that either prioritize performance (as is the case of the framework of Huang et al. [26]), or
deployment usability (as is the case with the Twin Clouds architecture [13]). We can then evaluate
the guarantees offered by the resulting solutions from the perspective of the PRACTICE application
scenarios.

Subsequently, we consider modern efficient secure function evaluation protocols that can be obtained
by combining several basic techniques, such as garbled circuits and (partially) homomorphic encryp-
tion, and employ them for settings in which they can excel. We take a look at these approaches and
detail how we could apply our verified implementation of secure function evaluation as a sub-protocol
in such frameworks. Finally, we evaluate generic approaches to boost the security of our verified pro-
tocol to deal with stronger adversarial models. We note that the latter use cases for our protocol
will result in a only partially verified implementation, but they significantly expand the range of
application scenarios in which it can be used.
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3.2 Yao’s garbled circuits and Yao’s SFE protocol

Excellent descriptions of Yao’s contributions can be found in [40, 8]. Yao’s idea of garbling the
circuit computing f consists informally of: i. expressing such a circuit as a set of truth tables (one
for each gate) and meta information describing the wiring between gates; ii. replacing the actual
boolean values in the truth tables with random cryptographic keys, called labels; and iii. translating
the wiring relations using a system of locks: truth tables are encrypted one label at a time so that,
for each possible combination of the input wires, the corresponding labels are used as encryption
keys that lock the label for the correct boolean value at the output of that gate. Then, given a
garbled circuit for f and a set of labels representing (unknown) values for the input wires encoding
x1 and x2, one can obliviously evaluate the circuit by sequentially computing one gate after another:
given the labels of the input wires to a gate, only one entry in the corresponding truth table will be
decryptable, revealing the label of the output wire. The output of the circuit will comprise the labels
at the output wires of the output gates.

To build a secure function evaluation protocol between two semi-honest1 parties, one can use Yao’s
garbled circuits as follows. Bob (holding x2) garbles the circuit and provides this to Alice (holding
x1) along with: i. the label assignment for the input wires corresponding to x2, and ii. all the
information required to decode the boolean values of the output wires. In order for Alice to be able
to evaluate the circuit, she should be able to obtain the correct label assignment for x1. Obviously,
Alice cannot reveal x1 to Bob, as this would totally destroy the goal of secure function evaluation.
Furthermore, Bob cannot reveal information that would allow Alice to encode anything other than
x1, since this would reveal more than f(x1, x2). To solve this problem, Yao proposed the use of an
oblivious transfer (OT) protocol. This is a (lower-level) secure function evaluation protocol for a
very simple functionality that allows Alice to obtain the labels that encode x1 from Bob, without
revealing anything about x1 and learning nothing more than the labels she requires.2 The protocol
is completed with Alice evaluating the circuit, recovering the output, and providing the output value
back to Bob.3 The combined security of the garbled circuit technique and the OT protocol guarantee
that f can be securely evaluated in this manner.

This classical setting assumes the existence of only two parties (Alice and Bob), playing the roles
of input, computation and output parties. This suffices for some application scenarios, as is with
PRACTICE’s Privacy Preserving Genome-Wide Association Studies Between Biobanks and Loca-
tion Sharing with Nearby Contacts use cases [17]. However, this protocol can also be extended for
multi-party applications via secret sharing techniques such as those referred in [7], where an arbitrary
number of input players provide their confidential inputs and an arbitrary number of output players
receive the outputs of the secure computation. For this, each input player secret-shares its inputs
among the two computation servers (which are assumed not to collude). Then, the two computation
servers run the secure computation protocol on the input shares, during which they learn no interme-
diate information. Finally, they send the output shares to the output players, who can reconstruct
the outputs.

As mentioned in the beginning of this chapter, we are interested in integrating a verified implementa-
tion of Yao’s secure function evaluation protocol as a part of the PRACTICE architecture. This can
be employed as a secure computation protocol (recall Figure 2.2), to be used either exclusively, or as

1Semi-honest parties refers to participants of a multi-party computation protocol that, despite not being necessarily
honest, will not deviate from the protocol behavior even in the case of adversarial corruption.

2Luckily, efficient OT protocols exist that can be used for this specific purpose, thereby eliminating what could
otherwise be a circular dependency.

3This is a simplified view of Yao’s protocol. It suffices because we are dealing with semi-honest adversaries assumed
to follow the protocol. Stronger adversarial models will be considered later on.
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a sub-protocol of some broader secure computation protocol suite. In order to understand the reach
of Yao’s protocol, what follows is a descriptive analysis of frameworks that take on this approach
to perform secure computations. Additionally, this gives us the opportunity to verify the usefulness
of this implementation with respect to the security requirements of application scenarios associated
with the PRACTICE project.

3.3 Direct applications of the verified engine

We now describe two relevant research contributions, namely the Huang et al. [26] framework and
the Twin Clouds [13] architecture, that enable our direct approach. This discussion will expand on
their strengths and limitations, taking into consideration performance, security model and broadness
of scope, given the proposed use cases from the PRACTICE project. The verified secure computa-
tion framework that will be developed in PRACTICE will implement the same secure computation
technology, and therefore will display similar characteristics.

The Huang et al. two-party computation framework [26] is a tool developed by Might Be Evil:
Privacy-Preserving Computing4 for secure two-party computation. The tool produces protocols for
computing any function f , starting from a boolean representation of f . This approach was moti-
vated by the perspective that generic secure computation is underestimated, aiming to salvage Yao’s
garbled circuits protocol for many applications where they are capable of outperforming specific-
purpose protocols. Associated contributions encompass an improvement on efficiency and scalability
of garbled circuit execution and a framework with flexibility for circuit optimizations. This frame-
work assumes the semi-honest adversarial model, but if an oblivious transfer protocol with security
against malicious adversaries is used, the implementations can provide security properties against
malicious evaluators and generators (the interested reader is referred to the original paper for the
details).

The two players start the protocol by instantiating the circuit structure, which is known to both
of them. Afterwards, garbled gates are transmitted by the generator to the evaluator as they are
produced, and these must be systematically associated with the corresponding circuit gates. The
evaluator automatically triggers the evaluation execution when all necessary inputs are ready, and
immediately discards the gates after completing the evaluation. Since the order of generation and
evaluation does not depend on the private inputs, no synchrony assumptions on the communication
channels are made.

The major strengths of this approach are centered in the enhancement of garbled circuit implementa-
tion. Instead of fully generating the circuits before transmission, the circuit generation is pipelined,
meaning that the gates are sent as soon as they are generated. Gate evaluation is also performed as
soon as possible, and results in the deletion of the gate from memory. Since there is no need to wait
for the entire circuit to be generated, and since the gates are erased as soon as they are evaluated,
this approach reduces the memory space occupied by the circuits, improving the scalability of the
process to an unlimited number of gates. Additionally, the framework supports parametrization of
input sizes, in order to generate more compact circuits. Other optimizations are also employed in the
system, making use of techniques such as “free XOR” [35], garbled-row reduction [46] and oblivious
transfer extension [29] to improve efficiency.

This approach can be directly applied in scenarios in which the trust level of all computing parties
is assumed to be semi-honest or higher. In particular, Tax Fraud Detection, Privacy Preserving

4http://www.mightbeevil.org/
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Figure 3.1: Twin clouds model: trusted cloud behaves as a proxy between the client and the com-
modity cloud.

Genome-Wide Association Studies Between Biobanks and Key Management [17] match this criteria,
and could benefit from the framework.

Twin clouds [13] is an architecture for secure outsourcing of data and arbitrary computations to an
untrusted cloud. In this approach, the user communicates with a trusted cloud that is responsible for
encrypting and verifying stored data and operations performed in the untrusted commodity cloud.
The computations are split such that the trusted cloud is mostly used for security-critical operations
in the less time-critical setup phase, whereas queries to the outsourced data are processed in parallel
by the faster cloud on encrypted data. In this model, a client wants to outsource data and com-
putations into some cloud service in a secure way. This sensitive data must be confidentiality- and
integrity-protected (assuming that the provider may be malicious), and the correctness of outsourced
computations must be verifiable by the client. In order to satisfy these security requirements, the
model (as depicted in Figure 3.1) uses a trusted cloud that provides a resource-restricted execu-
tion environment and infrastructure that is fully trusted by the client, as well as an interface for
secure storage and computations to be performed in the commodity untrusted cloud. The client
communicates with the trusted cloud via a low-bandwidth secure channel, whereas the two-clouds
are connected via an insecure high-bandwidth channel.

Essentially, the trusted cloud serves as a transparent interface that enables security properties to
the untrusted storage, while the architecture enables the computation to be performed in the more
resourceful untrusted cloud. The scenario presented depicts only a single client accessing the out-
sourced data, but that setting can be extended to multiple programs and clients. At the high-level,
the protocol works as follows: the client will begin by providing data D and programs P to the
trusted cloud, which will be encrypted by the trusted cloud, and securely stored in the commodity
cloud. Additionally, the trusted cloud will also re-encrypt D into a garbled equivalent D̃, and gen-
erate garbled circuits C̃ for P , that will also be stored in the untrusted cloud. From thereon, the
client can issue queries q, that will be encrypted and sent to the untrusted cloud, that is responsi-
ble for computing the garbled result r̃ = C̃(q̃, D̃) under encrypted values. The r̃ received from the
commodity cloud is then verified by the trusted cloud to validate garbled circuit correctness and,
if verification succeeds, the query result is decrypted and returned to the client. From the client’s
perspective, one has simply made a query on data that was previously sent to the cloud, and has
received an appropriate result.

Observe that the role of the trusted cloud may be performed by some trusted authority, since the
associated operations do not entail processor-intensive work, but rather the handling of sensitive
information. From the selected application scenarios of PRACTICE, Platform for Auctions, Tax
Fraud Detection, Joint Statistical Analysis Between State Entities, Privacy Preserving Genome-
Wide Association Studied Between Biobanks, Privacy Preserving Personal Genome Analyses and
Studies and Privacy Preserving Satellite Collision Detection [17] allow for some regulator entity
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with these properties. Alternatively, when such level of trust cannot be placed in a participant, the
trusted cloud can take the form of a cluster of virtualized cryptographic co-processors (such as the
IBM Cryptographic Coprocessor 4764 [52, 3] or other Hardware Security Modules such as TPM or
Software Guard Extensions [28]).

3.4 The verified engine as a sub-protocol

For a period of time, two different approaches to secure two-party computation co-existed, and
were seen as alternatives to each other. One of them was based on garbled circuits [55], which
was the building block of the protocols described in Section 3.2. Alternatively, secure function
evaluation could be done using (somewhat) homomorphic encryption (HE), where one party sends
its encrypted inputs to the other party, who then computes the intended function under encryption
using the homomorphic properties of the underlying cryptosystem, and sends back the encrypted
result. Popular examples are the additively homomorphic cryptosystems of Pailier [43] and Damgard-
Jurik [15], as well as other fully homomorphic schemes [19, 54, 51]. Both approaches have their
respective advantages and disadvantages. For example, garbled circuits require the transmission of a
verbose circuit description, but allows pre-computation of almost all expensive operations; whereas
most homomorphic encryption-based protocols require relatively expensive public-key operations in
the online phase but can result in a smaller overall computation complexity. In this section, we
consider the possibility of employing our verified secure computation framework as a sub-protocol for
a broader deployment, and detail two solutions that leverage the combination of different approaches
to secure computation to maximize performance.

TASTY (Tool for Automating Secure Two-partY computations) is a tool suite addressing secure
two-party computation in the semi-honest adversary model [24]. TASTY incorporates a compiler
and a high-level domain-specific description language named TASTYL. TASTY’s goal is to prioritize
the online phase for evaluating a function f , assuming a prior setup phase for the execution. To
achieve the desired speedup, the tool suite allows the compilation and evaluation of functions using
garbled circuits and (additively) homomorphic encryption schemes, e.g., Paillier, at the same time.
Furthermore, TASTY can be extended to employ other primitives, such as fully-homomorphic encryp-
tion [20]. This hybrid approach combines garbled circuits and homomorphic encryption, as described
in [34].5 Specifically, for each function f to be evaluated, the programmer can define which parts of
f should be computed by garbled circuits, and which parts should be computed by homomorphic
encryption. One fundamental difference between such primitives relies on the concrete form of circuit
representation that they enable. On one hand, arithmetic circuits (left side of Figure 3.2) are a poor
solution to encode non-linear functions like comparisons, which includes Yao’s millionaire problem
and XORs [35]. On the other hand, boolean circuits (right side of Figure 3.2) are a poor solution
to express arithmetic functions like multiplication. The combination of both approaches allows for a
computation speedup [24, 32].

Prior to TASTY, compilers for secure function evaluation were restricted to compiling protocols using
either garbled circuits or homomorphic encryption schemes. More recently, integrated protocols have
been developed that permit obtaining combined benefits by using the most efficient of the above
approaches for each sub-task in a larger protocol. Indeed, the use of secure and efficient composition
of sub-protocols in several privacy-preserving applications was shown to yield important performance
improvements [11, 12, 5, 49].

5A preliminary version appeared as [33]
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Figure 3.2: Arithmetic (left) and boolean (right) circuits.

TASTY executes protocols as follows. Each participant has its own input x. Firstly, the server and
the client agree on a protocol specification written in TASTYL. After an initial validation for syntactic
correctness, the server converts x into an encrypted value using an homomorphic encryption scheme
under its own public key, while the client converts x into a garbled value. TASTY implements the
algorithms required to convert into different representations on-the-fly (garbled circuits to homomor-
phic encryption and vice-versa) [34]. After the setup phase, and with these conversion algorithms, f
may be evaluated by the protocol using both mechanisms simultaneously.

The ABY Framework [16] is also a similar mixed-protocol approach that aims to efficiently com-
bine secure computation schemes based on arithmetic sharing, boolean sharing and Yao’s garbled
circuits, enabling interchangeability among the three. ABY has records of being able to outperform
other mixed-protocol frameworks [24, 31, 34] by employing more efficient methods for multiplication,
faster conversion techniques between secure computation protocols and by batching pre-computing
cryptographic protocols. ABY originally considers protocols for secure two-party computations that
can be used for a large variety of privacy-preserving applications, but can be expanded into multiple
input and output parties.

The major strength of this framework is the possibility of combining three secure computation
schemes, and employing them in a way that maximizes efficiency. This is accomplished via parallel
batching during the setup phase (encompassing most of the cryptographic operations) and improved
constructions for conversion algorithms with regards to computation and communication costs.

Combining secure function evaluation techniques is an advantageous approach when performance is a
core requirement. Furthermore, for the PRACTICE project, Aeroengine Fleet Management, Platform
for Benchmarking, Consortium Gathering Information From its Members, Tax Fraud Detection,
Joint Statistical Analysis Between State Entities, Privacy Preserving Personal Genome Analyses and
Studies and Platform for Surveys on Sensitive Data [17] explicitly require either high bandwidth or
large computation capabilities, and therefore may greatly benefit from such a performance-oriented
approach. Such tool suites could employ our verified implementation of Yao as a sub-protocol for
the computations that employ garbled circuits.

3.5 Towards more challenging security models

We will now recall techniques that permit enhancing solutions we have described so far so that they
can deal with stronger adversaries. The provided description will be very brief, since this encompasses
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secure computation solutions that have already been evaluated in detail for WP11 [45] and adversarial
definitions presented in WP12 [10].

The previously depicted approaches consider the semi-honest adversarial model, in which security
is guaranteed only against adversaries that follow the protocol specification. However, many real-
world scenarios involve entities that are willing to deviate from established behavior for goals such
as acquiring sensitive data or forcing unfair protocol results. As such, stronger adversaries must be
considered in order to provide adequate multi-party computation protocols.

If the security model assumes covert adversaries [4], we should consider the possibility of adversaries
acting arbitrarily, as long as their probability of being caught is not higher than some deterrence
factor. This scenario is explicit in the requirements for application scenarios of the PRACTICE
project, such as the Consortium Gathering Information From its Members [17], but can also be
considered as an alternative to more restrictive settings, in which the required performance levels
cannot be met by protocols that provide stronger security guarantees.

According to [41], the cut-and-choose technique is often employed to extend garbled circuit evaluation
to this adversarial model, and it works as follows. The first party constructs n copies of some garbled
circuit and sends them to the second party. Afterwards, half of the circuits are opened, in order
to verify the correctness of their construction. If this subset is correct, then it is guaranteed that a
majority of the unopened half is also correct, with an exceptional probability that is negligible in n.
Finally, the participants jointly evaluate the remaining n/2 circuits, and the second party considers
the output value that appears in most of the evaluated circuits. Recent research in [27, 38] has
systematically improved the performance of protocols using this cut-and-choose paradigm, reducing
the overhead in computation and communication.

Following [14], malicious (or active) adversaries are a more powerful variation of covert adversaries,
i.e. also capable taking full control of corrupt parties and behaving arbitrarily, that are not concerned
about being caught. This is the strongest adversary for modeling multi-party computation protocols
and also a very common threat when considering real-world applications of multi-party computation.
In particular, Aeroengine Fleet Management, Platform for Auctions, Platform for Benchmarking,
Joint Statistical Analysis Between State Entities, Privacy Preserving Personal Genome Analyses and
Studies, Platform for Surveys on Sensitive Data, Location Sharing with Nearby Contacts, Privacy
Preserving Satellite Collision Detection and Mobile Data Sharing [17] are PRACTICE application
scenarios with requirements that either consider all computation parties to be malicious (albeit not
all colluding), or a mixed setting of semi-honest and malicious adversaries.

Passively secure protocols can be transformed into actively secure ones by employing zero-knowledge
proofs-of-knowledge (ZK PoK) and verifying secret sharing schemes, following a construction known
as the GMW protocol compiler [21, 37]. Despite ZK PoK techniques being usually considered inef-
ficient for practical use, developments such as [38] present improvements to previous cut-and-choose
strategies against malicious adversaries [39, 41, 42, 50] that greatly decrease the number of garbled
circuits necessary for the computation of large circuits (which is usually taken to be the case in
real-world implementations). These approaches allow us to expand the scope of our verified secure
computation engine to more demanding scenarios, including use cases that consider covert or active
adversaries.
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Chapter 4

Formal verification requirements

In the previous chapters we have discussed in detail the motivation and scope for the formal veri-
fication work that will be carried out in PRACTICE. We have also given a high-level view of the
functionalities provided by the different components in the PRACTICE high-assurance secure com-
putation framework, and clarified their integration in the PRACTICE architecture. In this chapter
we will refine the specification of the three components in this framework, providing a detailed de-
scription of the required functional and security properties, and outlining our approach to formally
verifying these properties. The material in this chapter will guide the development and formal
verification work that is being undertaken in the PRACTICE project. The following subsections
separately address the three components in the formally verified framework: secure computation
engine, computation description generation and high-level specification analysis.

4.1 Secure computation engine

In this section, we state the requirements that arise in the verification of the correctness and security
of an implementation of Yao’s protocol, as described in the previous chapter. We begin by introducing
EasyCrypt, a framework for computer-aided cryptographic proofs that we will be using to achieve our
goals, and then present a formalization of the properties that will need to be verified for our concrete
use case. Our description follows [2], where we presented the results of a preliminary feasibility
analysis of undertaking such a task in EasyCrypt, carried out in collaboration with the EasyCrypt
developers.

Computer-aided cryptographic proofs

EasyCrypt [6] is a tool-assisted framework for verifying the security of cryptographic constructions
in the computational model. Following suggestions by Bellare and Rogaway [9] and Halevi [22],
EasyCrypt adopts a code-based approach, in which cryptographic constructions, security notions
and computational assumptions are modeled as probabilistic programs in a core (but extensible)
probabilistic programming language with imperative constructs and procedure calls. Procedures can
be concrete, in which case they are provided with a body consisting of a command and a return
expression, or abstract, in which case only a type signature is provided. The primary purpose of
abstract procedures is to model adversaries, but they are also an essential ingredient for compositional
reasoning.

Program logics. Reasoning in EasyCrypt is supported by two program logics:
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1. a probabilistic relational Hoare logic (pRHL), that allows reasoning about judgments of the
form:

[c1 ∼ c2 : Ψ =⇒ Φ]

where c1 and c2 are probabilistic programs, and Ψ and Φ are relations on memories;

2. and a probabilistic Hoare logic (pHL), that allows reasoning about judgments of the form:

[c : Ψ =⇒ Φ] � δ

where c is a probabilistic program, Ψ and Φ are predicates on memories, δ is a real-valued
expression, and � is a comparison operator (i.e. ≤, =, or ≥).

The logics are respectively used to establish a formal connection between two games in game-based
proofs, and to resolve the probability of an event in a game. As an illustration, consider two programs
c1 and c2 that are equivalent up to a failure event F in the execution of c2; the equivalence is formalized
in pRHL by the judgment:

[c1 ∼ c2 : true =⇒ ¬F 〈2〉 ⇒≡]

where ≡ denotes equality of memories, and 〈2〉 indicates that the interpretation of F is taken in the
output memory of c2. Moreover, assume that the probability of F in c2 is upper-bounded by some
constant δ; this bound can be formalized in pHL by the judgment:

[c2 : true =⇒ F ]≤ δ

EasyCrypt also provides rules to convert pRHL and pHL judgments into probability claims. Using
these rules, one obtains that, for every event E:

Pr [c1 : E]− Pr [c2 : E] ≤ δ

Note that one can recover the more traditional formulation of the Fundamental Lemma (where the
left-hand side of the above inequality is replaced by its absolute value) by strengthening the post-
condition of the pRHL judgment with the assertion F 〈1〉 ⇔ F 〈2〉.
EasyCrypt also provides an ambient logic to reason about operators. It can be used, for instance, to
state that a decoding function is the inverse of an encoding function. A novel feature of EasyCrypt
1.0 is to allow pRHL and pHL judgments as first-class formulae in the ambient logic. In other words,
one can use the ambient logic to reason about formulae that freely use pRHL and pHL judgments; for
instance, one can perform a case analysis on the probability of an event to build an adversary such
that a reduction is valid; or, one can use the available induction principles in the ambient logic to
formalize hybrid arguments.

Modules. EasyCrypt features a module system that provides a structuring mechanism for describing
cryptographic constructions. A module consists of global variable declarations and procedure defi-
nitions. (By construction, all the procedures of a given module share memory.) Modules are mainly
used for representing cryptographic games - either concrete or abstract. For example, the ElGamal
encryption scheme is represented as the following concrete module (where the code for enc and dec

has been omitted):

module ElGamal = {
fun kg() : skey ∗ pkey = {
var x : int = $[0..q−1];
return (x, gˆx);
}
fun enc(pk:pkey, m:plaintext) : ciphertext = { ... }
fun dec(sk:skey, c:ciphertext) : plaintext = { ... }
}.
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The constituents of a module and their types are reflected in their module type: a module M
has module type I if all procedures declared in I are also defined in M , with the same type and
parameters. For instance, the previously defined ElGamal module can be equipped with the following
module type:

module type Scheme = {
fun kg () : skey ∗ pkey
fun enc(pk:pkey, m:plaintext) : ciphertext
fun dec(sk:skey, c:ciphertext) : plaintext
}.

Not only can modules use previously defined modules, but they can also be parameterized. For
example, the following parameterized definition captures chosen-plaintext security, where the public-
key encryption scheme S and the adversary A are module parameters:

module type ADV = {
fun choose (pk:pkey) : msg ∗ msg
fun guess (c:cipher) : bool
}.

module CPA (S:Scheme, A:ADV) = {
fun main () : bool = {
var pk,sk,m0,m1,b,b’,challenge;
(pk,sk) = S.kg();
(m0,m1) = A.choose(pk);

b
$← {0,1};

challenge = S.enc(pk, b?m1:m0);
b’ = A.guess(challenge);
return b’ = b;
}

}.

The key to compositional reasoning in EasyCrypt is its ability to quantify (either universally or
existentially) over modules in its ambient logic. An essential feature of the module system is to allow
restricting memory access between quantified modules.

Theories. EasyCrypt features a theory mechanism for organizing and reusing the axiomatizations
of the different algebraic and data structures used in cryptographic constructions. In its simplest
form, a theory consists of a collection of type and operator declarations, and a set of axioms; cyclic
groups, finite fields, matrices, finite maps, lists or arrays are instances of such forms of theories in
EasyCrypt’s core libraries. Theories might also contain modules, allowing the definition of libraries
of standard games depending on abstract algebraic and data structures.

Theories enjoy a cloning mechanism that is useful when formalizing examples that involve multiple
objects of the same nature, e.g. cyclic groups in bilinear pairings. Moreover, operators of a theory
can be realized, i.e. instantiated by expressions, during cloning. We also use cloning as a substitute
for polymorphic modules.

In the following example, the ElGamal scheme is defined in the scope of an ElGamalT theory that
first clones a fresh copy of the theory of cyclic groups. The ElGamalT theory is then cloned as
InstantiatedElGamalT. The cyclic group of InstantiatedElGamalT is no more abstract but is realized
using a concrete cyclic group.

theory CyclicGroup.
type t.
op g : t. (∗ generator ∗)
...

end CyclicGroup.

theory ElGamalT.
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clone import CyclicGroup as CG.
module ElGamal = { ... (∗ g is CG.g in this context ∗) }.

end ElGamalT.l

clone ElGamalT as InstantiatedElGamalT
with CG.t ← Z∗

5, CG.g ← 2, CG.( ∗ ) x y = x ∗ y mod 5, proving ∗ by smt.

Code generation. EasyCrypt offers an extraction mechanism that generates OCaml code from
functional programs written in EasyCrypt, allowing the production of correct-by-construction imple-
mentations from an EasyCrypt proof. With the nature of the source and target languages being close,
the extraction mechanism is simple enough that one can have a high confidence in the generated
code.

The presence of abstract types/operators does not prevent the use of the extraction mechanism.
Indeed, when encountering an abstract library, stubs for its operators, that have to be filled manually,
are generated. For instance, EasyCrypt provides OCaml implementations for most of the algebraic
and data structures that have been abstractly formalized in the core libraries, such as fixed-length
bitstrings or functional arrays.

Security Claims. Security claims in EasyCrypt are expressed in the form of reductions relating the
advantages of two algorithms as in AdvA(λ) ≤ AdvB(A)(λ). Such statements have the advantage
of making the adversary B explicit, and of supporting concrete as well as asymptotic security. For
instance, EasyCrypt claims could be converted into asymptotic security claims by making the notion
of security parameter implicit, and by requiring in all computational assumptions and security defi-
nitions that the adversaries and simulators execute in polynomial-time. In a similar way, EasyCrypt
claims could be converted to concrete security claims by reasoning about the execution time of al-
gorithms. Currently, EasyCrypt offers no support for reasoning about program complexity, so the
only way to check that our reductions and simulations are indeed performed in polynomial time is
by direct inspection of the code. However, adding support for reasoning about complexity is work
in progress; once available, it will be possible to take full advantage of existential quantification over
modules.

Formalizing Yao’s Protocol in EasyCrypt

Two-Party Protocols. We first start by generically defining two-party protocols, that generalize
both Secure Function Evaluation and Oblivious Transfer, and their security. In EasyCrypt, declara-
tions pertaining to abstract concepts meant to be later refined can be grouped into named theories
such as the one shown in Figure 4.1. Any lemma proved in such a theory becomes also a lemma of
any implementation (or instantiation) where the theory axioms hold.

theory Protocol.
type input1, output1.
type input2, output2.
op validInputs: input1 → input2 → bool.
op f: input1 → input2 → output1 ∗ output2.

type rand1, rand2, conv.
op prot: input1→ rand1→ input2→ rand2→ conv ∗ output1 ∗ output2.
. . .

end Protocol.

Figure 4.1: Abstract Two-Party Protocol.
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Two parties want to compute a functionality f on their joint inputs, each obtaining their share of
the output. This may be done interactively via a protocol prot that may make use of additional
randomness (passed in explicitly for each of the parties) and produces, in addition to the result,
a conversation trace of type conv that describes the messages publicly exchanged by the parties
during the protocol execution. In addition, the input space may be restricted by a validity predicate
validInputs. This predicate expresses restrictions on the adversary-provided values, typically used to
exclude trivial attacks not encompassed by the security definition.

Following the standard approach for secure multi-party computation protocols, security is defined
using simulation-based definitions. In this case we capture honest-but-curious (or semi-honest, or
passive) adversaries. We consider each party’s view of the protocol (typically containing its ran-
domness and the list of messages exchanged during a run), and a notion of leakage for each party,
modelling how much of that party’s input may be leaked by the protocol execution (for example,
its length). Informally, we say that such a protocol is secure if each party’s view can be efficiently
simulated using only its inputs, its outputs and the other party’s leakage. Formally, we express this
security notion using two games (one for each party). We display one of them in Figure 4.2, in the
form of an EasyCrypt module. Note that modules are used to model games and experiments, but also
schemes, oracles and adversaries.

Module type AdvProt
i (i ∈ {1, 2}) tells us that an adversary impersonating Party i is defined by two

procedures: i. choose that takes no argument and chooses a full input pair for the functionality,
and ii. distinguish, that uses Party i’s view of the protocol execution to produce a boolean guess
as to whether it was produced by the real system or the simulator. Since the module type is not
parameterized, the adversary is not given access to any oracles (modelling a non-adaptive adversary).
We later show how oracle access can be given to both abstract and concrete modules. We omit module
types for the randomness generators R1 and R2, as they only provide a single procedure gen taking
some leakage and producing some randomness. We also omit the dual security game for Party 2.

The security game, modeled as module Sec1, is explicitly parameterized by two randomness-producing
modules R1 and R2, a simulator S1 and an adversary A1. This enables the code of procedures defined
in Sec1 to make queries to any procedure that appears in the module types of its parameters. The
game implements, in a single experiment, both the real and ideal worlds. In the real world, the
protocol prot is used with adversary-provided inputs to construct the adversary’s view of the protocol
execution. In the ideal world, the functionality is used to compute Party 1’s output, which is then
passed along with Party 1’s input and Party 2’s leakage to the simulator, producing the adversary’s
view of the system. We prevent the adversary from trivially winning by denying him any advantage
when he chooses invalid inputs.

A two-party protocol prot (parameterized by its randomness-producing modules) is said to be secure
with leakage Φ = (φ1, φ2) whenever, for any adversary Ai implementing AdvProt

i (i ∈ {1, 2}), there
exists a simulator Si implementing Simi such that

Adv
ProtiΦ
prot,Si,R1,R2

(Ai) = |2 · Pr[Seci(R1,R2, Si,Ai) : res]− 1|

is small, where res denotes the boolean output of procedure main.

Intuitively, the existence of such a simulator Si implies that the protocol conversation and output
cannot reveal any more information than the information revealed by the simulator’s input.

Oblivious Transfer Protocols. We can now define oblivious transfer, restricting our attention
to a specific notion useful for constructing general SFE functionalities. To do so, we clone the Protocol

theory, which makes a literal copy of it and allows us to instantiate its abstract declarations with
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type leak1, leak2. op φ1 : input1 → leak1. op φ2 : input2 → leak2.
type view1 = rand1 ∗ conv. type view2 = rand2 ∗ conv.

module type Sim = {
proc sim1(i1: input1, o1: output1, l2: leak2) : view1

proc sim2(i2: input2, o2: output2, l1: leak1) : view2

}.

module type Simi = {
proc simi(ii: inputi, oi: outputi, l3−i: leak3−i) : viewi

}.

module type AdvProt
i = {

proc choose(): input1 ∗ input2
proc distinguish(v: viewi) : bool
}.

module Sec1(R1: Rand1, R2: Rand2, S: Sim1, A1: AdvProt
1 ) = {

proc main() : bool = {
var real, adv, view1, o1, r1, r2, i1, i2;
(i1,i2) = A1.choose();

real
$← {0,1};

if (!validInputs i1 i2)

adv
$← {0,1};

else {
if (real) {
r1 = R1.gen(φ1 i1);
r2 = R2.gen(φ2 i2);
(conv, ) = prot i1 r1 i2 r2;
view1 = (r1, conv);
} else {
(o1, ) = f i1 i2;
view1 = S.sim1(i1, o1, φ2 i2);
}
adv = A1.distinguish(view1);
}
return (adv = real);
}
}.

Figure 4.2: Security of a two-party protocol protocol.

concrete definitions. The partial instantiation is shown in Figure 4.3. We restrict the input, output
and leakage types for the parties, as well as the leakage functions and the functionality f. The chooser
(Party 1) takes as input a list of boolean values (i.e., a bit-string) she needs to encode, and the sender
(Party 2), takes as input a list of pairs of messages (which can also be seen as alternative encodings
for the boolean values in Party 1’s inputs). Together, they compute the array encoding the chooser’s
input, revealing only the lengths of each other’s inputs. We declare an abstract constant n that
bounds the size of the chooser’s input. This introduces an implicit quantification on the bound n in
all results we prove. Defining OT security is then simply a matter of instantiating the general notion

of security for two-party protocols via cloning. Looking ahead, we use AdvOTi

to denote the resulting

instance of AdvProt
i
(length,length) , and similarly, we write AdvOT

i for the types for adversaries against the
OT instantiation.

To define a concrete two-party OT protocol, one now only has to define the types of randomness and
conversations and the protocol itself, with its individual computation and message exchange steps.

Garbling schemes. Garbling schemes [8] (Figure 4.4) are operators on functionalities of type
func. Such functionalities can be evaluated on some input using an eval operator. In addition,
a functionality can be garbled using three operators (all of which may consume randomness). The
operator funG produces the garbled functionality, inputK produces an input-encoding key, and outputK

produces an output-encoding key. The garbled evaluation evalG takes a garbled functionality and some
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clone Protocol as OT with
type input1 = bool array,
type output1 = msg array,
type leak1 = int,
type input2 = (msg ∗ msg) array,
type output2 = unit,
type leak2 = int,

op φ1 (i1: bool array) = length i1,

op φ2 (i2: (msg ∗ msg) array) = length i2,

op f (i1: bool array) (i2: (msg ∗ msg) array) = i1 i2 .

op validInputs(i1: bool array) (i2: (msg ∗ msg) array) =

0 < length i1 ≤ nmax ∧ length i1 = length i2,
. . .

Figure 4.3: Instantiating Two-Party Protocols into Abstract OT.

encoded input and produces the corresponding encoded output. The input-encoding and output-
decoding functions are self-explanatory. In practice, we are interested in garbling functionalities

type func, input, output.
op eval : func → input → output.
op valid: func → input → bool.

type rand, funcG, inputK, outputK.
op funcG : func → rand → funcG.
op inputK : func → rand → inputK.
op outputK: func → rand → outputK.

type inputG, outputG.
op evalG : funcG → inputG → outputG.
op encode: inputK → input → inputG.
op decode: outputK → outputG → output.

Figure 4.4: Abstract Garbling Scheme.

encoded as boolean circuits and therefore fix the func and input types and the eval function. Circuits
themselves are represented by their topology and their gates. A topology is a tuple (n,m, q,A,B),
where n is the number of input wires, m is the number of output wires, q is the number of gates,
and A and B map to each gate its first and second input wire respectively. A circuit’s gates are
modeled as a map G associating output values to a triple containing a gate number and the values
of the input wires. Gates are modeled polymorphically, allowing us to use the same notion of circuit
for boolean circuits and their garbled counterparts. We only consider projective schemes [8], where
boolean values on each wire are encoded using a fixed-length random token. This fixes the type funcG

of garbling schemes, and the outputK and decode operators.

Following the Garble1 construction of Bellare et al. [8], we will construct our garbling scheme using a
variant of Yao’s garbled circuits based on a pseudo-random permutation, via an intermediate Dual-
Key Cipher (DKC) construction. We denote the DKC encryption with E, and DKC decryption with
D. Both take four tokens as arguments: a tweak that we generate with an injective function and use
as unique IV, two keys, and a plaintext (or ciphertext).

The privacy property of garbling schemes required by Yao’s SFE protocol is more conveniently
captured using a simulation-based definition. Like the security notions for protocols, the privacy
definition for garbling schemes is parameterized by a leakage function upper-bounding the information
about the functionality that may be leaked to the adversary. (We consider only schemes that leak
at most the topology of the circuit.) Consider efficient non-adaptive adversaries that provide two
procedures: i. choose takes no input and outputs a pair (f,x) composed of a functionality and some
input to that functionality; ii. on input a garbled circuit and garbled input pair (F,X), distinguish

outputs a bit b representing the adversary’s guess as to whether he is interacting with the real or
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ideal functionality. Formally, we define the SIM-CPAΦ advantage of an adversary A of type AdvGb

against garbling scheme Gb = (funcG,inputK,outputK) and simulator S as

AdvSIM-CPAΦ

Gb,R,S (A) = |2 · Pr[SIM(R, S,A) : res]− 1| .

A garbling scheme Gb using randomness generator R is SIM-CPAΦ-secure if, for all adversary A of
type AdvGb, there exists an efficient simulator S of type Sim such that AdvSIM-CPAΦ

Gb,R,S (A) is small.

type leak.
op Φ: func → leak.

module type Sim = {
fun sim(x: output, l: leak): funcG ∗ inputG
}.

module type AdvGb = {
fun choose(): func ∗ input
fun distinguish(F: funcG, X: inputG) : bool
}.

module SIM(R: Rand, S: Sim, A: AdvGb) = {
fun main() : bool = {
var real, adv, f, x, F, X;
(f,x) = A.gen query();

real
$← {0,1};

if (!valid f x)

adv
$← {0,1};

else {
if (real) {
r = R.gen(Φ f);
F = funcG f r;
X = encode (inputK f r) x;
} else {
(F,X) = S.sim(f(x),Φ f);
}
adv = A.dist(F,X);
}
return (adv = real);
}
}.

Figure 4.5: Security of garbling schemes.

Yao’s SFE Construction. We now explain how garbled circuits and oblivious transfer can be
combined to provide a general secure function evaluation protocol, and formalize a generic security
proof goal, parameterized by a secure garbling scheme and a secure oblivious transfer protocol. The
goal is subsequently to instantiate this abstract result with a concrete oblivious transfer protocol and
a concrete garbling scheme.

As discussed briefly above, we model SFE as a two-party protocol. We consider the functionality to
be evaluated, encoded as a circuit, as part of Party 2’s input and set up the leakage function to let it

become public. We denote by AdvSFE
i

and AdvSFE
i the instantiations of AdvProt

i

and AdvProt
i to the SFE

construction. We preface the definition of our generic SFE construction with two named clones of the
abstract garbling scheme and oblivious transfer theories. This allows us to essentially parameterize
the SFE protocol with a garbling scheme and an oblivious transfer protocol. Instantiating these
parameters is simply done by instantiating the Gb and OT theories with concrete definitions and
proofs. In Figure 4.6, we formalize a standard SFE construction explained informally in the previous
chapter.
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clone Garble as Gb.
clone OT as OT.

clone Protocol as SFE with
type rand1 = OT.rand1,
type input1 = bool array,
type output1 = Gb.output,
type leak1 = int,
type rand2 = OT.rand2 ∗ Gb.rand,
type input2 = Gb.func ∗ bool array,
type output2 = unit,
type leak2 = Gb.func ∗ int,
op f i1 i2 = let (c,i2) = i2 in Gb.eval c (i1 || i2),(),
type conv = (Gb.funcG ∗ token array ∗ Gb.outputK) ∗ OT.conv,
op validInputs (i1:input1) (i2:input2) =
0 < length i1 ∧ Gb.validInputs (fst i2) (i1 || snd i2),

op prot (i1:input1) (r1:rand1) (i2:input2) (r2:rand2) =
let (c,i2) = i2 in
let fG = Gb.funG c (snd r2) in
let oK = Gb.outputK c (snd r2) in
let iK = Gb.inputK c (snd r2) in
let iK1 = (take (length i1) iK) in
let (ot conv, (t1, )) = OT.prot i1 r1 iK1 (fst r2) in
let GI2 = Gb.encode (drop (length i1) iK) i2 in
(((fG,GI2,oK),ot conv), (Gb.decode oK (Gb.evalG fG (t1 || GI2)),())).

Figure 4.6: Abstract SFE Construction.

Formal verification goals: protocol correctness and security

Our formal verification process will be constructed using the following results. First, we will show
that Yao’s construction is secure when instantiated with a secure oblivious transfer protocol and a
secure garbling scheme.

Theorem 1 (Abstract SFE security) For any oblivious transfer protocol OT and any garbling
scheme Gb, let SFEa be the SFE protocol built using Yao’s construction from OT and Gb. For all
SFE adversaries A = (A1,A2) implementing type AdvSFE = (AdvSFE

1 ,AdvSFE
2 ), we can construct an

efficient simulator that estabishes its security under the assumption that OT and Gb are themselves
secure.

We will then formalize in detail and prove the security of a concrete oblivious transfer protocol
(SomeOT) and a concrete garbling scheme construction (SomeGarble), leading to the following theo-
rems.

Theorem 2 (OT-security of SomeOT) For all i ∈ {1, 2} and OTi adversary Ai of type AdvOT
i

against the SomeOT protocol, there exists an efficient simulator that establishes its security under
standard computational assumption.

Theorem 3 (SomeGarble is SIM-CPA-secure) For every SIM-CPA adversary A against SomeGar-
ble, there exists an efficient simulator that establishes its security under the assumption that the
underlying dual key cipher scheme is secure.

Finally, we will instantiate our first abstract result with the previous concrete theorems, to derive
the following final main theorem stating the security of the resulting Concrete SFE protocol.

Theorem 4 For all SFE adversaries A against the Concrete SFE protocol, we construct an efficient
simulator S that establishes its security, under the assumption that the underlying dual key cipher is
secure and other stantard computational assumptions.

Our formalization will also include correctness results for each of the proof steps highlighted here.
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4.2 Computation description generation

The verified computation description generation component will be implemented as an extension to
the CompCert verified compiler. We begin by introducing CompCert and the relevant features, and
then we present the functionality and formal verification goals for our extension, which will convert
C programs into computation descriptions represented as Boolean circuits.

Background on CompCert

CompCert is a formally verified optimizing C compiler [36]. It produces target code with strong
correctness guarantees and reasonable efficiency when compared to general purpose compilers. Com-
pCert supports the C language (with almost complete coverage of the ISO C 90 / ANSI C standard)
and produces assembly code for the PowerPC, ARM, and IA32 (x86 32-bits) architectures. CompCert
is mostly implemented in Coq, and its development is subdivided into 19 compiler phases, each of
which builds a semantic preservation proof between semantically defined intermediate languages.

Formally, CompCert’s correctness theorem establishes a strong notion of semantic preservation, re-
ferred in CompCert terminology as a simulation. This guarantees that, if a source program P C is
successfully compiled into P asm, then the observable behaviour of this last program is an admissible
behaviour of the original program. The proof of this result is based on a formalization of the seman-
tics of both the compiler’s source and target languages (C and assembly), as well as of all the compiler
passes. Behaviours are captured by a possibly infinite sequence of events that model interactions of
the program with the outside world, such as accesses to volatile variables, calls to system libraries,
or user defined events (so called annotations).

More in detail, CompCert’s semantic preservation result establishes that, conditioning on similar
interactions with the environment, the observable behaviour for the compiled program in any of
the target and intermediate languages, matches the observable behaviour of the source C program.
The notion of observable behaviour of a program in any of the languages manipulated by CompCert
considers only programs with a well-defined entry point (the main function); it permits adding an-
notations to source code that explicitly create visible events in the execution trace; and it captures
the possibility that programs go wrong or do not terminate.

We now detail the various aspects in which we enchanced CompCert and the formal correctness
guarantees that it provides, in order to obtain verified Boolean circuit generation.

Certified generation of circuits

What does it means to generate a circuit from a C program? The overall idea is to focus on the
impact of the C program on two pre-specified memory regions: an n-bit input buffer, and an m-bit
output buffer. The generated circuit should then implement a boolean function f circ : 2n → 2m that
captures precisely the effect of running the program on a memory state where the input buffer is
filled with some n-bit string, and observing the m-bit string obtained on the output buffer when the
program finishes. In order to make sense of the previous discussion, two major restrictions should be
considered on C programs:

1. Programs should avoid any form of interaction with the environment (such as systems calls, use
of volatile variables, etc.). In particular, the behaviour of programs should be fully deterministic
(depending only on the contents of the input buffer);
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2. Programs should always terminate for every possible input data.

Regarding the first point, we note that interaction with the environment is precisely what is normally
registered on the behavioural trace produced by programs. In fact, we are interested in programs
that are essentially “silent” with respect to observable events. But since the CompCert’s semantic
preservation result is expressed resorting to those traces, we will build on a CompCert extension
developed in [1], that adds two special builtin operations to the CompCert framework: read and write.
The former emulates the non-deterministic generation of an arbitrary global input, registering it in
the observable behaviour of the program. The latter will be used to expose a memory region that
stores output of the program (circuit) in its observable behaviour. Using these constructs, we will
anchor our tool on a program entry-point with the following shape:

Function main( )

read(~i)
circuit( )
write(~o)

Here circuit represents the procedure that acts as entry-point for the program that implements the
Boolean circuit in C,~i represents global variables registered as circuit inputs, and ~o represents global
variables registered as circuit outputs. The two special builtins read and write are responsible for the
whole interaction with the environment: read fills the input variables with values obtained from the
environment, write externalise the corresponding output variables. Since read and write are the only
constructs in our programs that induce observable events, we note that traces became essentially a
way of registering the intended input/output behaviour of the circuit program. Hence, the correctness
result of CompCert ensures preservation of this behaviour along the compilation process.

Regarding the second point, termination will be ensured by restricting the allowed control structure
of C programs. Indeed, and following what is done in other related works [44, 18], we will consider
a subclass of C programs for which:

• All function calls can be statically inlined.

• Loops can be fully statically unrolled.

• No dynamic memory allocation is used. In particular, all arrays are statically allocated.

Intuitively, the input program must be prone to static transformations that give rise to an equivalent
C implementation in a single loop-free procedure, taking no inputs, that reads information from a
well-defined set of global input variables and writes to a well-defined set of global output variables
(which may overlap).

Tool architecture

As mentioned above, the certified circuit generation tool will be built on top of the CompCert certified
compiler. Specifically, we will rely on the the CompCert’s C frontend and on the first compiler passes
up to the RTL (Register Transfer Language) intermediate language. Once at the RTL level, an
abstract circuit description will be produced, where conditional branches are translated to equivalent
data-flow selection gates. A concrete Boolean circuit is then produced by instantiating elementary
operations (e.g. 32bit addition) with externally provided optimized gates. Figure 4.7 details the flow
between the source C program and the final circuit.

PRACTICE D12.3 Page 29 of 46



Formal Verification Requirements

Figure 4.7: Architecture of the Certified Circuit Generation Tool

Formal verification goals: the C side

We will benefit from CompCert’s C language formalisation, as well as the first few compiler passes.
This would allow us to leverage CompCert’s framework as a stepping stone to define/formalise a
semantic preserving translation to Boolean circuits.

Nevertheless, we shall adapt and extend some parts of the CompCert development to meet the specific
characteristics of the envisaged tool. Most notably, we will add additional compilation passes that
will address some missing processing stages for circuit generation, namely:

Loop unroll — this compiler pass will unroll each loop by a externally provided bound. The bound
is expected to be sufficiently large so that the compiler can statically ensure the safety of the
loop removal. The choice of performing this pass at the Cminor level is based on the fact
that at lower levels the loop structure is disguised in general if/goto patterns, which would
complicate its treatment.

Structural validation — this pass is a validation check that will ensure that all the restrictions
placed on the allowed C programs are met. Specifically, it will check that entry-point exibihts
the required shape (mentioned above); that all function calls were fully inlined; and that all
loops were removed (after being unrolled). Any violation of the above requirements would halt
the compilation.

After successfully validated, the resulting RTL program is a single function whose CFG (Control-Flow
Graph) is an acyclic graph.

Formal verification goals: the circuit side

The restricted RTL obtained from the modified CompCert shall be further transformed to remove
all the branches of the CFG. Conceptually, this transformation amounts to the translation of the
RTL program into SSA (Static Single Assignment) form, replacing then the φ-nodes into appropriate
selection-gates. This is, however, a translation where some clever program manipulations might be
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called upon to achieve reasonably compact circuits; and this is why we consider this compilation pass
as a good candidate for a translation-validation pass1.

Having the program as a pure straight-line program in SSA form allow us to perform the intended
semantic shift on its interpretation – instead of variables stored in memory we shall consider wire-
buses connecting Boolean gates. To this end, we will formalise the evaluation of Boolean circuits in
Coq, relating it to the correspondent C-side semantics. At this level, primitive operations are viewed
as high-level gates (with a well-defined interface and semantics).

Finally, to produce a standalone circuit, high-level gates should be replaced by concrete circuit in-
stantiations. The aim is to rely as much as possible on existing optimized implementations developed
in CBMC-GC, possibly adding some validation checks using automatic provers such as SMTs and
SAT solvers. In other cases, verified (non-optimized) alternatives might be adopted by bootstrapping
them in the tool.

4.3 High-level specification analysis

SecreC is the language in which multi-party computations are specified in the Sharemind framework
and it was designed for statistical analysis and data mining. Syntactically, the language is quite
similar to C though the similarities are very superficial and, for instance, lacks many of features that
make C an easy to misuse language (precisely to avoid the potential security issues), such as raw
pointers. One of the major features of SecreC is a type system designed to differentiate publicly
available data from private data. A programmer can designate some data as public and some other
as private, and the type system guarantees that private data does not become public unless the
programmer explicitly declassifies it, i.e., accepts to disclose such private data publicly. As a simple
example, consider the following code:

Listing 4.1: A simple SecreC example

1 import shared3p;

2 domain private shared3p;

3 void main () {

4 private float [[1]] x = argument ("x");

5 private float sqrLen = dot (x, x);

6 bool res = declassify (sqrLen < 1.0);

7 ...

8 }

This snippet imports a library shared3p which provides various functions specific to the additive
3-party secret sharing scheme (and possibly defines more efficient operations than those included in
the standard library). Next, a private protection domain of kind shared3p is declared – the protection
domain must be configured with concrete physical addresses on the Sharemind installation in which
this code runs. This is required because Sharemind allows for a single installation to be running
multiple protection domains of the same kind, and it is also possible for a program to be using more
than one domain at the same time. The main procedure of the program reads a private argument
x, performs some private computations on it, and finally declassifies (reveals) the data to all parties
participating in the computation. Note that the code would be rejected by the type checker without

1In certified compilers, a translation-validation pass is a compiler pass where the translation itself is not indepen-
dently certified. Instead, it is delegated to a non-certified component, and only its output is submitted to a validation
pass the checks if it meets the semantic requisites.
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the explicit declassification call, since this would be interpreted as a non-intentional release of private
information. For a more complete overview of the SecreC language, the interested reader is referred
to PRACTICE deliverable D22.1.

SecreC already does assist the developer via the type system and language design choices targeted
at the SMC domain, but much more could be possible via static code analysis. Here, we discuss
possibilities for improving the developer experience and increasing the security guarantees that SecreC
provides when manipulating secure computation specifications. These will be addressed using formal
verification techniques, and the resulting analyses will be integrated into the Sharemind framework.

Formal verification goals: a program analysis framework

SecreC has a very basic code analysis framework that first translates SecreC programs into a simpler
intermediate representation language, and then runs the corresponding analyses on top of the gener-
ated intermediate representations [48]. Among a few others analyses, the SecreC analysis framework
implements a so-called reachable-declassify analysis, to check if a private input directly reaches a
declassification call (without being processed by a non-trivial intermediate computation). For some
simple cases, this analysis can be used to detect unwanted data flows originating from sensitive
private information that is not advisable for publication. However, this analysis has not proved use-
ful in practice because (the framework itself) is not context- nor path-sensitive. To understand its
limitations, consider a simple example:

Listing 4.2: Limitations in information flow control

1 private int aggregate (private int [[1]] array) {

2 return array [0];

3 }

4 void main () {

5 private int [[1]] array = argument ("array");

6 private int result = aggregate (array);

7 print (declassify (result ));

8 }

The main procedure gets an array of integers as an input, performs some aggregation on it and
declassifies the result. However, the function to aggregate the data is defined in such a way that
it returns the first element of the array. This means that a private input reaches a declassify call
directly through a function call, what should raise a warning. The current analysis, however, does
not catch this data flow due to lack of context sensitivity. If the aggregation function would instead
compute the average of the elements of the input array, then the raw private inputs would not be
directly declassified and the analysis should not raise a warning.

We will study how a type system for language-based information flow analysis can assist in the
reasoning about the flow of private information in a SecreC program. In this setting, we can use
type inference to overapproximate which declassify calls can be reached (directly or not) from a set
of private inputs. Still for the above example, it may be difficult to reason about whether leaking
the total aggregate is acceptable or not. A quantitative analysis of the amount of leaked data per
declassification call will be a possible further refinement to help in that direction.
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Formal verification goals: validating optimizations

Any typical secure multi-party algorithm involves a declassification of private information before
publishing its results. Assuming that releasing such information is acceptable, it is often possible to
improve the performance of the algorithm without changing its security guarantees, by refactoring
it into a version that makes sure to declassify such released information as early as possible, thus
minimizing the number of (inefficient) secure computations. In order to perform this optimization
automatically, a secure multi-party computation compiler must be able to identify which extra declas-
sified data can be inferred from the publicly available data (either known from the start or published
after running the computation).

This problem of knowledge inference, has been researched in [47, 53], and we will integrate the existing
state-of-the-art into the SecreC analysis framework. Implementing these approaches directly over
SecreC remains, however, challenging since typical SecreC programs may span dozens of functions and
thousands of lines of code. Moreover, (the implementation of) a knowledge inference technique is often
tailored to a specific secure multi-party computation dialect and may place non-obvious restrictions on
the subclass of programs that can be analyzed, with different performance/expressiveness tradeoffs.
A more robust solution for SecreC will likely require the combination of different existing approaches.

Formal verification goals: controlling leakage

Consider a piece of code that counts how many times some element occurs in an array and declassifies
the result.

Listing 4.3: A more elaborate declassification example

1 uint count (private uint [[1]] xs , private uint z) {

2 private bool [[1]] bs = (xs == z);

3 private uint [[1]] cs = (uint) bs;

4 private uint count = 0;

5 for (uint i = 0; i < size (cs); ++ i) {

6 count = count + cs[i];

7 }

8

9 return declassify (count);

10 }

First, the input array is compared point-wise to the input element, yielding the boolean array bs.
Next, the boolean array is converted to unsigned integers, which are summed using a for loop, and
the declassified sum is finally returned.

In this example, however, one would need to go one step further and assist the programmer in
reasoning about whether or not declassifying the boolean array holding the results of the comparisons
(what could lead to a much more efficient protocol) is acceptable from the point of view of the concrete
application in which this computation is integrated (e.g., how much more sensitive is the overall
released information). Two options will be considered for this functionality. The first one is to allow
the programmer to specify what acceptable leakage is, independently of the program itself. It should
then be possible to verify if the optimized implenentation satisfies this requirement. Another direction
in which assistance can be provided, is to construct a knowledge basis of program transformations
that can lead to more efficient solutions, and then construct a tool that is able to recognize (or even
automatically suggest) these re-writing patterns in order to validate the optimizations.
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Chapter 5

Conclusion

In this document we have presented the requirements for the formal verification activities that are
currently being undertaken in the PRACTICE project. In order to pinpoint these requirements, we
have also refined the description of the proof-of-concept high-assurance secure computation framework
that will be developed, and clarified how this fits into the overall architecture of the software stack
that is being created in the project. We have also analysed which use-cases and application scenarios
this framework can cater to, and validated our requirements accorgingly.

The activities leading to the completion of this framework are split between work packages WP14 and
WP22, where the development work of the various tools is taking place. They will continue until the
end of the project at M36. A first snapshot of this development and verification work will be provided
in the prototype deliverables that will be produced at M24 in WP22 (i.e., in Deliverable 22.3). Also,
a detailed description of how this framework will fit into the global PRACTICE architecture and
into the lower level secure computation engine architecture that are being specified in WP21 and
WP14 will also be included in the M24 deliverables that are being written in these work packages
(i.e., D21.2 and D14.1, respectively).
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Chapter 6

List of Abbreviations

CFG Control-Flow Graph

DKC Dual-Key Cipher

HE Homomorphic Encryption

MPC Multi-party Computation

OT Oblivious Transfer

pHL Probabilistic Hoare logic

pRHL Probabilistic relational Hoare logic

RTL Register Transfer Language

SFE Secure Function Evaluation

SSA Static Single Assignment

TASTY Tool for Automating Secure Two-partY computations

ZK PoK Zero-knowledge proofs-of-knowledge
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Benjamin Grégoire, and Pierre-Yves Strub. Verified implementations for secure and verifiable
computation. Cryptology ePrint Archive, Report 2014/456, 2014. http://eprint.iacr.org/.

[3] Todd W Arnold and Leendert P Van Doorn. The ibm pcixcc: A new cryptographic coprocessor
for the ibm eserver. IBM Journal of Research and Development, 48(3.4):475–487, 2004.

[4] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In Theory of Cryptography, pages 137–156. Springer, 2007.

[5] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi,
and Thomas Schneider. Secure evaluation of private linear branching programs with medical
applications. In Computer Security–ESORICS 2009, pages 424–439. Springer, 2009.
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