
D13.1
A Set of New Protocols

Project number: 609611
Project acronym: PRACTICE

Project title: Privacy-Preserving Computation in the Cloud
Project Start Date: 1st November, 2013

Duration: 36 months
Programme: FP7/2007-2013

Deliverable Type: Report
Reference Number: ICT-609611 / D13.1 / 1.0
Activity and WP: Activity 1 / WP13

Due Date: October 2015 - M24
Actual Submission Date: 3rd November, 2015

Responsible Organisation: BIU
Editor: Benny Pinkas

Dissemination Level: PU
Revision: 1.0

Abstract:

This document describes a set of new secure computation pro-
tocols that were designed by the partners of the PRACTICE
project. These protocols were motivated by the work of deliver-
able D11.2, which identified shortcomings in the state-of-the-art
in secure computation, mostly in terms of the scalability of ex-
isting solutions. The new protocols were published in multiple
scientific papers at top-tier academic conferences in the field of
computer security.

Keywords: secure multi-party comptutation.

This project has received funding from the European Union’s Seventh Frame-
work Programme for research, technological development and demonstration
under grant agreement no. 609611.

A Set of New Protocols

Editor

Benny Pinkas (BIU)

Contributors (ordered according to beneficiary numbers)

Florian Kerschbaum (SAP)
Florian Hahn (SAP)
Thomas Schneider (TUDA)
Michael Zohner (TUDA)
Pille Pullonen (CYBER)
Claudio Orlandi (AU)

PRACTICE D13.1 Page I

Disclaimer

The information in this document is provided "as is", and no guarantee or warranty is given that the information

is fit for any particular purpose subject to any liability which is mandatory due to applicable law. The users use

the information at their sole risk and liability.

A Set of New Protocols

Executive Summary
This report describes a new set of secure multi-party computation protocols that were designed
by the members of the PRACTICE project. The main goal of these protocols is to enhance the
performance and scalability of the available secure multi-party computation solutions, in order
to address the needs of the field, which were described in Deliverable D11.2 of this project.
The results that are presented in this report have been published in multiple research papers
at top-tier conferences.
The first chapter of this report is an introduction. The second chapter describes new methods
for generic multi-party computation (generic meaning that these methods can be used for
computing arbitrary functions). The third chapter describes improvements to different tools
and primitives that are used in secure computation. These improvements affect the performance
of each secure computation protocol that will use these tools. The fourth chapter of this
report describes new protocols for order preserving encryption, that is a crucial tool for storing
encrypted databases and then performing queries on the encrypted data. The fifth and final
chapter describes new methods for computing private set intersection, which is a secure protocol
which, rather then being generic, solves a specific problem of high interest.

PRACTICE D13.1 Page II

A Set of New Protocols

Contents

1 Introduction 1
1.1 Contents . 1
1.2 Publications . 2

2 Improved Secure Computation Protocols 3
2.1 Fast Garbling of Circuits Under Standard Assumptions 3

2.1.1 The Results . 4
2.1.2 Experimental Results and Discussion . 5

2.2 Efficient Constant Round Multi-Party Computation Combining the BMR and
SPDZ Protocols . 7
2.2.1 Expected Runtimes . 9

2.3 ABY: Mixed-Protocol Secure Computation [24] 10
2.3.1 Arithmetic Sharing . 11
2.3.2 Boolean Sharing . 12
2.3.3 Yao Sharing . 12
2.3.4 Yao to Boolean Sharing (Y2B) . 13
2.3.5 Boolean to Yao Sharing (B2Y) . 13
2.3.6 Arithmetic to Yao Sharing (A2Y) . 13
2.3.7 Boolean to Arithmetic Sharing (B2A) . 13

3 Tools with Improved Efficiency 14
3.1 Simple and Efficient Oblivious Transfer . 14

3.1.1 A Novel OT Protocol . 15
3.2 Active Secure Oblivious Transfer Extension [4] 15
3.3 Token-Aided Mobile GMW [23] . 16

3.3.1 Multiplication Triple Pre-Computation in the Init Phase 16
3.3.2 Seed Transfer in the Setup Phase . 19

3.4 Two-Party Unsigned Arithmetic Based on Additive Secret Sharing 19
3.4.1 Introduction . 19
3.4.2 Overview of the Protocol Stack . 20

3.5 Zero-Knowledge from Garbled Circuits (and GC for ZK) 26
3.5.1 Zero-Knowledge Vs. Generic 2PC . 27
3.5.2 Zero-Knowledge From Garbled Circuits 27
3.5.3 Garbled Circuits for Zero-Knowledge . 27
3.5.4 Overview of The Garbling Schemes . 28

PRACTICE D13.1 Page III

A Set of New Protocols

4 Order-Preserving Encryption for Secure Database Qeuries 30
4.1 Optimal Average-Complexity Ideal-Security Order-Preserving Encryption 30

4.1.1 Introduction . 30
4.1.2 Scheme . 30

4.2 Frequency-Hiding Order-Preserving Encryption 31
4.2.1 Introduction . 31
4.2.2 Scheme . 32
4.2.3 Compression . 32

5 Protocols for Private Set Intersection 34
5.1 Contributions . 34
5.2 Evaluation . 35

5.2.1 Generic Secure Computation-based PSI Protocols 37
5.2.2 Special Purpose PSI Protocols . 38

6 Conclusion 42

7 List of Abbreviations 43

PRACTICE D13.1 Page IV

A Set of New Protocols

List of Figures

2.1 Overview of the ABY framework . 11

3.1 Our protocol in a nutshell . 14
3.2 The three phases, workload distribution, and communication in our token-aided

scheme. 18
3.3 Multiplication triple pre-generation in the init phase between A and T (a) and

seed transfer and seed expansion in the setup phase (b). 18
3.4 Informal Description of Jawurek et al. ZK from GC. 28

4.1 Search Trees for Insertion of 13, 5, 7, 12 . 31
4.2 Growing Search Tree for Sequence 0, 1, 0, 1 . 32
4.3 Possible Search Tree for Sequence 0, 1, 0, 1, 0, 1 33

PRACTICE D13.1 Page V

A Set of New Protocols

List of Tables

2.1 Summary of experimental results . 5
2.2 Summary of garbled-circuit size . 5
2.3 SPDZ offline generation times in milliseconds per operation 9

3.1 Protocols dependencies for additive secret sharing based unsigned integer com-
putation. 22

5.1 Run-time in ms for generic secure PSI protocols in the LAN and WAN setting
on σ = 32-bit elements. 36

5.2 Number of AND gates, concrete communication in MB, round complexity, and
failure probability for generic secure PSI protocols on σ = 32-bit elements 37

5.3 Run-time in ms for protocols with n = n1 = n2 elements. (Protocols with (∗) are
in a different security model.) . 38

5.4 Communication in MB for PSI protocols with n = n1 = n2 elements 38
5.5 Run-time in ms for PSI protocols with n2 � n1 elements 40
5.6 Communication in MB for special purpose PSI protocols with n2 � n1 elements 40

PRACTICE D13.1 Page VI

A Set of New Protocols

Chapter 1

Introduction

The main task of WP13 is the specification and design of new protocols, which are intended
to improve the state-of-the-art in secure multi-party computation, in directions that are most
relevant to secure computation in the cloud. Deliverable D11.2 of WP11 (An evaluation of
current secure computation protocols) identified two main issues where current protocols are
lacking: (1) the scalability of protocols for generic secure computation, and in particular pro-
tocols that are secure against malicious adversaries; (2) there are specific tasks, specifically
private set intersection (PSI), where generic protocols are considerably less efficient (perhaps
by orders of magnitude) than is required.
The work that is described in this deliverable was carried out by many members of WP13.
The work mostly focused on addressing the two issues that were highlighted by deliverable
D11.2. Most of the results that were achieved improved the performance and scalability of
protocols for generic secure computation. Other results dramatically improved the state-of-
the-art protocols for specific tasks, particularly for private set intersection (PSI), and for order
preserving encryption, which is an essential tool for secure database queries.
The results that are described in this deliverable were published in the most prestigious con-
ferences in security, as is detailed in Section 1.2.

1.1 Contents
Chapter 2 describes new methods for generic multi-party computation (generic meaning that
these methods can be used for computing arbitrary functions). These new methods has consider-
able improved efficiency compared to the former state of the art. Section 2.1 describes a version
of Yao’s secure computation protocol, which is currently the basis for most secure computation
solutions. The new protocol makes use of a new garbling method, which is based on standard
assumptions (whereas previous state-of-the-art garbling methods depended on less established
cryptographic assumptions). Section 2.2 describes the first constant round secure multi-party
computation protocol that is secure against malicious adversaries and has an efficient con-
crete overhead. Section 2.3 describes a framework for efficient mixed-protocol two-party secure
computation: secure computation protocols typically use either arithmetic circuits, where the
primitive operations are addition and multiplication, or boolean circuits, where the primitive
operations are XOR and AND. Each of these protocol types is better at computing different
types of functions. The new framework is the first to enable easy and efficient computation
which combines protocols of both types.
Chapter 3 describes improvements to different tools and primitives that are used in secure com-
putation. These improvements affect the performance of each secure computation protocol that

PRACTICE D13.1 Page 1 of 48

A Set of New Protocols

will use these tools. Section 3.1 describes a new and extremely simple oblivious transfer proto-
col. Section 3.2 describes the first efficient oblivious transfer extension protocol that is secure
against malicious adversaries. Section 3.3 describes an efficient implementation of protocols of
the GMW family using hardware tokens. Section 3.4 described a new protocol stack for secure
unsigned arithmetic computation for two parties, supporting more basic operations than just
addition and multiplication, and thus supporting more efficient implementations. Two-Party
Unsigned Arithmetic Based on Additive Secret Sharing Section 3.5 describes how to use garbled
circuits for running very efficient zero-knowledge proofs of non-arithmetic statements.
Chapter 4 describes two new protocols for order preserving encryption, that is a crucial tool
for storing encrypted databases and then performing queries on the encrypted data. The first
protocol, in Section 4.1 improves the performance of the currently available order preserving
encryption protocols. The second protocol, in Section 4.2, achieves a strictly stronger notion of
security than any other order-preserving encryption scheme.
Chapter 5 describes improved new methods for private set intersection, that are based on using
oblivious transfer extension and advanced hashing schemes. The chapter describes detailed
experiments showing a performance improvement of more than an order of magnitude.

1.2 Publications
The results described in this document were published in the following publications, which were
published in the top academic security conferences:

• Ad-Hoc Secure Two-Party Computation on Mobile Devices using Hardware Tokens. Daniel
Demmler, Thomas Schneider, and Michael Zohner. Usenix Security 2014.

• Optimal Average-Complexity Ideal-Security Order-Preserving Encryption. Florian Ker-
schbaum, and Axel Schroepfer. ACM Computer and Communication Security 2014.

• Frequency-Hiding Order-Preserving Encryption. Florian Kerschbaum, ACM Computer
and Communication Security 2014.

• ABY – a Framework for Efficient Mixed-Protocol Secure Two-Party Computation. Daniel
Demmler, Thomas Schneider and Michael Zohner. NDSS 2015.

• More Efficient Oblivious Transfer Extensions with Security for Malicious Adversaries.
Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. Eurocrypt 2015.

• The Simplest Protocol for Oblivious Transfer. Tung Chou and Claudio Orlandi. Latin-
crypt 2015.

• Efficient Constant Round Multi-Party Computation Combining BMR and SPDZ. Yehuda
Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Crypto 2015.

• Fast Garbling of Circuits Under Standard Assumptions. Shay Gueron, Yehuda Lindell,
Ariel Nof, and Benny Pinkas. ACM Computer and Communication Security 2015.

PRACTICE D13.1 Page 2 of 48

A Set of New Protocols

Chapter 2

Improved Secure Computation
Protocols

2.1 Fast Garbling of Circuits Under Standard Assump-
tions

A highly important tool in the design of two-party protocols is Yao’s garbled circuit construc-
tion [59], and multiple optimizations on this primitive have led to performance improvements
of orders of magnitude over the last years. However, many of these improvements come at
the price of making very strong assumptions on the underlying cryptographic primitives being
used. The justification behind making these strong assumptions has been that otherwise it is
not possible to achieve fast garbling and thus fast secure computation. This work takes a step
back and examines whether it is really the case that such strong assumptions are needed. It
provides new methods for garbling that are secure solely under the well established assump-
tion that the primitive used (e.g., AES) is a pseudorandom function. The results show that in
many cases, the penalty incurred is not significant, and so a more conservative approach to the
assumptions being used can be adopted.
Many of the optimizations to garbled circuits come at the price of assuming strong assumptions
on the security of the cryptographic primitives being used. For example, the free-XOR technique
requires assuming circular security as well as a type of correlation robustness [17], the usage
of fixed-key AES requires assuming that AES with a fixed key behaves like a public random
permutation [10], reductions in the number of encryption operations from 2 to 1 per entry in the
garbled gate requires correlation robustness (when a hash function is used) and a related-key
assumption (when AES is used).
Typically, the use of such non-standard cryptographic assumptions is accepted only where
absolutely necessary. However, in practice, solid cryptographic engineering practices dictate
a more conservative approach to assumptions. New types of elliptic curve groups are not
adopted quickly, people shy away from non-standard use of block ciphers, and more. This is
based on sound principles, and on the understanding that deployed solutions are very hard to
change if vulnerabilities are discovered. In the field of secure computation, the willingness to
take any assumption that enables a faster implementation stands in stark contrast to standard
cryptographic practice. This work proposes to pause, take a step back, and ask the question
how much do non-standard assumptions really cost us and are they justified.

PRACTICE D13.1 Page 3 of 48

A Set of New Protocols

2.1.1 The Results
This work constructed fast garbling methods solely under the assumption that AES behaves
like a pseudorandom function. In particular, it does not use fixed-key AES, and uses two AES
encryptions per entry in the garbled gates (since using just one encryption requires some sort of
related-key security assumption). In addition, it does not use the free-XOR optimiaion (since
this requires a non-standard circularity assumption). In brief, the following improvements are
presented:

• Fast AES-NI without fixing the key: AES-NI is a hardware instruction supported on
modern Intel chips, and implementing very efficient AES encryption. AES-NI can greatly
benefit from pipelining the blocks that need to be encrypted. In this new work it is shown
that, in addition to pipelining encryptions, it is also possible to pipeline the key schedule
of AES-NI, in order to achieve very fast garbling times without using a fixed key or any
other non-standard AES variant. Namely, the key schedule processing of different keys
can be pipelined together, so that the amortized effect of key scheduling on Yao garbling
is greatly reduced. Experiments (described below) show that this and other optimizations
of AES operations have become so fast that the benefits of using fixed-key AES are almost
insignificant. Thus, in contrast to current popular belief, in most cases fixed-key AES is
not necessary for achieving extremely fast garbling.

• Low-communication XOR gates: Over the past years, it has become apparent that
in secure protocols, communication is far more problematic than computation. The free-
XOR technique is so attractive exactly because it requires no computation but also no
communication for XOR gates. The paper provides a new garbling method for XOR gates
that requires storing only a single ciphertext per XOR gate; the technique is inspired by
the work of [45]. The computational cost is 3 AES computations for garbling the gate,
and 1-2 AES computations for evaluating it.

• Fast 4-2 row reduction: Since the free-XOR technique is no longer used, it is possible
to use 4-2 row reduction (GRR) on the non-XOR gates. However, the 4-2 row reduction
method of [53] that uses polynomial interpolation is rather complex to implement (re-
quiring finite field operations and precomputation of special constants to make it fast).
In addition, even working in GF (2n) Galois fields and using the PCLMULQDQ Intel
instruction, the cost is still approximately half an AES computation. The paper presents
a new method for 4-2 row reduction that uses a few XOR operations only, and is trivial
to implement.

The paper described implementations of these optimizations and compared them to the well
known JustGarble library which is based on non-standard assumptions [10]. There is no doubt
that the cost of garbling and evaluation is higher using the new and safer methods, since
they have to run AES key schedules, and we pay for computing XOR gates. However, within
protocol executions, the difference in performance is insignificant. This is demonstrated this
by running Yao’s protocol for semi-honest adversaries which has nothing but oblivious transfer
(for which the fast OT extensions of [3] are used), garbled-circuit evaluation and computation,
and communication.

Patent-free garbled circuits. Another considerable advantage of using the new method
for computing XOR gates with low communication is that it does not rely on the free XOR

PRACTICE D13.1 Page 4 of 48

A Set of New Protocols

technique and thus is not patented. Since patents in cryptography are typically an obsta-
cle to adoption, the search for efficient garbling techniques that are not patented is of great
importance.

2.1.2 Experimental Results and Discussion
This work presented four tools that can optimize the performance of garbled circuits with-
out relying on any additional cryptographic assumption beyond the existence of pseudorandom
functions: (1) pipelined garbling; (2) pipelined key-scheduling; (3) XOR gates with one ciphertext
and three encryptions; and (4) improved 4-2 GRR for AND gates. It then conducted experi-
ments evaluating the performance of these methods – together and separately – and compared
their performance to that of other garbling methods.
Table 2.1 shows the time it takes to run the full Yao semi-honest protocol [59] on three different
circuits of interest: AES, SHA-256 and Min-Cut 250,000. The circuits have 6,800, 90,825 and
999,960 AND gates, respectively, and 25,124, 42,029 and 2,524,920 XOR gates, respectively. The
number of input bits for which OTs are performed are 128, 256 and 250,000, respectively. The
implementation of the semi-honest protocol of Yao utilizes the highly optimized OT extension
protocol of [3].

Assumption Scheme AES SHA-256 Min-Cut
VA-VA VA-IRE VA-VA VA-IRE VA-VA

PRF
1 Pipe-garbl; XOR-3; AND-3 (naïve) 20 203 68 303 1947
2 Pipe-garbl+KS; XOR-1; AND-3 16 200 54 236 1195
3 Pipe-garbl+KS; XOR-1; AND-2 16 200 50 229 1047

Circularity
4 Pipe-garbl; free-XOR; AND-3 16 198 45 222 753
5 Pipe-garbl+KS; free-XOR; AND-3 16 198 36 221 701
6 Pipe-garbl+KS; free-XOR; HalfGates 16 196 27 206 546

Public Random 7 Fixed-key; free-XOR; AND-3 16 196 27 214 596
Permutation 8 Fixed-key; free-XOR; Halfgates 16 195 20 199 460

Table 2.1: Summary of experimental results (times are for a full semi-honest execution in millisec-
onds). The first row is for naïve garbling. Rows 2,3,5 and 6 are based on our improvements. The rows
marked in boldface highlight the best schemes under each set of assumptions.

Assumption Scheme AES SHA-256 Min-Cut

PRF
1 Pipe-garbl; XOR-3; AND-3 (naïve) 95,772 398,562 10,574,640
2 Pipe-garbl+KS; XOR-1; AND-3 45,524 314,504 5,524,800
3 Pipe-garbl+KS; XOR-1; AND-2 38,724 223,679 4,524,840

Related key
4 Monotone 24,262 300,250 3,983,114
5 SafeMon1 29,689 217,881 4,196,607
6 SafeMon2 37,989 203,266 3,771,621

Circularity
7 Pipe-garbl; free-XOR; AND-3 20,400 272,475 2,999,880
8 Pipe-garbl+KS; free-XOR; AND-3 20,400 272,475 2,999,880
9 Pipe-garbl+KS; free-XOR; HalfGates 13,600 181,650 1,999,920

Public Random 10 Fixed-key; free-XOR; AND-3 20,400 272,475 2,999,880
Permutation 11 Fixed-key; free-XOR; Halfgates 13,600 181,650 1,999,920

Table 2.2: Summary of garbled-circuit size in number of ciphertexts, according to scheme. The
schemes are as in Table 2.1. (Note that for the related-key schemes, there is no single method that is
always best.)

The experiments examined eight different schemes, described using the following notation:
[pipe-garble] for the pipelined garbling method; [pipe-garble+KS] for pipelined garbling

PRACTICE D13.1 Page 5 of 48

A Set of New Protocols

and pipelined key-scheduling; [fixed-key] where all PRF evaluations were performed using the
fixed-key technique described in [10]; [XOR-3] where XOR gates were garbled using a simple
4-3 GRR method; [XOR-1] where XOR gates were garbled using the new method of garbling
with one ciphertext; [free-XOR] where the free-XOR technique was used; [AND-3] where
AND gates were garbled using simple 4-3 GRR; [AND-2] where the new 4-2 GRR method was
used to garble AND gates; and finally, [AND-HalfGates] where the “half-gates" technique of
[62] was used to garble AND gates. Note that the half-gates method is only used in conjunction
with free-XOR since this is a requirement.
The first scheme in Table 2.1 is the most “naïve”, where a simple 4-3 GRR was used for both
AND and XOR gates and the garbling was pipelined but not the key-scheduling. In contrast,
the last scheme is the most efficient as it uses fast fixed-key encryption and the half-gates
approach to achieve two ciphertexts per AND gates and none for XOR gates. However, this
scheme is based on the strongest assumption, that fixed-key AES behaves like a public random
permutation. The third scheme in the table uses all our optimizations together, and thus it
is the most efficient scheme that is based on a standard PRF assumption. The sixth scheme
in the table shows the best that can be achieved while assuming circularity and related key
security, but without resorting to a public random permutation.
The experiments were performed on Amazon’s c4.8xlarge compute-optimized machines (with
Intel Xeon E5-2666 v3 Haswell processors) running Windows. The measurements include the
time it takes to garble the circuit, send it to the evaluator and compute the output. Since
communication is also involved, this measures improvements both in the encryption technique
and in the size of circuit. Each scheme was tested on the three circuits in two different settings:
the Virginia-Virginia (VA-VA) setting where the two parties running the protocol are located
at the same data center, and the Virginia-Ireland (VA-IRE) setting where the physical distance
between the parties is large. Each number in the table is an average of 20 executions of the
indicated specific scenario.
The table rows marked in boldface highlight the best schemes under each set of assumptions.
Looking at the results, the following observations can be derived:

• Best efficiency: As predicted, the fixed key + half-gates implementation (8) is the
fastest and most efficient in all scenarios. (This seems trivial, but when using fixed-key
AES, the eval procedure at AND gates requires one more encryption than in a simple
4-3 GRR. Thus, this confirms the hypothesis that the communication saved is far more
significant than an additional encryption, that is anyway pipelined.)

• Small circuits: In small circuits (e.g., AES) the running time is almost identical in all
schemes and in both communication settings. In particular, using the new optimizations
(3) yields the same performance result as that of the most efficient scheme (8), in both
the VA-VA and VA-IRE settings. This is due to the fact that in small circuits, running
the OT protocol is the bottleneck of the protocol (even if optimized OT-extension [3] is
used). This means that for small circuits there is no reason to rely on a non-standard
cryptographic assumption.

• Medium circuits: In the larger SHA-256 circuit, where the majority of the gates are
AND gates, there was a difference between the results in the two communication settings.
In the VA-VA setting the best scheme based on PRF alone (3) has performance that is
closer to that of the naïve scheme (1) than to that of the schemes based on the circularity
or the public random permutation assumptions (schemes 6 and 8). In contrast, in the VA-
IRE setting the PRF based scheme performs close to schemes 6 and 8. This is explained

PRACTICE D13.1 Page 6 of 48

A Set of New Protocols

by observing that when the parties are closely located, communication is less dominant
and garbling becomes a bigger factor. Thus, garbling XOR gates for free improves the
performance of the protocol. In contrast, when the parties are far from each other,
communication becomes the bottleneck, thus the PRF based scheme (3) yields a significant
improvement compared to the naïve case (1) and its performance is not much worse than
that of the best fixed-key based scheme (and since there are fewer XOR gates, the overhead
of an additional ciphertext per gate is reasonable).

• Large circuits: In the large Min-Cut circuit, the run time of our best PRF based scheme
(3) is closer to the best result (8) than to the naïve result (1). This is explained by the
fact that the circuit is very large and so bandwidth is very significant. This is especially
true since the majority of gates are XOR gates, and so the reduction from 3 ciphertexts
to 1 ciphertext per XOR gate has a big influence. Observe that schemes (6) and (8)
have the same bandwidth; the difference in cost is therefore due to the additional cost of
the AES key schedules and encryptions. Note, however, that despite the fact that there
are 1,000,000 AND gates, the difference between the running-times is 15%, which is not
negligible but also not overwhelming.

• Removing the public random permutation assumption: Comparing scheme (8),
which is the most efficient, to scheme (6) which is the most efficient scheme that does
not depend on the public random permutation assumption, shows that in all scenarios
removing the fixed-key technique causes only a minor increase in running time.

It can be concluded that strengthening security by removing the public random permutation
assumption does not noticeably affect the performance of the protocol. Thus, in many cases,
two-party secure computation protocols does not need to use the fixed-key method. Further
security strengthening by not depending on a circularity assumption (i.e., “paying” for XOR
gates) does come with a cost. Yet, in scenarios where garbling time is not the bottleneck (e.g.„
small circuits, large inputs, communication constraints), one should consider using a more
conservative approach as suggested in this work. In any case, the new ideas in this work should
encourage future research on achieving faster and more efficient secure two-party computation
based on standard cryptographic assumptions.

2.2 Efficient Constant Round Multi-Party Computation
Combining the BMR and SPDZ Protocols

Recently, there has been much interest in the problem of concretely efficient secure MPC,
where “concretely efficient” refers to protocols that are sufficiently efficient to be implemented
in practice. There now exist extremely fast protocols that can be used in practice. In general,
there are two approaches that have been followed; the first uses Yao’s garbled circuits [61] and
the second utilizes interaction for every gate like the GMW protocol [28].
There are extremely efficient variants of Yao’s protocol for the two party case that are secure
against malicious adversaries (e.g., [46, 47]). These protocols run in a constant number of
rounds and therefore remain fast over slow networks. The BMR protocol [9] is a variant of
Yao’s protocol that runs in a multi-party setting with more than two parties. This protocol
works by the parties jointly constructing a garbled circuit (possibly in an offline phase), and then
later computing it (possibly in an online phase). However, in the case of malicious adversaries
this protocol suffers from two main drawbacks: (1) Security is only guaranteed if at most

PRACTICE D13.1 Page 7 of 48

A Set of New Protocols

a minority of the parties are corrupt; (2) The protocol uses generic protocols secure against
malicious adversaries (say, the GMW protocol) that evaluate the pseudorandom generator used
in the BMR protocol. This non black-box construction results in an extremely high overhead.
The TinyOT and SPDZ protocols [50, 22] follow the GMW paradigm, and have offline and on-
line phases. Both of these protocols overcome the issues of the BMR protocol in that they are
secure against any number of corrupt parties, make only black-box usage of cryptographic prim-
itives, and have very fast online phases that require only very simple (information theoretic)
operations. In the case of multi-party computation with more than two parties, these proto-
cols are currently the only practical approach known. However, since they follow the GMW
paradigm, their online phase requires a communication round for every multiplication gate.
This results in a large amount of interaction and high latency, especially over slow networks.
To sum up, there is no known concretely efficient constant-round protocol for the multi-party
case (with the exception of [18] that considers the specific three-party case only). This new
work introduces the first protocol with these properties.

Contribution This work provides the first concretely efficient constant-round protocol for
the general multi-party case, with security in the presence of malicious adversaries. The basic
idea behind the construction is to use an efficient non-constant round protocol – with security
for malicious adversaries – to compute the gate tables of the BMR garbled circuit (and since
the computation of these tables is of constant depth, this step is constant round). A crucial
observation, resulting in a great performance improvement, shows that in the offline stage it
is not required to verify the correctness of the computations of the different tables. Rather,
validation of the correctness is an immediate by product of the online computation phase, and
therefore does not add any overhead to the computation. Although our basic generic protocol
can be instantiated with any non-constant round MPC protocol, we provide an optimized
version that utilizes specific features of the SPDZ protocol [22].
In the new general construction, the new constant-round MPC protocol consists of two phases.
In the first (offline) phase, the parties securely compute random shares of the BMR garbled
circuit. If this is done naively, then the result is highly inefficient since part of the computation
involves computing a pseudorandom generator or pseudorandom function multiple times for
every gate. By modifying the original BMR garbled circuit, it was shown that it is possible
to actually compute the circuit very efficiently. Specifically, each party locally computes the
pseudorandom function as needed for every gate (the construction uses a pseudorandom function
rather than a pseudorandom generator), and uses the results as input to the secure computation.
The security proof shows that if a party cheats and inputs incorrect values then no harm is
done, since it can only cause the honest parties to abort (which is anyway possible when there
is no honest majority). Next, in the online phase, all that the parties need to do is reconstruct
the single garbled circuit, exchange garbled values on the input wires and locally compute the
garbled circuit. The online phase is therefore very fast.
In a concrete instantiation of the protocol, based on using the SPDZ protocol [22] in the offline
phase, there are actually three separate phases, with each being faster than the previous. The
first two phases can be run offline, and the last phase is run online after the inputs become
known.

• The first (slow) phase depends only on an upper bound on the number of wires and the
number of gates in the function to be evaluated. This phase uses Somewhat Homomorphic
Encryption (SHE) and is equivalent to the offline phase of the SPDZ protocol.

• The second phase depends on the function to be evaluated but not the function inputs;

PRACTICE D13.1 Page 8 of 48

A Set of New Protocols

No. Parties Beaver Triple RandomBit Random Input
2 0.4 0.4 0.3 0.3
3 0.6 0.5 0.4 0.4
4 0.9 1.2 0.9 0.9

Table 2.3: SPDZ offline generation times in milliseconds per operation
in our proposed instantiation this mainly involves information theoretic primitives and is
equivalent to the online phase of the SPDZ protocol.

• In the third phase the parties provide their input and evaluate the function; this phase
just involves exchanging shares of the circuit and garbled values on the input wire and
locally computing the BMR garbled circuit.

It should be noted that the protocol is constant round in all phases since the depth of the circuit
required to compute the BMR garbled circuit is constant. In addition, the computational cost
of preparing the BMR garbled circuit is not much more than the cost of using SPDZ itself to
compute the functionality directly. However, the key advantage is that online time of the new
protocol is extraordinarily fast, requiring only two rounds and local computation of a single
garbled circuit. This is faster than all other existing circuit-based multi-party protocols.

2.2.1 Expected Runtimes
The running time of the new protocol was estimated by extrapolating from known public data
[22, 21]. The offline phase of the new protocol runs both the offline and online phases of the
SPDZ protocol. The numbers below refer to the SPDZ offline phase, as described in [21], with
covert security and a 20% probability of cheating, using finite fields of size 128-bits, to obtain
the following generation times (in milli-seconds). As described in [21], comparable times are
obtainable for running in the fully malicious mode (but more memory is needed).
The implementation of the SPDZ online phase, described in both [21] and [37], reports online
throughputs of between 200000 and 600000 per second for multiplication, depending on the
system configuration. As remarked earlier the online time of other operations is negligible and
are therefore ignored.
To see what this would imply in practice consider the AES circuit described in [53]; which
has become the standard benchmarking case for secure computation calculations. The basic
AES circuit has around 33000 gates and a similar number of wires, including the key expansion
within the circuit. Assuming the parties share a XOR sharing of the AES key, (which adds an
additional 2 · n · 128 gates and wires to the circuit), the parameters for the Initialize call to
the SPDZ functionality in the preprocessing-I protocol will be

M ≈ 429000, B ≈ 33000, R ≈ 66000 · n, I ≈ 66000 · n+ 128.
Using the above execution times for the SPDZ protocol it is possible to estimate the time needed
for the two parts of the processing step for the AES circuit. The expected execution times,
in seconds, are given in the following table. These expected times, due to the methodology
of our protocol, are likely to estimate both the latency and throughput amortized over many
executions.

No. Parties preprocessing-I preprocessing-II
2 264 0.7–2.0
3 432 0.7–2.0
4 901 0.7–2.0

PRACTICE D13.1 Page 9 of 48

A Set of New Protocols

The execution of the online phase of the new protocol, when the parties are given their inputs
and actually want to compute the function, is very efficient: all that is needed is the evaluation of
a garbled circuit based on the data obtained in the offline stage. Specifically, for each gate each
party needs to process two input wires, and for each wire it needs to expand n seeds to a length
which is n times their original length (where n denotes the number of parties). Namely, for
each gate each party needs to compute a pseudorandom function 2n2 times (more specifically, it
needs to run 2n key schedulings, and use each key for n encryptions). The cost of implementing
these operations for an AES circuit of 33000 gates when the pseudorandom function is computed
using the AES-NI instruction set, was examined. The run times for n = 2, 3, 4 parties were
6.35msec, 9.88msec and 15msec, respectively, for C code compiled using the gcc compiler on
a 2.9GHZ Xeon machine. The actual run time, including all non-cryptographic operations,
should be higher, but of the same order.
These run-times estimates compare favourably to several other results on implementing secure
computation of AES in a multiparty setting:

• In [20] an actively secure computation of AES using SPDZ took an offline time of over
five minutes per AES block, with an online time of around a quarter of a second; that
computation used a security parameter of 64 as opposed to the estimates of the new
protocol which use a security parameter of 128.

• In [37] another experiment was shown which can achieve a latency of 50 milliseconds in
the online phase for AES (but no offline times are given).

• In [50] the authors report on a two-party MPC evaluation of the AES circuit using the
Tiny-OT protocol; they obtain for 80 bits of security an amortized offline time of nearly
three seconds per AES block, and an amortized online time of 30 milliseconds; but the
reported non-amortized latency is much worse. Furthermore, this implementation is lim-
ited to the case of two parties, whereas the new protocol obtains security for multiple
parties.

Most importantly, all of the above experiments were carried out in a LAN setting where com-
munication latency is very small. However, in other settings where parties are not connect by
very fast connections, the effect of the number of rounds on the protocol will be extremely
significant. For example, in [20], an arithmetic circuit for AES is constructed of depth 120, and
this is then reduced to depth 50 using a bit decomposition technique. Note that if parties are
in separate geographical locations, then this number of rounds will very quickly dominate the
running time. For example, the latency on Amazon EC2 between Virginia and Ireland is 75ms.
For a circuit depth of 50, and even assuming just a single round per level, the running-time
cannot be less than 3750 milliseconds (even if computation takes zero time). In contrast, the
online phase of the new protocol has just 2 rounds of communication and so will take in the
range of 150 milliseconds. Note that even on a much faster network with latency of just 10ms,
protocols with 50 rounds of communication will still be slow.

2.3 ABY: Mixed-Protocol Secure Computation [24]
In generic secure computation, the function to be evaluated is often represented as a circuit. The
two most common types of circuits that are used in secure computation are Arithmetic circuits,
where the primitive operations are addition and multiplication, and Boolean circuits, where the
primitive operations are XOR and AND. The efficiency of secure computation protocols goes

PRACTICE D13.1 Page 10 of 48

A Set of New Protocols

hand-in-hand with an efficient circuit representation of the function. For instance, performing
a multiplication between two `-bit values in an Arithmetic circuit is very efficient but requires
a circuit of size O(`2) for Boolean circuits.
To overcome the dependence on an efficient function representation, several works proposed
to mix secure computation protocols based on Arithmetic and Boolean circuits. One of these
works is the ABY framework [24] for which an overview is given in Figure 2.1 and which we
describe in more detail next.

A (§2.3.1)

C

B (§2.3.2) Y (§2.3.3)

A2Y (§2.3.6)B2A (§2.3.7)

Y2B (§2.3.4)

B2Y (§2.3.5)

Figure 2.1: Overview of the ABY framework [24] that allows efficient conversions between
Cleartexts and three types of sharings: Arithmetic, Boolean, and Yao.

Notation We denote the parties P0 and P1 and the symmetric security parameter as κ. We
use x[i] to refer to the i-bit of an element x where x[0] is the least-significant bit of x. We denote
a shared variable x as 〈x〉t where t ∈ {A,B, Y } indicates the type of sharing (A for Arithmetic,
B for Boolean, and Y for Yao sharing). We refer to the individual share of 〈x〉t that is held
by party Pi as 〈x〉ti. We define a sharing operator 〈x〉t = Shrti (x) meaning that Pi shares its
input value x with P1−i and a reconstruction operator x = Recti (〈x〉t) meaning that Pi obtains
the value of x as output. When both parties obtain the value of x, we write Rect (〈x〉t). We
denote the conversion of a sharing of representation 〈x〉s into another representation 〈x〉d with
s, d ∈ {A,B, Y } and s 6= d as 〈x〉d = s2d(〈x〉s), e.g., A2B converts an Arithmetic share into a
Boolean share.

2.3.1 Arithmetic Sharing
For the Arithmetic sharing an `-bit value x is shared additively in the ring Z2` (integers modulo
2`) as the sum of two values. The protocols described in the following are based on [6, 56, 38].
In the following, we assume all Arithmetic operations to be performed in the ring Z2` , i.e., all
operations are (mod 2`).

Sharing Semantics Arithmetic sharing is based on additively sharing private values between
the parties. For an `-bit Arithmetic sharing 〈x〉A of x we have 〈x〉A0 + 〈x〉A1 ≡ x (mod 2`) with
〈x〉A0 , 〈x〉A1 ∈ Z2` . Sharing (ShrAi (x)) a value x is performed by having Pi choose r ∈R Z2` ,
setting 〈x〉Ai = x− r, and sending r to P1−i, who sets 〈x〉A1−i = r. Reconstruction (RecAi (x)) is
done by having P1−i send its share 〈x〉A1−i to Pi who computes x = 〈x〉A0 + 〈x〉A1 .

PRACTICE D13.1 Page 11 of 48

A Set of New Protocols

Operations Every Arithmetic circuit is a sequence of addition and multiplication gates. Ad-
dition 〈z〉A = 〈x〉A + 〈y〉A is done by having Pi locally compute 〈z〉Ai = 〈x〉Ai + 〈y〉Ai . Mul-
tiplication 〈z〉A = 〈x〉A · 〈y〉A is performed using a pre-computed Arithmetic multiplication
triple [7] of the form 〈c〉A = 〈a〉A · 〈b〉A that can be pre-computed by using either addi-
tively homomorphic encryption or OT extension as described in [24]. To multiply, Pi sets
〈e〉Ai = 〈x〉Ai − 〈a〉Ai and 〈f〉Ai = 〈y〉Ai − 〈b〉Ai , both parties perform RecA (e) and RecA (f), and
Pi sets 〈z〉Ai = i · e · f + f · 〈a〉Ai + e · 〈b〉Ai + 〈c〉Ai .

2.3.2 Boolean Sharing
In Boolean sharing we evaluate Boolean circuits using the GMW protocol [28].

Sharing Semantics Boolean sharing uses an XOR-based secret sharing scheme. To simplify
presentation, we assume single bit values; for `-bit values each operation is performed ` times
in parallel. A Boolean share 〈x〉B of a bit x is shared between the two parties, such that
〈x〉B0 ⊕ 〈x〉B1 = x with 〈x〉B0 , 〈x〉B1 ∈ Z2. Sharing (ShrBi (x)) is done by having Pi choose r ∈R
{0, 1}, compute 〈x〉Bi = x⊕r, and send r to P1−i who sets 〈x〉B1−i = r. Reconstruction (RecBi (x))
is done by having P1−i send its share 〈x〉B1−i to Pi who computes x = 〈x〉B0 ⊕ 〈x〉B1 .

Operations Every efficiently computable function can be expressed as a Boolean circuit
consisting of XOR and AND gates. The XOR operation 〈z〉B = 〈x〉B ⊕ 〈y〉B is computed by
having Pi locally compute 〈z〉Bi = 〈x〉Bi ⊕ 〈y〉Bi . The AND operation 〈z〉B = 〈x〉B ∧ 〈y〉B is
evaluated using a pre-computed Boolean multiplication triple 〈c〉B = 〈a〉B ∧ 〈b〉B as follows:
Pi computes 〈e〉Bi = 〈a〉Bi ⊕ 〈x〉Bi and 〈f〉Bi = 〈b〉Bi ⊕ 〈y〉Bi , both parties perform RecB (e) and
RecB (f), and Pi sets 〈z〉Bi = i · e · f ⊕ f · 〈a〉Bi ⊕ e · 〈b〉Bi ⊕ 〈c〉Bi . As described in [3], a
Boolean multiplication triple can be pre-computed efficiently using OT extension. For other
standard functionalities (such as addition and comparison) we use the depth-optimized circuit
constructions summarized in [58].

2.3.3 Yao Sharing
In Yao’s garbled circuits protocol [59] a garbler (P0) represents the function to be computed as
Boolean circuit and assigns to each wire w two wire keys (kw0 , kw1) with kw0 , kw1 ∈ {0, 1}κ. The
garbler then encrypts (garbles) the Boolean circuit and sends the garbled circuit to the evaluator
(P1) who iteratively decrypts each garbled gate to obtain the output of the circuit. In the
following we detail the Yao sharing assuming a garbling scheme that uses the free-XOR [44] and
point-and-permute [48] optimizations. Using these techniques, the garbler randomly chooses
a global κ-bit string R with R[0] = 1. For each wire w, the wire keys are kw0 ∈R {0, 1}κ and
kw1 = kw0 ⊕R. The least significant bit kw0 [0] resp. kw1 [0] = 1− kw0 [0] is called permutation bit.

Sharing Semantics Intuitively, P0 holds for each wire w the two keys kw0 and kw1 and P1
holds one of these keys without knowing to which of the two cleartext values it corresponds. To
simplify presentation, we assume single bit values; for `-bit values each operation is performed
` times in parallel. A garbled circuit share 〈x〉Y of a value x is shared as 〈x〉Y0 = k0 and 〈x〉Y1 =
kx = k0 ⊕ xR. Sharing for P0 (ShrY0 (x)) is done by having P0 sample 〈x〉Y0 = k0 ∈R {0, 1}κ
and send kx = k0 ⊕ xR to P1. Sharing for P1 (ShrY1 (x)) is done by having both parties run
OT where P0 acts as sender and inputs (k0, k1 = k0 ⊕ R) with k0 ∈R {0, 1}κ and P1 acts as

PRACTICE D13.1 Page 12 of 48

A Set of New Protocols

receiver with choice bit x and obliviously obtains 〈x〉Y1 = kx. Reconstruction (RecYi (x)) is done
by having P1−i send its permutation bit π = 〈x〉Y1−i[0] to Pi who computes x = π ⊕ 〈x〉Yi [0].

Operations Yao sharing evaluates a Boolean circuit consisting of XOR and AND gates. XOR
gates 〈z〉Y = 〈x〉Y ⊕ 〈y〉Y are evaluated using the free-XOR technique [44], i.e., by having: Pi
locally compute 〈z〉Yi = 〈x〉Yi ⊕ 〈y〉Yi . AND gates 〈z〉Y = 〈x〉Y ∧ 〈y〉Y are evaluated by having
P0 create a garbled table using Gb〈z〉Y0

(
〈x〉Y0 , 〈y〉Y0

)
, where Gb is a garbling function as defined

in [10]. P0 sends the garbled table to P1, who decrypts it using the keys 〈x〉Y1 and 〈y〉Y1 . For
standard functionalities we use the size-optimized circuit constructions summarized in [43].

2.3.4 Yao to Boolean Sharing (Y2B)
Converting a Yao share 〈x〉Y to a Boolean share 〈x〉B is the easiest conversion and comes
essentially for free. The key insight is that the permutation bits of 〈x〉Y0 and 〈x〉Y1 already form
a valid Boolean sharing of x. Thus, Pi locally sets 〈x〉Bi = Y 2B(〈x〉Yi) = 〈x〉Yi [0].

2.3.5 Boolean to Yao Sharing (B2Y)
Converting a Boolean share 〈x〉B to a Yao share 〈x〉Y is very similar to the ShrY1 operation (cf.
§2.3.3): In the following we assume that x is a single bit; for `-bit values, each operation is
done ` times in parallel. Let x0 = 〈x〉B0 and x1 = 〈x〉B1 . P0 samples 〈x〉Y0 = k0 ∈R {0, 1}κ. Both
parties run 1×OTκ where P0 acts as sender with inputs (k0⊕ x0 ·R; k0⊕ (1− x0) ·R), whereas
P1 acts as receiver with choice bit x1 and obliviously obtains 〈x〉Y1 = k0 ⊕ (x0 ⊕ x1) ·R = kx.

2.3.6 Arithmetic to Yao Sharing (A2Y)
Converting an Arithmetic share 〈x〉A to a Yao share 〈x〉Y was outlined in [30, 38] and can be
done by securely evaluating an addition circuit. More precisely, the parties secret share their
Arithmetic shares x0 = 〈x〉A0 and x1 = 〈x〉A1 as 〈x0〉Y = ShrY0 (x0) and 〈x1〉Y = ShrY1 (x1) and
compute 〈x〉Y = 〈x0〉Y + 〈x1〉Y .

2.3.7 Boolean to Arithmetic Sharing (B2A)
The general idea of the B2A conversion is to perform an OT for each bit where we obliviously
transfer two values that are additively correlated by a power of two. The receiver can obtain
one of these values and, by summing them up, the parties obtain a valid Arithmetic share.
More detailed, P0 acts as sender and P1 acts as receiver in the OT protocol. In the i-th
OT, P0 randomly chooses ri ∈R {0, 1}` and inputs (si,0, si,1) with si,0 =

(
1− 〈x〉B0 [i]

)
· 2i − ri

and si,1 = 〈x〉B0 [i] · 2i − ri, whereas P1 inputs 〈x〉B1 [i] as choice bit and receives s〈x〉B1 [i] =(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
· 2i − ri as output. Finally, P0 computes 〈x〉A0 = ∑`

i=1 ri and P1 computes
〈x〉A1 = ∑`

i=1 s〈x〉B1 [i] = ∑`
i=1

(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
·2i−∑`

i=1 ri = ∑`
i=1 x[i] ·2i−∑`

i=1 ri = x−〈x〉A0 .

PRACTICE D13.1 Page 13 of 48

A Set of New Protocols

Chapter 3

Tools with Improved Efficiency

3.1 Simple and Efficient Oblivious Transfer
Oblivious Transfer (OT) is a cryptographic primitive defined as follows: in its simplest flavour,
1-out-of-2 OT, a sender has two input messages M0 and M1 and a receiver has a choice bit
c. At the end of the protocol the receiver is supposed to learn the message Mc and nothing
else, while the sender is supposed to learn nothing. Perhaps surprisingly, this extremely simple
primitive is sufficient to implement any cryptographic task [41]. OT is also one of the main
building blocks in most secure-two party computation protocol such as Yao’s garbled circuits,
the GMW protocol etc.
Given the importance of OT, and the fact that most OT applications require a very large
number of OTs, it is crucial to construct OT protocols which are at the same time efficient and
secure against realistic adversaries.

Sender Receiver
Input: (M0,M1) Input: c
Output: none Output: Mc

a← Zp b← Zp
A = ga

-

if c = 0: B = gb

if c = 1: B = Agb

� B

k0 = H (Ba) kR = H(Ab)
k1 = H

((
B
A

)a)
e0 ← k0 ⊕ (M0 ◦ 0k)
e1 ← k1 ⊕ (M0 ◦ 0k)

-

(Mc, τ) = kR ⊕ ec
Output MC if τ = 0k

Figure 3.1: Our protocol in a nutshell

PRACTICE D13.1 Page 14 of 48

A Set of New Protocols

3.1.1 A Novel OT Protocol
In a recent work [19] (co-authored by AU and TUE) a novel, extremely simple, efficient and
secure OT protocol was presented. The protocol is a simple tweak of the celebrated Diffie-
Hellman (DH) key exchange protocol. Given a group G and a generator g, the DH protocol
allows two players Alice and Bob to agree on a key as follows: Alice samples a random a,
computes A = ga and sends A to Bob. Symmetrically Bob samples a random b, computes
B = gb and sends B to Alice. Now both parties can compute gab = Ab = Ba from which they
can derive a key k. The key observation is now that Alice can also derive a different key from
the value (B/A)a = gab−a

2 , and that Bob cannot compute this group element (assuming that
the computational DH problem is hard).
We can now turn this into an OT protocol by letting Alice play the role of the sender and Bob
the role of the receiver (with choice bit c) as shown in Figure 3.1. The first message (from Alice
to Bob) is left unchanged (and can be reused over multiple instances of the protocol) but now
Bob computes B as a function of his choice bit c: if c = 0 Bob computes B = gb and if c = 1
Bob computes B = Agb. At this point Alice derives two keys k0, k1 from (B)a and (B/A)a
respectively. It is easy to check that Bob can derive the key kc corresponding to his choice bit
from Ab, but cannot compute the other one. This can be seen as a random OT i.e., an OT
where the sender has no input but instead receives two random messages from the protocol,
which can be used later to encrypt his inputs.
Combining the above random OT protocol with the right symmetric encryption scheme (e.g., a
robust encryption scheme) achieves security in a strong, simulation based sense and in particular
the protocol can be proven UC-secure against active and adaptive corruptions in the random
oracle model.

Experimental Validation. The paper also reports on an efficient and secure implementation
of the random OT protocol: the chosen group is a twisted Edwards curve that has been used
by Bernstein, Duif, Lange, Schwabe and Yang for building a high-speed high-security signature
scheme [12]. The security of the curve comes from the fact that it is birationally equivalent to
Bernstein’s Montgomery curve Curve25519 where ECDLP is believed to be hard.
The implementation uses the code in [12]: In order to make use of the natural parallelism in
the protocol, a vectorized implementation for the Intel Sandy Bridge and Ivy Bridge microar-
chitectures was built. A comparison with the state of the art shows that our implementation
is at least an order of magnitude faster than previous work (we compare in particular with the
implementation reported by Asharov, Lindell, Schneider and Zohner in [5]). Furthermore, the
code has been carefully implemented to make sure that our implementation is secure against
both passive attacks (our software is immune to timing attacks, since the implementation is
constant-time) and active attacks (by designing an appropriate encoding of group elements,
which can be efficiently verified and computed on).

3.2 Active Secure Oblivious Transfer Extension [4]
Oblivious Transfer (OT) is a cryptographic primitive that is fundamental for secure computa-
tion. In an 1-out-of-2 OT, a sender PS holds a pair of n-bit strings (x0, x1) of which a receiver PR
with choice bit r wants to obtain xr such that PS does not learn r and PR gains no information
about x1−r.
It has been proven that OT can not be based on one-way functions alone [33] and hence
computing an OT requires public-key cryptography. However, public-key cryptography is very

PRACTICE D13.1 Page 15 of 48

A Set of New Protocols

costly and many applications in secure computation typically require millions up to billions of
OTs, so getting efficient OT is of high importance. In [8] it was shown that a small number of real
base-OTs, that were computed using OT protocols based on expensive public-key cryptography,
can be extended to an arbitrarily large number of OTs using efficient symmetric cryptography
only. Due to their nature, these protocols are called OT extension protocols.
While the feasibility result of [8] was still costly in concrete terms, the work of [34] showed how to
extend OTs at a relatively low cost. The main protocol that was introduced was secure against
passive (or semi-honest) adversaries, which try to learn as much information as possible but
honestly follow the protocol description. An extension for security against active (or malicious)
adversaries, which can arbitrarily deviate from the protocol description, was also given but
incurred a huge cost overhead (around factor 40 compared to the passively secure variant).
Several follow-up works reduced the cost for both the passively- and actively secure variants of
the protocol. One of these works is [4], which reduced the cost overhead of the active secure
protocol over the passive secure protocol to factor 1.4. In Protocol 1 we give the malicious OT
extension protocol of [4].

3.3 Token-Aided Mobile GMW [23]
In the two-party case, the Goldreich-Micali-Wigderson (GMW) protocol [28] enables two mutually-
distrusting parties A and B to securely evaluate a function which is expressed as a Boolean
circuit. The GMW protocol relies heavily on OT and requires two OTs to compute a multi-
plication triple [7] that is used to evaluate an AND gate. Using OT pre-computation [7], the
computation and communication intensive operations can be pre-computed in an interactive
setup phase that is independent of the function. By pre-computing the multiplication triples,
the online phase, where the actual function is being evaluated, becomes very efficient as it
consists of only primitive operations (XOR and AND) and requires only little communication.
While it was shown that secure computation can be very efficiently performed on Desktop
PCs [58], it still is impractical on resource-constrained devices such as mobile phones. How-
ever, in spite of being resource-constrained, mobile phones can be equipped with devices such
as hardware tokens that can be used to increase the efficiency of secure computation. In the
following section, we give details on our hardware token-aided GMW-based protocol for mobile
phones [23]. Our goal is to minimize the ad-hoc time of the protocol, i.e., the time from es-
tablishing the communication channel between party A and party B until receiving the results
of the secure computation. We consider the init phase, which can be performed by the parties
before establishing a communication channel, to not be time critical, but we try to keep its
computational overhead small.
An overview of our protocol is given in Figure 3.2. The general idea is to let the hardware
token T , held by A, generate multiplication triples from two (or more) seeds in the init phase
that are independent of the later communication partner (§3.3.1). In the setup phase, T then
sends one seed to A and the other seed over an encrypted channel to B (§3.3.2). The token
thereby replaces the OT protocol in the setup phase and allows pre-computing the multiplication
triples independently of the communication partner. The online phase of the GMW protocol
remains unchanged.

3.3.1 Multiplication Triple Pre-Computation in the Init Phase
In the original GMW protocol, A and B interactively compute their multiplication triples
(anA, bnA, cnA) and (anB, bnB, cnB) where cnA ⊕ cnB = (anA ⊕ anB) ∧ (bnA ⊕ bnB) in the setup phase using

PRACTICE D13.1 Page 16 of 48

A Set of New Protocols

PROTOCOL 1 (Active secure OT extension protocol of [4].)

• Input of PS: m pairs (x0
j , x

1
j) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m selection bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and statistical security parameter ρ. It is
assumed that the number of base-OTs is ` = κ+ ρ.

• Oracles and cryptographic primitives: The parties use an ideal ` × OTκ func-
tionality, which computes ` OTs on κ-bit input values, pseudorandom generator
G : {0, 1}κ → {0, 1}m, and random-oracle H.

1. Initial OT Phase:

(a) PS initializes a random vector s = (s1, . . . , s`) ∈ {0, 1}` and PR chooses ` pairs of
seeds k0

i ,k1
i each of size κ.

(b) The parties invoke the `×OTκ-functionality, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k1
i) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i). Let T = [t1| . . . |t`] denote the m× ` bit matrix where its

ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):

(a) PR computes ti = G(k0
i) and ui = ti⊕G(k1

i)⊕r, and sends ui to PS for every 1 ≤ i ≤ `.

3. Consistency Check of r:

(a) For every pair α, β ⊆ [`]2, PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

(b) For every pair α, β ⊆ [`]2, PS knows sα, sβ ,ksαα ,k
sβ
β ,uα,uβ and checks that:

i. hsα,sβα,β = H(G(ksαα)⊕G(ksββ)).

ii. hsα,sβα,β = H(G(ksαα)⊕G(ksββ)⊕ uα ⊕ uβ) (= H(G(ksαα)⊕G(ksββ)⊕ rα ⊕ rβ)).
iii. uα 6= uβ .
In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):

(a) For every 1 ≤ i ≤ `, PS defines qi = (si · ui)⊕G(ksii). (Note that qi = (si · r)⊕ ti.)
(b) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi. Let qj

denote the jth row of the matrix Q. (Note that qi = (si · r)⊕ ti and qj = (rj · s)⊕ tj .)
(c) PS sends (y0

j , y
1
j) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

(d) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

5. Output: PR outputs (xr1
1 , . . . , x

rm
m); PS has no output.

PRACTICE D13.1 Page 17 of 48

A Set of New Protocols

Figure 3.2: The three phases, workload distribution, and communication in our token-aided
scheme.

2n random OT extensions. Instead, we avoid this overhead in the setup phase and let T pre-
compute the multiplication triples in the init phase as shown in Figure 3.3(a): T first generates
random seeds and then expands these seeds internally into the multiplication triples and sends
cnA to A.

d

sB

cnBbnBanB

kB

sA

bnAanA

kA

cnA

T

A

cnA

Seed Expansion

Seed Generation

(a) Init Phase

d

sB

kB

sA

kA

T

A

sA

bnAanA

B

sB

bnBanB cnBcnA

(b) Setup Phase

Figure 3.3: Multiplication triple pre-generation in the init phase between A and T (a) and
seed transfer and seed expansion in the setup phase (b). sB is sent from T to B over a secure
channel.

Seed Generation In the seed generation step, T generates two seeds sA = GkA(d) and
sB = GkB(d) using a cryptographically strong Pseudo-Random Generator (PRG) G, two master
keys kA and kB, and a state value d, which is unique per multiplication triple sequence and can be
instantiated with a counter. The two master keys kA and kB are constant for all multiplication
triple sequences and have to be generated and stored only once. Thereby, T has to store only
the unique state value d in its internal memory for every multiplication triple sequence. Note
that the only values that will leave the internal memory of T are the seeds sA and sB that will
be sent in the setup phase to A and B, respectively (cf. §3.3.2). In order to ensure that sB is
not sent out twice, we require sA to be queried before sB and delete the state value d as soon
as sB has been sent out over the encrypted channel.

Seed Expansion The seed expansion step computes a valid multiplication triple sequence
from the seeds sA and sB by computing (anA, bnA) = GsA(dA) and (anB, bnB, cnB) = GsB(dB) and
setting the remaining value cnA = (anA ⊕ anB) ∧ (bnA ⊕ bnB) ⊕ cnB, where dA and dB are publicly
known state values of A and B, respectively. Due to the limited memory of the hardware
token, the sequence cnA is computed block-wise such that T requires only a fixed amount of
memory, independently of n, and each block is sent to A, who stores it locally. Note that the

PRACTICE D13.1 Page 18 of 48

A Set of New Protocols

values (anA, bnA, anB, bnB, cnB) do not need to be stored, since they can be expanded from sA and sB,
respectively.

3.3.2 Seed Transfer in the Setup Phase
In the setup phase, the hardware token sends the seeds sA and sB to A and B, respectively, and
the parties generate their multiplication triples as depicted in Figure 3.3(b). A obtains his seed
sA directly from T and can read the sequence cnA, which was obtained in the init phase, from
its internal flash storage. B’s seed sB, on the other hand, cannot be sent in plaintext from T to
B, as the communication between the token and B is relayed over A, which would allow A to
intercept sB and thus break the security of the scheme. We therefore require the communication
between B and T to be encrypted and T to authenticate itself to B with a certificate, signed
by a trusted-third party. To establish this communication channel, we use TLS [32].

3.4 Two-Party Unsigned Arithmetic Based on Additive
Secret Sharing

3.4.1 Introduction
This chapter proposes a protocol stack for secure unsigned arithmetic computation for two
parties. Although in theory addition and multiplication suffice for all computation, it is often
more efficient to use specialized protocols also for other operations. We describe common arith-
metic protocols like addition, multiplication, integer division, exponentiation and comparisons.
In addition, we include bit level operations like shifts and rotations. Some operations have
protocols for different flavours where some inputs can be public instead of private to get more
efficiency. For example, division has two versions with either public (PubDiv) or private divisor
(PrivDiv).
We focus on computations in rings Z2k for some integer k > 0 which correspond to the k-
bit unsigned integer data types. An additive secret sharing of element x is denoted as [[x]].
Sharing [[x]] is made up of two shares [[x]]1 and [[x]]2 where x = [[x]]1 + [[x]]2. These shares are
distributed so that party CP i for i ∈ {1, 2} has share [[x]]i and no knowledge about the other
share. Usually, the ring where the sharing is computed is understandable from the context, but
it is also possible to denote it as [[x]] mod 2k for x ∈ Z2k where [[x]]1, [[x]]2 ∈ Z2k . Furthermore, it
is possible to access single bits of individual shares or extract them from the shared elements.
For that, x[k] denotes the k’th bit of the value x, where k = 1 means the least significant bit.
In case of the share of the first party, the k’th bit would be denoted as [[x]]1[k]. However, in
case the shared bit is extracted from the shared value the result is denoted as [[x[k]]] mod 2.
We assume that at most one of the parties is passively corrupted and ensure the security of the
computations in this case. Current protocols rely on the security proof framework of passively
secure protocols from [15]. A significant step when using this framework is to determine secure
protocols that are a suitable finishing step of the composition. Two straightforward candidates
for this role are resharing and declassify. Declassify is more meaningful in the two-party setting
as it is a natural finishing step of any protocol. Clearly, two-party declassify is a secure protocol
as knowing [[x]]1 and x the second share is uniquely fixed as x − [[x]]1 and can be perfectly
simulated. The rest of the protocols in the computation are allowed to be input private.

PRACTICE D13.1 Page 19 of 48

A Set of New Protocols

3.4.2 Overview of the Protocol Stack
The goal of this work is to design efficient protocols for all kinds of unsigned integer arithmetic,
for example, addition, multiplication, division, exponentiation and bit shifts. In addition to
well-known operations, some sub-protocols are required to build the desired functionalities.
Table 3.1 lists the proposed operations as well as dependencies between different protocols.
Note that only direct dependencies are listed and the prerequisites of the sub-protocols are not
recursively added. Most of these protocols operate on additive sharing of unsigned integers,
but also refer to the bitwise sharing protocols that work only in Z2. It is further work to
determine if replacing some of the the binary protocols with garbled circuits similarly to ABY
framework [25] would be useful.

PRACTICE D13.1 Page 20 of 48

A Set of New Protocols

Name Description Dependencies
Add Addition (also exclusive-or)
Neg Negation
Sub Subtraction Add, Neg
Classify Sharing secret input
Declassify Public output from shares
PubMult Multiplication with a con-

stant
Add

Mult Multiplication (also con-
junction)

Add, Declassify, Precompu-
tation

PrefixOR Cumulative OR of prefixes Add, Mult
MSNZB Most significant non-zero

bit
Add, PrefixOR

Overflow 1, if [[x]]1 + [[x]]2 ≥ 2k Add, Classify, Mult,
MSNZB

ShiftL Left shift by a public shifter PubMult
SiftR Right shift by a public

shifter
Add, Extend, Overflow,
PubMult

BitRotate Bit rotation right by public
value

Add, ShiftL, ShiftR

BitConj AND of a bit-vector Mult
EqZero 1 iff shared input is equal to

0
BitConj, Sub

Eq Equality of two shared ele-
ments

EqZero, Sub

BitExt Extension of bitwise sharing
to additive sharing

Add, Mult, PubMult

Extend Conversion to a larger do-
main

BitExt, Overflow

Trunc Conversion to a smaller do-
main

PubDiv Division with a public divi-
sor

Add, Extend, Overflow,
Mult, PubMult, Trunc

Remainder Remainder for a public
modulus

PubDiv, PubMult, Sub

i’th-Bit Extraction of a single bit Add, Overflow
LT Less than of two shared in-

puts
Add, i’th-Bit, Mult, Sub

LTE Less than or equal Add, Eq, LT, Mult, Neg
BitExtr Bit extraction Add, Classify, Mult
PrivDiv Division with a private divi-

sor
Add, BitExtr, Extend,
Overflow, Mult, MSNZB,
PubMult, ShiftR, Sub

ChVector Characteristic vector [[v0]]
. . . , [[v`]] of [[x]] where vi = 1
iff x = i, otherwise vi = 0

Declassify, Sub, Precom-
puted random element [[r]]
and ChVector([[r]])

PRACTICE D13.1 Page 21 of 48

A Set of New Protocols

PubExp Exponentiation with a pub-
lic base and shared expo-
nent

Add, ChVector, PubMult

PrivShiftL Left shift by a private
shifter

Mult, PubExp

PrivShiftR Right shift by a private
shifter

Add, BitExtr, ChVector,
Extend, LT, Mult

Table 3.1: Protocols dependencies for additive secret
sharing based unsigned integer computation.

Most the protocols in Table 3.1 can be achieved quite easily. For example, addition (Add) is
defined by the properties of the additive sharing scheme and can be computed locally. The
same holds for subtraction (Sub) and negation (Neg) that can also be evaluated locally by each
party. For classifying a secret (Classify), a party creates and distributes the shares. For declas-
sifying (Declassify), the shares are sent to the party who requires the result. For multiplication
(Mult), the precomputed multiplication with Beaver triples [7] is used, however, currently the
precomputation method is not specified. For example, ideas from ABY framework [25] are
applicable in our setting.
Out of the building block protocols PrefixOR and MSNZB can be taken directly from [16].
Some protocols such as Overflow, ShiftR and EqZero can be easily adapted from their three-
party counterparts in [16] as the three-party protocols need an extra step to reshare the value
to two parties. This allows the three-party versions to basically revert to two-party protocol
for easier handling of possible overflows and directly gives rise to full two-party protocols. The
advanced PrivDiv protocol from [16] that performs integer division of secret shared inputs using
Goldschmidt iteration can also be used in the two-party case as all the required sub-protocols
can be achieved. Some other protocols, such as BitConj, BitRotate, LTE, Remainder, ShiftL, Eq
and PrivShiftL can be built from their prerequisite protocols using commonly known algorithms.
The following section explains some of the more advanced computation protocols for two-party
unsigned integer arithmetic.

New Protocols for Arithmetic Operations This section describes protocols for less than
comparison Alg. 1, division with a public divisor Alg. 2, characteristic vector Alg. 3, expo-
nentiation with a public base Alg. 4 and right shift with private inputs Alg. 5. The protocols
considered in this section are compositions of smaller input private protocols and local oper-
ations and are therefore themselves input private. For brevity we do not propose individual
security theorems for the protocols.
The less than comparison (LT) in Alg. 1 relies on the possibility to extract the most significant
bit. Either the most significant bit of the inputs x and y differs and y[k] gives the protocol
result or the most significant bits are the same and (x− y)[k] determines the outcome.
Division protocol PubDiv in Alg. 2 is inspired by [16] three-party version. It uses the general
idea of finding an inverse of the divisor and multiplying with that rather than dividing. More
concretely [29] specifies that there exists a reciprocal c of the divisor as a fixed length number
that gives bx

d
c = b c·x22k c for x, d ∈ Z2k . Alg. 2 works for all values of the divisor d, but can be

optimized to use smaller data sizes if d has less than k bits.
A characteristic vector of an element x is a vector v0, v1, . . . , v`−1 where vx = 1 and the rest
of the values are zeros. It can be computed easily using precomputed random element and
the corresponding vector as defined in Alg. 3. ChVector protocol is a bit tricky in general

PRACTICE D13.1 Page 22 of 48

A Set of New Protocols

Algorithm 1 LT: x < y

Data: Value [[x]] mod 2k , [[y]] mod 2k

Result: Shared bit [[b]] mod 2 where b = 1 iff x < y

1: [[x′]] mod 2 = [[x[k]]] as k’th bit extraction of [[x]] mod 2k using i’th-Bit
2: [[y′]] mod 2 = [[y[k]]] as k’th bit extraction of [[y]] mod 2k using i’th-Bit
3: [[d]] = [[x]] − [[y]]
4: [[d′]] mod 2 = [[d[k]]] as k’th bit extraction of [[d]] mod 2k using i’th-Bit
5: [[a]] = ([[x′]] ⊕ [[y′]]) ∧ [[y′]]
6: [[c]] = ¬([[x′]] ⊕ [[y′]]) ∧ [[d′]]
7: [[b]] mod 2 = [[a]] ⊕ [[c]]

Algorithm 2 PubDiv: Integer division with a public divisor
Data: Value [[x]] mod 2k and public value d < 2k
Result: Shared value [[y]] mod 2k where y = bx

d
c

1: public computation c = b22·k−1
d
c+ 1

2: [[x′]] mod 23·k = Extend([[x]] mod 2k)
3: [[u]]i = c · [[x′]]i
4: CP i sets [[v]]i = [[u]]i � 2 · k
5: CP i sets [[w]]i = [[u]]i mod 22·k

6: [[y]] mod 2k = [[v]] mod 2k + Extend(Overflow([[w]] mod 22·k))

as it requires taking a modulus which needs an expensive division algorithm to compute the
remainder for that modulus. However, in case ` is a power of two, this is achieved easily by
each party taking the modulus of its share locally. The current use-cases allow to pick ` in a
way that it is easy to compute this protocol. Note that it is also conceptually easy although
inefficient to precompute the required share and vector pair as it can be done by first generating
a random element and then computing the characteristic vector using equality checking (Eq)
protocol.

Algorithm 3 ChVector: Characteristic vector of a value
Data: Value [[x]] mod 2k , public parameter ` that limits the actual size of x, precomputed random
element [[r]] mod 2k and it’s characteristic vector [[r1]] mod 2, . . . , [[r`]] mod 2
Result: Shared bitvector [[x1]], . . . , [[x`]]
1: [[z]] = [[x]] − [[r]] mod ` . Hard if ` is not power of 2
2: z = Declassify([[z]])
3: return [[[r1]] mod 2, . . . , [[r`]] mod 2] rotation z times to the left

An example protocol that uses ChVector is exponentiation with a public base and secret shared
exponent (PubExp). Basically Alg. 4 obliviously chooses the right outcome from all possible
results. The same idea can also be applied in the case of private base and exponent, however
it would result in a significantly more expensive protocol as Mult protocol would be required
instead of public multiplication. The counterpart for exponentiation with a public exponent
can be achieved using square-and-multiply.
Public exponentiation is sufficient for computing left shift with a private shifter (PrivShiftL),
however, obtaining private right shift from ChVector is more complicated. The core of PrivShiftR
is in Alg. 5. The algorithm checks that the shifter is suitably small and in this case applies
a sub-protocol for shift when the result might be non-zero. If the shift is larger than the bit

PRACTICE D13.1 Page 23 of 48

A Set of New Protocols

Algorithm 4 PubExp: Exponentiation with a public base
Data: Value [[x]] mod 2k and public value b ∈ Z2` , parameter m ≤ 2k is the bound on x < m
Result: Shared value [[y]] mod 2` where y = bx mod 2`

1: Public computation of b, b2, b3, . . . , bm in Z2`

2: [[x1]] mod 2, . . . , [[xm]] mod 2 = ChV ector([[x]],m)
3: [[xi]] mod 2` = Extend([[xi]] mod 2)
4: [[y]] = ∑m

i=1 b
i−1[[xi]] mod 2`

length of the type, then the result should be zero and this is obtained using multiplication with
the indicator variable for the size of the shifter.

Algorithm 5 PrivShiftR*: Shifter size safe private right shift
Data: Value [[x]] mod 2k , [[p]] mod 2`

Result: Shared value [[w]] mod 2k where w = x� p is the value of x shifted right by p bits
1: [[a]] mod 2k = PrivShiftR([[x]] mod 2k , [[p]] mod 2`)
2: [[b]] mod 2 = LT ([[p]] mod 2` , Classify(k))
3: [[b]] mod 2k = Extend([[b]] mod 2)
4: [[w]] mod 2k = [[b]] mod 2k · [[a]] mod 2k

The actual shifting algorithm for a suitably small shifter in Alg. 6 is a more complicated
protocol. In essence, the idea is to convert to bitwise sharing, perform the shift on those bits
and then convert the result back. However, for a private shifter the right shifted outcome has
to be chosen obliviously from all possible shifts. In Alg. 6 the shifter value determines which
diagonal in the table makes up the real output and the right diagonal is chosen obliviously
using the characteristic vector of the shift. For example, for p = 0 the output will be exactly
the same as the input, but for p = 2 the third diagonal is taken so that the least significant bit
in the outcome is x3.

Algorithm 6 PrivShiftR: Private right shift with limited shifter
Data: Value [[x]] mod 2k , [[p]] mod 2` where p < k
Result: Shared value [[w]] mod 2k where w = x� p is the value of x shifted right by p bits
1: [[[p1]], . . . , [[pk]]] = ChV ector([[p]], k)
2: [[[x1]], . . . , [[xk]]] = BitExtr([[x]])

3: Compute table T:

[[x1 ∧ p1]] [[x2 ∧ p2]] [[x3 ∧ p3]] . . . [[xk ∧ pk]]
0 [[x2 ∧ p1]] [[x3 ∧ p2]] . . . [[xk ∧ pk−1]]
0 0 [[x3 ∧ p1]] . . . [[xk ∧ pk−2]]
.
0 0 0 . . . [[xk ∧ p1]]

with columns Ti

4: ([[w1]], . . . , [[wk]])T = T1 ⊕ T2 ⊕ . . .⊕ Tk
5: Convert [[w1]], . . . , [[wk]] to [[w]] mod 2k

Conversion Protocols Aside from the computation protocols, the protocols to convert be-
tween different data representations are also required by many of the previously mentioned
algorithms. The ideas from ABY framework are still usable to convert between bitwise and
general additive secret sharing. However, we also need to consider conversions between various

PRACTICE D13.1 Page 24 of 48

A Set of New Protocols

sizes of additive sharing. In addition, we propose some alternative protocols for conversions
already existing in ABY.
Firstly, a special case of the extension protocol is converting a shared bit [[x]] mod 2 in binary
ring Z2 to a shared bit value [[x]] mod 2k in some larger ring. This bit extension (BitExt) protocol
is given in Alg. 7.

Algorithm 7 BitExt: Shared bit to k-bit additive scheme
Data: Shared bits [[x]] mod 2
Result: Value [[x]] mod 2k

1: CP i set [[u]] mod 2k as [[u]]1 = [[x]]1 and [[u]]2 = 0
2: CP i set [[v]] mod 2k as [[v]]1 = 0 and [[v]]2 = [[x]]2
3: [[x]] mod 2k = [[u]] mod 2k + [[v]] mod 2k − 2 · [[u]] mod 2k · [[v]] mod 2k

The single bit conversion either using the protocol in Alg. 7 or the OT based conversion from
ABY can be used to convert from [[x]] mod 2k to [[x]] mod 2m where the result domain is larger as
m > k. The idea of the protocol in Alg. 8 is very simple as the same shares can be used with
extra care for the case when the sum of the two shares in the initial domain is actually larger
than the modulus.

Algorithm 8 Extend: Extension from Z2k to Z2m where m > k

Data: [[x]] mod 2k

Result: Value [[u]] mod 2m where u = x

1: CP i sets [[u]]i = [[x]]i
2: [[b]] mod 2 = Overflow([[x]])
3: [[b′]] mod 2m = BitExt([[b]] mod 2)
4: [[u]] = [[u]] − 2k · [[b′]]

The opposite operation to extension is truncation (Trunc) to a smaller domain from [[x]] mod 2m

to [[x mod 2k]] mod 2k where m > k. Converting Z2m to Z2k can be obtained easily by both
parties computing [[x]]i mod 2k and setting the result as their output share. Differently from
the extension this method also applies for a single bit outcome. In this case the protocol also
has a very clear meaning of finding the least significant bit of the shared element.
Although the least significant bit can be easily found using simple local truncation, finding any
other single bit is more complicated. Alg. 9 defines general bit extraction from the additively
shared element by taking care of possible overflows from the less significant bits of the shares.

Algorithm 9 i’th-Bit: Extract `’th bit of shared value
Data: Value [[x]] mod 2k , public positive integer 1 ≤ ` < k
Result: Shared `’th bit [[b]] mod 2 of x as b = x[`]
1: if ` = 1 then
2: CP i sets [[b]]i = [[x]]i[1] as the least significant bit of the share
3: else
4: CP i sets [[x′]]i = [[x]]i mod 2`−1 . [[x′]] mod 2`−1

5: [[b′]] mod 2 = Overflow([[x′]] mod 2`−1)
6: CP i sets [[m]]i = [[x]]i[`] as the `’th bit of their share
7: [[b]] = [[m]] ⊕ [[b′]]
8: end if

PRACTICE D13.1 Page 25 of 48

A Set of New Protocols

Besides single bit extraction it is also possible to obtain a full bit representation of the shared
integer value. Bit extraction protocols have been discussed by ABY, but for completeness we
include a version that is based solely on additive secret sharing. We denote x = ∑k

i=1 2i−1xi
where x1, . . . , xk is the bit decomposition of the value x. The idea behind bit-decomposition
(BitExtr) is that both parties classify each bit of their share [[x]]i and then evaluate a binary
addition circuit to obtain the bit decomposition of the shared element that is the sum of the
two shares. The addition circuit performs carry-lookahead addition in Alg. 11 similarly to [14]
where BitExtr discards the highest bit.

Algorithm 10 Carry: Carry bits in bitwise addition
Data: Shared bit-vectors [[x1]] mod 2, . . . [[xb]] mod 2 and [[y1]] mod 2, . . . [[yb]] mod 2
Result: Shared bit-vector [[s1]] mod 2, . . . [[sb]] mod 2, where s are the carry bits that occur when
adding x and y
1: [[pi]] = [[xi]] ⊕ [[yi]] . Flags for carry propagation
2: [[si]] = [[xi]] · [[yi]]
3: for j ∈ {0, . . . , log2 b− 1} do
4: for ` ∈ {0, . . . , 2j − 1} do
5: for m ∈ {0, . . . , b

2j+1 − 1} do
6: t = 2j + `+ 2j+1m+ 1
7: d = 2j + 2j+1m
8: [[st]] = [[st]] ⊕ ([[pt]] · [[sd]])
9: [[pt]] = [[pt]] · [[pd]]
10: end for
11: end for
12: end for

Algorithm 11 Binary addition circuit
Data: Shared bit-vectors [[[x1]] mod 2, . . . [[xb]] mod 2], [[[y1]] mod 2, . . . [[yb]] mod 2]
Result: Shared bit-vector [[[w1]] mod 2, . . . [[wb+1]] mod 2], where w = x+ y

1: [[[s1]], . . . , [[sb]]]← Carry([[[x1]], . . . [[xb]]], [[[y1]], . . . [[yb]]])
2: [[w1]] = [[y1]] ⊕ [[x1]]
3: for i ∈ {2, . . . , b} do
4: [[wi]] = [[yi]] ⊕ [[xi]] ⊕ [[si−1]]
5: end for
6: [[wb+1]] = [[sb]]

3.5 Zero-Knowledge from Garbled Circuits (and GC for
ZK)

Zero-knowledge protocols are one of the fundamental concepts in modern cryptography and
have countless applications. However, after more than 30 years from their introduction, there
are only very few languages (essentially those with a group structure) for which we can construct
zero-knowledge protocols that are efficient enough to be used in practice. This is problematic,
since zero-knowledge protocols (ZK) are one of the main building blocks in constructing MPC
protocols which are secure against malicious corruptions.

PRACTICE D13.1 Page 26 of 48

A Set of New Protocols

The paper described here [26] describes work that was done in AU and proposes a solution
to this problem. It is based on a slightly earlier work of AU and SAP [35] that presented a
protocol based on Yao’s garbled circuit technique that supports efficient zero-knowledge proofs
for generic languages (e.g., to prove statements of the form “I know x s.t. y = SHA-256(x)” for
a common input y). The new work in [26] shows that garbled circuits can be optimized for this
specific application.

3.5.1 Zero-Knowledge Vs. Generic 2PC
It is clear that zero-knowledge is a subset of secure two-party computation (i.e., any protocol for
generic secure computation can be used to do zero-knowledge, including those based of garbled
circuits). The main contribution of [35] is to construct an efficient protocol for the special case
of secure two-party computation where only one party has input (like in the zero-knowledge
case). The protocol achieves active security and is essentially only twice as slow as the passive
secure version of Yao’s garbled circuit protocol. This is a great improvement with respect to the
cut-and-choose technique to make Yao’s protocol actively secure, where the complexity grows
linearly with the security parameter.

3.5.2 Zero-Knowledge From Garbled Circuits
In Figure 3.4 a sketch of the ZK protocol proposed by Jawurek et al. [35] is shown. The protocol
proceeds as follows: The prover (acting as the receiver in the OT) uses the bits of his witness
x as choice bits in the OT while the verifier (acting as the sender in the OT) uses as input all
the pairs of keys of the garbled circuits. The verifier also sends the garbled circuit F . Now if
the prover uses a valid witness, he can evaluate the garbled circuit and compute the output
key corresponding to the output bit 1. However, instead of disclosing this key at this stage,
the prover commits to it and waits for the verifier to prove that she constructed the garbled
circuit correctly (and acted honestly in the OT protocols as well). If this check goes through,
the prover opens the commitment and the verifier accepts the proof if the commitment contains
the key corresponding to the output bit 1. The main ideas behind the proof of security in [35]
are as follows: soundness (the verifier accepts only if the statement is true) is achieved thanks
to the authenticity property of garbled circuits – using the terminology of Bellare et al. [11].
At the same time the protocol is zero-knowledge (the verifier learns only that the statement
is true) because the prover verifies that she generates the GC honestly before disclosing any
information.

3.5.3 Garbled Circuits for Zero-Knowledge
In the last few years garbled circuits have been elevated from being merely a component in Yao’s
protocol for secure two-party computation, to a cryptographic primitive in its own right, fol-
lowing the growing number of applications that use GCs, including the zero-knowledge example
described above.
In [26] we have shown that due to the property of this particular application (i.e., one of the
parties knows all the secret input bits, and therefore all intermediate values in the computation),
we can construct more efficient garbling schemes specifically tailored to this goal.
As a highlight of the results in [26], in one of the constructions only one ciphertext per gate
needs to be communicated and XOR gates never require any cryptographic operations. In
addition to making a step forward towards more practical ZK, we believe that this contribution
is also interesting from a conceptual point of view: in the terminology of Bellare et al. [11] these

PRACTICE D13.1 Page 27 of 48

A Set of New Protocols

Zero-Knowledge Protocol Using Garbled Circuits

Prover’s input (x, y) Verifier’s input y

OT-Choose
(
{xi}i∈[n]

)
- (

Fy, e, Z
1)← Gb

(
1k, fy

)
�

OT-Transfer (e) , Fy

Z ← Ev
(
Fy, {Xxi

i }i∈[n]

)
C = Commit (Z)

-

�
e = OT-OpenAll()

if Ve (fy, F, e) = 1
then: Open Z
else: 0

-

Output (Z ?= Z1).

Figure 3.4: Informal Description of Jawurek et al. ZK from GC.

garbling schemes achieve authenticity, but no privacy nor obliviousness, therefore representing
the first natural separation between those notions.
From a technical point of view, one of the main properties of Yao’s garbling scheme is that the
circuit evaluator cannot learn the values associated to the internal wires during the evaluation
of the garbled circuit. This implies that the evaluation of each garbled gate must be oblivious
(it must be the same for each input combination). The garbling schemes presented here give up
on this property and allow the evaluator to learn the values associated which each wire in the
circuit, who can explicitly use this knowledge to perform non-oblivious garbled gate evaluation.
This allows to reduce significantly the size of a garbled circuit and the computational overhead
for the circuit constructor. This does not have any impact on authenticity i.e., the only thing
that a malicious evaluator can do with a garbled input and a garbled circuit is to use them in
the intended way, that is to evaluate the garbled circuit on the garbled input and produce the
(correct) garbled output.
The new garbling schemes can be immediately plugged-in in the Zero-Knowlkedge Protocol
from the previous section, thus making it even more practical.

3.5.4 Overview of The Garbling Schemes
In a nutshell, the proposed garbling schemes work as follows: Consider a NAND gate, with
associate input keys L0, L1, R0, R1 for the left and right wire respectively, and output keys
O0, O1. The circuit constructor needs to provide the evaluator with a cryptographic gadget
that, on input La, Rb, outputs the corresponding output key Oa∧̄b. Remember that our goal
is not privacy, but only authenticity, meaning that the evaluator is allowed to learn a and b
but even a corrupted evaluator should not learn O1−(a∧̄b). In particular, this means that the
evaluator should learn O0 if and only if (iff) he holds both L1 and R1. This can be ensured by
encrypting O0 under both L1 and R1.
On the other hand, it is enough that one of the inputs is 0 for the output to be 1, so it “should
be enough” to hold L0 or R0 to learn O1. In standard Yao GCs we do not want the evaluator to

PRACTICE D13.1 Page 28 of 48

A Set of New Protocols

learn which of the three possible combinations of input keys he owns between (L0, R0), (L0, R1)
and (L1, R0) (nor the output of the gate) and therefore we encrypt O1 under all the three
possibilities in the same way as we encrypt the 0 key. But if the evaluator is allowed to know
which bits keys correspond to, we can simply encrypt O1 separately under L0 and R0, thus
saving one encryption.
Note that, using the row-reduction technique, we can instead derive O0 as O0 = KDF(L1, R1)
and therefore we can remove one ciphertext from the garbled table. We now have two-choices:

• If we want to be compatible with the free-XOR technique the value O1 is already deter-
mined by O0 and the global difference ∆, and thus no more row-reduction is possible.

• Alternatively we can decide to give up on free-XOR and derive O1 as O1 = KDF(L0),
thus removing yet another ciphertext from the garbled table, that now contains only the
ciphertext C = O1 ⊕ KDF(R0). In this case, we garble XOR gates as follows: We define
the output keys O0 and O1 respectively as O0 = L0 ⊕ R0 and O1 = L0 ⊕ R1 and we
reveal the value C = L0 ⊕ R0 ⊕ L1 ⊕ R1. Due to the symmetry of the XOR gate, now
the evaluator can always derive the correct output key. Note that now XOR gates do
not require any cryptographic operation but only the communication of a k-bit string (k
being the security parameter).

PRACTICE D13.1 Page 29 of 48

A Set of New Protocols

Chapter 4

Order-Preserving Encryption for
Secure Database Qeuries

4.1 Optimal Average-Complexity Ideal-Security Order-
Preserving Encryption

4.1.1 Introduction
Order-preserving encryption enables performing many classes of queries – including range
queries – on encrypted databases. Popa et al. recently presented an ideal-secure order-preserving
encryption (or encoding) scheme [55], but their cost of insertions (encryption) is very high. Ker-
schbaum et al. presented an also ideal-secure, but significantly more efficient order-preserving
encryption scheme [40]. This scheme is inspired by Reed’s referenced work on the average
height of random binary search trees. And the scheme improves the average communication
complexity from O(n log n) to O(n) under uniform distribution. Kerschbaum et al.’s scheme
also integrates efficiently with adjustable encryption as used in CryptDB. In their experiments
for database inserts Kerschbaum et al. achieve a performance increase of up to 81% in LANs
and 95% in WANs.

4.1.2 Scheme
Kerschbaum et al.’s order-preserving encryption algorithm builds a binary search tree as does
Popa et al.’s. Kerschbaum et al’s is however not necessarily balanced and relies on the uniformity
assumption about the input distribution. They only balance the tree when necessary, i.e., then
an update operation is performed. This enables them to maintain the dictionary on the client
and therefore achieve a significant performance gain and compatibility with adjustable onion
encryption.
Consider the following example: N = 16 and M = 256. Let n = 5, x1 = 13, x2 = 5, x3 = 7,
x4 = 5 and x5 = 12. Note that x2 = x4 is a duplicate. Then m = 4, y1 = 128, y2 = 64, y3 = 96
and y5 = 112 (without necessity for any ciphertext modification). For this ordered sequence we
have j1 = 2, j2 = 3, j3 = 5, and j4 = 1, i.e., xj1 = 5, yj1 = 64 and so on. The corresponding
binary search tree is visualized in Figure 4.1.
The input to the encryption algorithm is a plaintext xi. Encryption is stateful and stores an
ordered list of plaintext-ciphertext pairs 〈xi, yi〉. This list is initialized to 〈−1,−1〉, 〈N,M〉.
The output of the encryption, i.e. the ciphertext yi, is sent to the database server.

PRACTICE D13.1 Page 30 of 48

A Set of New Protocols

Figure 4.1: Search Trees for Insertion of 13, 5, 7, 12

We emphasize that the encryption algorithm is keyless. The state of the algorithm plays the
role of the key, i.e. it is secret information. The size of the state of the encryption algorithm
is the size of the dictionary of the database. It is therefore not necessary to keep a copy of
the data, but only of the dictionary. One can hence reap the same size benefits as dictionary
compression (roughly over a factor of 20 [54] which is already achieved for the dictionary and
the data identifier column).
The update algorithm potentially updates all ciphertexts produced so far. It re-encrypts all
(distinct) plaintexts in order, i.e. the median element first and so on. Thus, it produces a
(temporarily) balanced tree.
The state of the encryption algorithm is updated on the database client. This updated state
needs to be sent to the database server and its persistent data needs to be updated – potentially
all database rows. This affects not only the column store, but also the entire dictionary.
Finally, the decryption algorithm is a simple lookup in the state.

4.2 Frequency-Hiding Order-Preserving Encryption

4.2.1 Introduction
Kerschbaum et al. present a scheme that achieves a strictly stronger notion of security than
any other order-preserving encryption scheme so far [39]. The basic idea is to randomize the
ciphertexts to hide the frequency of plaintexts. Still, the client storage size remains small, in
their experiments up to 1/15 of the plaintext size. As a result, one can more securely outsource
large data sets, since Kerschbaum et al. also show that their security increases with larger data
sets. They clearly increase security while preserving the functionality for most queries relying
on the ordering information. However, they also increase client storage size and introduce a
small error in some queries. Kerschbaum et al. present a definition of a new, stronger security
notion for order-preserving encryption than indistinguishability under chosen plaintext attack
which they call indistinguishability under frequency-analyzing ordered chosen plaintext attack.
They also present a scheme implementing this notion including compression mechanisms.

PRACTICE D13.1 Page 31 of 48

A Set of New Protocols

4.2.2 Scheme
Kerschbaum et al. initially proceed as the deterministic order-preserving encryption scheme of
[40] and insert plaintexts into a sorted binary tree in the order they are encrypted. They then
handle plaintexts that have already been encrypted differently. In this case, i.e. when inserted
plaintext and to be encrypted plaintext are equal, they traverse the tree in a randomly chosen
fashion and insert the new plaintext as a leaf.

Figure 4.2: Growing Search Tree for Sequence 0, 1, 0, 1

We consider the example of a binary plaintext domain, e.g. male and female. We have 4
plaintexts xi ∈ {0, 1}. We insert the following sequence X = 0, 1, 0, 1. We set the random coins
to the sequence 1, 0. The resulting sequence of trees is depicted in Figure 4.2.
Figure 4.2 is divided into four subfigures numbered 1 to 4. Each depicts the search tree after
inserting one more element of the sequence with the new node in red. In subfigure 3 we see for
the first time a plaintext repeating, but inserted beneath a parent with a different plaintext.
We can trace the algorithm as follows: When inserting 0 for the second time, the algorithm
encounters a 0 at the root. Due to the random coins it traverses to the right, where it encounters
a 1 and must make a deterministic choice leading to the new leaf. In subfigure 4 we see that the
next 1 inserted and plaintext nodes interleaving. In larger plaintext domains even intermediate
elements can be placed at lower nodes.
Of course, repeated plaintexts can also be placed under parents with the same plaintext. If we
insert two more elements 0, 1 with random coins 0, 1, the search tree will look as in Figure 4.3.

4.2.3 Compression
Finally, the tree is compressed. We can compress the plaintext using regular dictionary com-
pression [1, 13, 63] and store repeated values as the index into the dictionary. Moreover, we
can further compress subtrees of repeated values. Kerschbaum et al. call subtrees of the same
plaintext clusters. In a cluster we do not need to store the plaintext for each node, instead we
just store it once in the root of the cluster. Instead of storing the tree structure we only store
its traversal thereby compressing the size of the pointers.

PRACTICE D13.1 Page 32 of 48

A Set of New Protocols

Figure 4.3: Possible Search Tree for Sequence 0, 1, 0, 1, 0, 1

PRACTICE D13.1 Page 33 of 48

A Set of New Protocols

Chapter 5

Protocols for Private Set Intersection

Private set intersection (PSI) allows two parties A and B with respective input sets X and
Y to compute the intersection X ∩ Y of their sets without revealing any information but the
intersection itself. Although PSI has been widely studied in the literature, many real-world
applications today use an insecure hash-based protocol instead of a secure PSI protocol, mainly
because of the insufficient efficiency of current PSI protocols.
In a sequence of works we presented improved PSI protocols that were more efficient by the
state of the art by at least an order of magnitude. The most advanced family of protocols
that we presented, denoted Phasing for Permutation-based Hashing Set Intersection, is a new
approach for constructing PSI protocols based on a hashing technique that ensures that hashed
elements can be represented by short strings without any collisions. The overhead of recent PSI
protocols depends on the length of these representations, and this new structure of construction,
together with other improvements, results in very efficient performance that is only moderately
larger than that of the insecure protocol that is in current real-world usage.

5.1 Contributions
The goal of this work was to enable PSI computations for large scale sets that were previously
beyond the capabilities of state-of-the-art protocols. The constructions that were designed
improve performance by more than an order of magnitude. These improvements were obtained
by generalizing the hashing approach of [51] and applying it to generic secure computation-
based PSI protocols. The hash function in [51] were replaced by a permutation which enables
to reduce the bit-length of internal representations. Moreover, several improvements to the
OT-based PSI protocol of [51] were presented. The contributions are next explained in more
detail:

Phasing: Using permutation-based hashing to reduce the bit-length of represen-
tations. The overhead of the best current PSI protocol [51] is linear in the length of the
representations of items in the sets (i.e., the ids of items in the sets). The protocol maps items
into bins, and since each bin has very few items in it, it is tempting to hash the ids to shorter
values and trust the birthday paradox to ensure that no two items in the same bin are hashed to
the same representation. However, a closer examination shows that to ensure that the collision
probability is smaller than 2−λ, the length of the representation must be at least λ bits, which
is too long.
The new results utilize the permutation-based hashing techniques of [2] to reduce the bit-length
of the ids of items that are mapped to bins. These ideas were suggested in an algorithmic setting

PRACTICE D13.1 Page 34 of 48

A Set of New Protocols

to reduce memory usage, and our new work is the first time that they are used in a cryptographic
or security setting to improve performance. Essentially, when using β bins the first log β bits
in an item’s hashed representation define the bin to which the item is mapped, and the other
bits are used in a way which provably prevents collisions. This approach reduces the bit-length
of the values used in the PSI protocol by log β bits, and this yields reduced overhead by up to
60%-75% for the settings we examined.

Circuit-Phasing: Improved circuit-based PSI. There is a great advantage in using
generic secure computation for computing PSI, since this enables to easily compute variants
of the basic PSI functionality. Generic secure computation protocols evaluate Boolean circuits
computing the desired functionality. The best known circuit for computing PSI was based on
the Sort-Compare-Shuffle circuit of [31]. The new work describes Circuit-Phasing, a new generic
protocol that uses hashing (specifically, Cuckoo hashing and simple hashing) and secure circuit
evaluation. In comparison with the previous approach, the new circuits have a smaller number
of AND gates, a lower depth of the circuit (which affects the number of communication rounds
in some protocols), and a much smaller memory footprint. These factors lead to a significantly
better performance.

OT-Phasing: Improved OT-based PSI. The new work introduces the OT-Phasing pro-
tocol which improves the OT-based PSI protocol of [51] as follows:

• Improved computation and memory. The length of the strings that are processed in
the OT is reduced from O(log2 n) to O(log n), which results in a reduction of computation
and memory complexity for the client from O(n log2 n) to O(n log n).

• 3-way Cuckoo hashing. The construction uses 3 instead of 2 hash functions to generate
a more densely populated Cuckoo table and thus decrease the overall number of bins and
hence OTs.

• Faster OT extension. The construction implements OT extension using fixed-key AES
hashing instead of the SHA hash function. This change improves the overhead since it
enables to use the AES-NI instruction.

OT-Phasing improves over state-of-the-art PSI both in terms of run-time and communication.
Compared to the previously fastest PSI protocol of [51], the new protocol improves run-time by
up to factor 10 in the WAN setting and by up to factor 20 in the LAN setting. Furthermore,
the new OT-Phasing protocol in some cases achieves similar communication as [49], which was
shown to achieve the lowest communication of all PSI protocols [51].

5.2 Evaluation
We report on our empirical performance evaluation of Circuit-Phasing and OT-Phasing schemes
suggested in [52]. We evaluate their performance separately (§5.2.1 and §5.2.2), since special
purpose protocols for set intersection were shown to greatly outperform circuit-based solutions
in [51]. (The latter are nevertheless of independent interest because their functionality can be
easily modified.)

PRACTICE D13.1 Page 35 of 48

A Set of New Protocols

Benchmarking Environment We consider two benchmark settings: a LAN setting and a
WAN setting. The LAN setting consists of two desktop PCs (Intel Haswell i7-4770K with 3.5
GHz and 16GB RAM) connected by Gigabit LAN. The WAN setting consists of two Amazon
EC2 m3.medium instances (Intel Xeon E5-2670 CPU with 2.6 GHz and 3.75 GB RAM) located
in the US east coast (North Virginia) and Europe (Frankfurt) with an average bandwidth of
50 MB/s and average latency (round-trip time) of 96 ms.
We perform all experiments for a symmetric security parameter κ = 128-bit and statistical
security parameter σ = 40, using a single thread (except for GMW, where we use two threads
to compute OT extension), and average the results over 10 executions. In our experiments, we
frequently encountered outliers in the WAN setting with more than twice of the average run-
time, for which we repeated the execution. The resulting variance decreased with increasing
input set size; it was between 0.5% − 8.0% in the LAN setting and between 4% − 16% in the
WAN setting. Note that all machines that we perform our experiments on are equipped with
the AES-NI extensions which allows for very fast AES evaluation.

Implementation Details We instantiate the random oracle, the function for hashing into
smaller domains, and the correlation-robust function in OT extension with SHA256. We in-
stantiate the pseudo-random generator using AES-CTR and the pseudo-random permutation
in the server-aided protocol of [36] using AES. To compute the 2µ × OT1t` functionality, we
use the random 1-out-of-N OT extension of [42] and set µ = 8, i.e., use N = 256, since
this was shown to result in minimal overhead in [51]. We measure the times for the func-
tion evaluation including the cost for precomputing the OT extension protocol and build on
the OT extension implementation of [3]. Our OT-Phasing implementation is available on-
line at https://github.com/encryptogroup/PSI and our Circuit-Phasing implementation is
available as part of the ABY framework of [24] at https://github.com/encryptogroup/ABY.
For Cuckoo hashing, we set ε = 0.2 and map n elements to 2(1 + ε)n bins for 2-way Cuckoo
hashing and to (1 + ε)n bins for 3-way Cuckoo hashing with a stash size that was set to keep
the failure probability low.
For OT-based PSI [51] and OT-Phasing, where the performance depends on the bit-length of
elements, we hash the σ-bit input elements into a ` = σ+ log2(n1) + log2(n2)-bit representation
using SHA256 if σ > `. This decrease the performance impact of the bit-length.
We use a Yao’s garbled circuits implementation with most recent optimizations, including the
recent half-gate optimization of [62].
We emphasize that all implementations are done in the same programming language (C++), use
the same underlying libraries for evaluating cryptographic operations (OpenSSL for symmetric
cryptography and Miracl for elliptic curve cryptography), perform the plaintext-intersection of
elements using a standard hash map, are all executed using a single thread (except for the GMW
implementation which uses two threads), and run in the same benchmarking environment.

Protocol LAN WAN
n = 28 n = 212 n = 216 n = 220 n = 28 n = 212 n = 216 n = 220

Yao’s garbled circuits [60]
SCS [31] 309 3,464 63,857 — 2,878 20,184 301,512 —
Circuit-Phasing 376 3,154 39,785 — 3,004 17,133 178,865 —
Goldreich-Micali-Wigderson [28]
SCS [31] 626 2,175 38,727 — 11,870 21,030 218,378 —
Circuit-Phasing 280 1,290 14,149 168,397 2,681 8,681 81,534 846,510

Table 5.1: Run-time in ms for generic secure PSI protocols in the LAN and WAN setting on
σ = 32-bit elements.

PRACTICE D13.1 Page 36 of 48

https://github.com/encryptogroup/PSI
https://github.com/encryptogroup/ABY

A Set of New Protocols

Protocol n = 28 n = 212 n = 216 n = 220 Asymptotic
Number of AND gates
SCS [31] 229,120 5,238,784 107,479,009 ∗2,000,000,000 σ(3n log2(n) + 4n)
Circuit-Phasing 297,852 3,946,776 49,964,540 600,833,968 (σ − log2(n)− 2)(6(1 + ε)n lnn

ln lnn + sn)
Communication in MB for Yao’s garbled circuits [60] and GMW [28]
SCS [31] 7 169 3,485 ∗64,850 2κσ(3n log2(n) + 4n)
Circuit-Phasing 9 122 1,550 18,736 2κ(σ − log2(n)− 2)(6(1 + ε)n lnn

ln lnn + sn)
Number of communication rounds for GMW [28]
SCS [31] 85 121 157 193 (log2(σ) + 4) log2(2n) + 4
Circuit-Phasing 5 5 5 5 log2(σ)

Table 5.2: Number of AND gates, concrete communication in MB, round complexity, and
failure probability for generic secure PSI protocols on σ = 32-bit elements. Numbers with ∗ are
estimated.

5.2.1 Generic Secure Computation-based PSI Protocols
For the generic secure computation-based PSI protocols, we perform the evaluation on a number
of elements varying from 28 to 220 and a fixed bit-length of σ = 32-bit. For n = 220 all
implementations, except Circuit-Phasing with GMW, exceeded the available memory, which is
due to the large number of AND gates in the SCS circuit (estimated 2 billion AND gates) and
the requirement to represent bits as keys for Circuit-Phasing with Yao, where storing only the
input wire labels to the circuit requires 1 GB. A more careful implementation, however, could
allow the evaluation of these circuits. We compare the sort-compare-shuffle (SCS) circuit of [31]
and its depth-optimized version of [51], with Circuit-Phasing, by evaluating both constructions
using Yao’s garbled circuits protocol [60] and the GMW protocol [28] in the LAN and WAN
setting. We use the size-optimized version of the SCS circuit in Yao’s garbled circuit and the
depth-optimized version of the circuit in the GMW protocol. The run-time of Circuit-Phasing
would increase linear in the bin size maxβ, while the stash size s would have a smaller impact
on the total run-time as the concrete factors are smaller.

Run-Time (Table 5.1) Our main observation is that Circuit-Phasing outperforms the SCS
circuit of [31] for all parameters except Yao’s garbled circuits with small set sizes n = 28. In
this case, the high stash size of s = 12 greatly impacts the run-time of Circuit-Phasing. When
evaluated using Yao’s garbled circuits, Circuit-Phasing outperforms the SCS circuit by a factor
of 1-2, and when evaluated using GMW it outperforms SCS by a factor of 2-5. Furthermore,
the run-time for Circuit-Phasing grows slower with n than for the SCS circuit for all settings
except for GMW in the WAN setting. There, the run-time of the SCS circuit grows slower
than that of Circuit-Phasing. This can be explained by the high number of communication
rounds of the SCS based protocol, which are slowly being amortized with increasing values
of n. The slower increase of the run-time of Circuit-Phasing with increasing n is due to the
smaller increase of the bin size maxβ ∈ O(lnn

ln lnn) vs. O(log n) for the SCS circuit, and the use of
permutation-based hashing, which reduces the bit-length of the inputs to the circuit. Note that
our Yao’s garbled circuits implementation suffers from similar performance drawbacks in the
WAN setting as our GMW implementation, although being a constant round protocol. This
can be explained by the pipelining optimization we implement, where the parties pipeline the
garbled circuits generation and evaluation. The performance drawback could be reduced by
using an implementation that uses independent threads for sending / receiving.

Communication (Table 5.2) Analogously to the run-time results, Circuit-Phasing improves
the communication of the SCS circuit by factor of 1-4 and grows slower with increasing values

PRACTICE D13.1 Page 37 of 48

A Set of New Protocols

of n. The improvement of the round complexity, which is mostly important for GMW, is even
more drastic. Here, Circuit-Phasing outperforms the SCS circuit by a factor of 16-38. Note
that the round complexity of Circuit-Phasing only depends on the bit-length of items and is
independent of the number of elements.

Setting LAN WAN
Protocol n = 28 n = 212 n = 216 n = 220 n = 224 n = 28 n = 212 n = 216 n = 220

Naive Hashing(∗) 1 4 48 712 13,665 97 111 558 3,538
Server-Aided(∗) [36] 1 5 78 1,250 20,053 198 548 2,024 7,737
DH-based ECC [49] 231 3,238 51,380 818,318 13,065,904 628 10,158 161,850 2,584,212
Bit-length σ = 32-bit
OT PSI [51] 184 216 3,681 62,048 929,685 957 1,820 9,556 157,332
OT-Phasing 179 202 437 4,260 46,631 912 1,590 3,065 14,567
Bit-length σ = 64-bit
OT PSI [51] 201 485 7,302 125,697 — 977 1,873 18,998 315,115
OT-Phasing 180 240 865 10,128 137,036 1,010 1,780 5,009 29,387
Bit-length σ = 128-bit
OT PSI [51] 201 485 8,478 155,051 — 980 1,879 21,273 392,265
OT-Phasing 181 240 915 13,485 204,593 1,010 1,780 5,536 37,422

Table 5.3: Run-time in ms for protocols with n = n1 = n2 elements. (Protocols with (∗) are in
a different security model.)

Protocol n = 28 n = 212 n = 216 n = 220 n = 224 Asymptotic [bit]
Naive Hashing(∗) 0.01 0.03 0.56 10.0 176.0 n1`

Server-Aided(∗) [36] 0.01 0.16 2.5 40.0 640.0 (n1 + n2 + |X ∩ Y |)κ
DH-based ECC [49] 0.02 0.28 4.56 74.0 1,200.0 (n1 + n2)ϕ+ n1`

Bit-length σ = 32-bit
OT PSI [51] 0.09 1.39 22.58 367.20 5,971.20 0.6n2σκ+ 6n1`

OT-Phasing 0.06 0.73 8.74 136.8 1,494.4 2.4n2κ(dσ−blog2(1.2n2)c
8 e) + (3 + s)n1`

Bit-length σ = 64-bit
OT PSI [51] 0.14 2.59 41.78 674.4 10,886.4 0.6n2κ ∗min(`, σ) + 6n1`

OT-Phasing 0.09 1.34 18.34 290.4 3,952.0 2.4n2κ(dmin(`,σ)−log2(n2)
8 e) + (3 + s)n1`

Bit-length σ = 128-bit
OT PSI [51] 0.14 2.59 46.58 828.0 14,572.8 0.6n2`κ+ 6n1`

OT-Phasing 0.09 1.34 20.74 367.2 5,795.2 2.4n2κ(d `−log2(n2)
8 e) + (3 + s)n1`

Table 5.4: Communication in MB for PSI protocols with n = n1 = n2 elements. ` = σ +
log2(n1) + log2(n2). Assuming intersection of size 1/2 · n for TTP-based protocol. (Protocols
with (∗) are in a different security model.)

5.2.2 Special Purpose PSI Protocols
For the special purpose PSI protocols we perform the experimental evaluation for equally sized
sets n1 = n2 and differently sized sets n2 � n1, for set sizes ranging from 28 to 224 in the LAN
setting and from 28 to 220 in the WAN setting.
We compare OT-Phasing to the original OT-based PSI protocol of [51], the naive insecure
hashing solution, the semi-honest server-aided protocol of [36], and the Diffie-Hellmann (DH)-
based protocol of [49] using elliptic curves. Note that the naive hashing protocol and the server-
aided protocol of [36] have different security assumptions and cannot directly be compared to
the remaining protocols. We nevertheless included them in our comparison to serve as a base-
line on the efficiency of PSI. For the protocol of [36], we run the server routine that computes
the intersection between the sets on the machine located at the US east coast (North Virginia)
and the server and client routine on the machine in Europe (Frankfurt). For the original OT-
based PSI and OT-Phasing, we give the run-time and communication for three bit-lengths:

PRACTICE D13.1 Page 38 of 48

A Set of New Protocols

short σ = 32 (e.g., for IPv4 addresses), medium σ = 64 (e.g., for credit card numbers), and
long σ = 128 (for set intersection between arbitrary inputs).
Note that the OT-based PSI protocol of [51] and our OT-Phasing protocol both evaluate public-
key cryptography during the base-OTs, which dominates the run-time for small sets. However,
these base-OTs only need to be computed once and can be re-used over multiple sessions. In
the LAN setting, the average run-time for computing the 256 base-OTs was 125 ms while in
the WAN setting the run-time was 245 ms. Nevertheless, our results all contain the time for
the base-OTs to provide an estimation of the total run-time.

Experiments with Equal Input Sizes

In the experiments for input sets of equal size n = n1 = n2 we set n ∈ {28, 212, 216, 220, 224} in
the LAN setting and n ∈ {28, 212, 216, 220} in the WAN setting. Note that for larger bit-lengths
σ ≥ 64 and for n = 224 elements, the memory needed for the OT-based PSI protocol of [51]
exceeded the available memory.

Run-Time (Table 5.3) As expected, the lowest run-time for the equal set-size experiments
is achieved by the (insecure) naive hashing protocol followed by the server-aided protocol of [36],
which has around twice the run-time. In the LAN setting, however, for short bit-length σ = 32,
our OT-Phasing protocol nearly achieves the same run-time as both of these solutions (which
are in a different security model). In particular, when computing the intersection for n = 224

elements, our OT-Phasing protocol requires only 3.5 more time than the naive hashing protocol
and 2.5 more time than the server-aided protocol. In comparison, for the same parameters, the
original OT-based PSI protocol of [51] has a 68 times higher run-time than the naive hashing
protocol, and the DH-based ECC protocol of [49] has a four orders of magnitude higher run-time
compared to naive hashing.
While the run-time of our OT-Phasing protocol increases with the bit-length of elements, for
σ = 128-bit its run-time is only 15 times higher than the naive hashing protocol, and is still
nearly two orders of magnitude better than the DH-based ECC protocol.
Overall, in the LAN setting and for larger sets (e.g., n = 224), the run time of OT-Phasing is
20x better than that of the original OT-based PSI protocol of [51], and 60-278x better than
that of the DH-ECC protocol of [49].
When switching to the WAN setting, the run-times of the protocols are all increased by a factor
of 2-6. Note that the faster protocols suffer from a greater performance loss (factors of 5 and
6 for 220 elements, for the naive hashing protocol and server-aided protocol) than the slower
protocols (factor 3 for the DH-based and our OT-Phasing protocol and 2.5 for the OT-based PSI
protocol of [51]). This difference can be explained by the greater impact of the high latency of
97 ms on the run-time of the protocols. The relative performance among the protocols remains
similar to the LAN setting.

Communication (Table 5.4) The amount of communication performed during protocol
execution is often more limiting than the required computation power, since the latter can be
scaled up more easily by using more machines. The naive hashing approach has the lowest
communication among all protocols, followed by the server-aided solution of [36]. Among the
secure two-party PSI protocols, the DH-based ECC protocol of [49] has the lowest communi-
cation. In the setting for n = 224 elements of short bit-length σ = 32 bit, our OT-Phasing
protocol nearly achieves the same complexity as the DH-based ECC protocol, which is due to
the use of permutation-based hashing. This is quite surprising, as protocols that use public-key

PRACTICE D13.1 Page 39 of 48

A Set of New Protocols

Setting LAN WAN

Protocol n2 = 28 n2 = 212 n2 = 28 n2 = 212

n1 = 220 n1 = 224 n1 = 220 n1 = 224 n1 = 216 n1 = 220 n1 = 216 n1 = 220

Naive Hashing(∗) 464 7,739 466 7,836 560 2,775 562 2,797
Server-Aided(∗) [36] 680 8,935 696 8,965 629 2,923 731 2,951
DH-based ECC [49] 4.2 · 105 6.8 · 106 4.2 · 105 6.8 · 106 1.1 · 105 1.7 · 106 1.1 · 105 1.7 · 106

OT-Phasing
Bit-length σ = 32 906 9,465 2,949 12,634 2,139 4,780 3,143 11,399
Bit-length σ = 64 1,506 15,789 6,146 22,368 3,349 6,879 3,923 20,345
Bit-length σ = 128 1,942 21,843 7,291 31,932 3,352 7,999 4,391 23,209

Table 5.5: Run-time in ms for PSI protocols with n2 � n1 elements. (Protocols with (∗) are in
a different security model.)

Protocol n2 = 28 n2 = 212
Asymptotic [bit]

n1 = 216 n1 = 220 n1 = 224 n1 = 216 n1 = 220 n1 = 224

Naive Hashing(∗) 0.5 8.5 144.0 0.5 9.0 152.0 n1`

Server-Aided(∗) [36] 1.0 16.0 256.0 1.1 16.1 256.1 (n1 + n2 + |X ∩ Y |)κ
DH-based ECC [49] 2.5 40.5 656.0 2.7 41.1 664.1 (n1 + n2)ϕ+ n1`

OT-Phasing
Bit-length σ = 32 1.1 18.1 288.1 2.0 18.9 320.9 4.8n2κ(dσ−blog2(2.4n2)c

8 e) + 2n1`

Bit-length σ = 64 1.1 18.1 288.1 3.2 20.1 322.1 4.8n2κ(dσ−blog2(2.4n2)c
8 e) + 2n1`

Bit-length σ = 128 1.1 18.2 288.2 3.5 20.4 322.7 4.8n2κ(dσ−blog2(2.4n2)c
8 e) + 2n1`

Table 5.6: Communication in MB for special purpose PSI protocols with n2 � n1 elements.
` = σ + log2(n1) + log2(n2). Assuming intersection of size 1/2 · n2 for the TTP-based protocol.
(Protocols with (∗) are in a different security model.)

cryptography, in particular elliptic curves, were believed to have much lower communication
complexity than protocols based on other cryptographic techniques.
In comparison to the original OT-based PSI protocol of [51], OT-Phasing reduces the com-
munication by factor 2.5 - 4. We can also observe that OT-Phasing reduces the impact when
performing PSI on elements of longer bit-length. In particular, OT-Phasing has lower commu-
nication overhead than the original OT-based PSI protocol for all combinations of elements and
bit-lengths. In fact, it even has a lower communication for σ = 128 than the original OT-based
PSI protocol has for σ = 32.

Experiments with Different Input Sizes

For examining the setting where the two parties have different input sizes, we set n1 ∈
{216, 220, 224} and n2 ∈ {28, 212} and run the protocols on all combinations such that n2 � n1.
Note that we excluded the original OT-based PSI protocol of [51] from the comparison, since
the bin size maxβ becomes large when β � n and the memory requirement when padding
all bins to maxβ elements quickly exceeded the available memory. In this setting, unlike the
equal input sizes experiments, we use h = 2 hash functions instead of h = 3, since this re-
sults in less total computation and communication. Since we use h = 2 hash functions, we
also increase the number of bins from 1.2n2 to 2.4n2. Furthermore, we do not use a stash for
our OT-Phasing protocol with different input sizes, since the stash would greatly increase the
overall communication. However, not using a stash reveals some information on B’s set.

Run-Time (Table 5.5) Similar to the results for equal set sizes, the naive hashing protocol
is the fastest protocol for all parameters. The server-aided protocol of [36] is the second fastest
protocol but it scales better than the naive hashing protocol for increasing number of elements.
The best scaling protocol is our OT-Phasing protocol. It achieves the same performance as

PRACTICE D13.1 Page 40 of 48

A Set of New Protocols

the server-aided protocol for n2 = 28, n1 = 224 with short bit-length σ = 32. For n1 = 224 its
run-time is at most twice that of the server-aided protocol in both network settings.
When switching to the WAN setting, the run-times of all protocols are increased by a factor
4-6 while the relative performance between the protocols remains similar, analogously to the
equal set size experiments.

Communication (Table 5.6) As expected, the naive hashing solution again has the lowest
communication overhead. Surprisingly, our OT-Phasing protocol achieves nearly the same
communication as the server-aided protocol of [36] and has only two times the communication of
the naive hashing protocol for all bit-lengths. Furthermore, our OT-Phasing protocol requires
a factor of 2-3 less communication than the DH-based ECC protocol of [49] for nearly all
parameters. The low communication of our OT-Phasing protocol for unequal set sizes is due
to the low number of OTs performed.

PRACTICE D13.1 Page 41 of 48

A Set of New Protocols

Chapter 6

Conclusion

The report described new protocols for secure multi-party computation. The main goal of the
work that was performed was to address the needs of applications, by improving the performance
of protocols which fit the requirements of the application scenarios that were described in
Deliverable D11.2 of this project. The protocols that were presented in this report have been
published in multiple research papers at top-tier conferences.
The results that was presented in this deliverable can be categorized into several categories:

• Chapter 2 described improved protocols for generic secure multi-party computation, namely
protocols that can be used for securely computing any function.

• Chapter 3 described improved building blocks for constructing secure protocols. Namely
better constructions of oblivious transfer, token-aided computation, secure arithmetic op-
erations, and zero-knowledge proofs, which are tools that are used by secure computation
protocols.

• Chapter 4 described new protocols for the specific problem of search on encrypted data.
In that setting the input (an encrypted database) is of a huge size, and therefore generic
protocols are not sufficiently efficient.

• Chapter 5 described improved protocols for the specific problem of computing the inter-
section of two private sets. This is a problem of high interest and therefore we designed
protocols that are tailored for solving this problem and are significantly more efficient
that applying generic protocols to this problems.

This deliverable is a preliminary report that was written after the second year of the project.
We are currently working on designing further improved protocols, based on our analysis ex-
perimentation of the current protocols.

PRACTICE D13.1 Page 42 of 48

A Set of New Protocols

Chapter 7

List of Abbreviations

2PC Two party computation
ABY Arithmetic-Boolean-Yao
AES Advanced encryption standard
BMR the Beaver-Micali-Rogaway protocol
DH Diffie-Hellman
EC European Commission
ECC Elliptic curve cryptography
FHE Fully homomorphic encryption
GC Garbled circuit
GMW the Goldreich-Micali-Wigderson protocol
GRR Garbled row reduction
IR Ireland
MPC Multi-party computation
OT Oblivious transfer
SCS Sort-compare-shuffle
SPDZ the Damgard-Pastro-Smart-Zakarias protocol
PRF Pseudo random function
PSI Private set intersection
VA Virginia
ZK Zero knowledge

PRACTICE D13.1 Page 43 of 48

A Set of New Protocols

Bibliography

[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and execution
in column-oriented database systems. In Proceedings of the ACM International Conference
on Management of Data, SIGMOD, 2006.

[2] Y. Arbitman, M. Naor, and G. Segev. Backyard cuckoo hashing: Constant worst-case
operations with a succinct representation. In Foundations of Computer Science (FOCS’10),
pages 787–796. IEEE, 2010.

[3] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer
and extensions for faster secure computation. In Computer and Communications Security
(CCS’13), pages 535–548. ACM, 2013.

[4] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious trans-
fer extensions with security for malicious adversaries. In Advances in Cryptology –
EUROCRYPT’15, volume 9056 of LNCS, pages 673–701. Springer, 2015. Full version:
http://eprint.iacr.org/2015/061.

[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In Proceedings of the 2013
ACM SIGSAC conference on Computer communications security, pages 535–548. ACM,
2013.

[6] M. J. Atallah, M. Bykova, J. Li, K. B. Frikken, and M. Topkara. Private collaborative fore-
casting and benchmarking. In Workshop on Privacy in the Electronic Society (WPES’04),
pages 103–114. ACM, 2004.

[7] D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances in
Cryptology – CRYPTO’91, volume 576 of LNCS, pages 420–432. Springer, 1991.

[8] D. Beaver. Correlated pseudorandomness and the complexity of private computations. In
Symposium on Theory of Computing (STOC’96), pages 479–488. ACM, 1996.

[9] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure pro-
tocols. In Harriet Ortiz, editor, 22nd STOC, pages 503–513. ACM, 1990.

[10] M. Bellare, V. Hoang, S. Keelveedhi, and P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In Symposium on Security and Privacy (S&P’13), pages 478–492. IEEE, 2013.

[11] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security, pages 784–796, 2012. Full
version at http://eprint.iacr.org/2012/265.

PRACTICE D13.1 Page 44 of 48

http://eprint.iacr.org/2015/061
http://eprint.iacr.org/2012/265

A Set of New Protocols

[12] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed
high-security signatures. In Cryptographic Hardware and Embedded Systems – CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 124–142. Springer-Verlag Berlin
Heidelberg, 2011.

[13] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-based order-preserving
string compression for main memory column stores. In Proceedings of the ACM Interna-
tional Conference on Management of Data, SIGMOD, 2009.

[14] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-
preserving computations. In European Symposium on Research in Computer Security (ES-
ORICS’08), volume 5283 of LNCS, pages 192–206. Springer, 2008.

[15] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From input private to uni-
versally composable secure multi-party computation primitives. In IEEE 27th Computer
Security Foundations Symposium, CSF 2014, Vienna, Austria, 19-22 July, 2014, pages
184–198, 2014.

[16] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-performance secure
multi-party computation for data mining applications. International Journal of Informa-
tion Security, 11(6):403–418, 2012.

[17] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the "free-xor" technique. In Ronald Cramer, editor, Theory of Cryptography -
9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily, Italy, March 19-
21, 2012. Proceedings, volume 7194 of Lecture Notes in Computer Science, pages 39–53.
Springer, 2012.

[18] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-
party computation from cut-and-choose. In Garay and Gennaro [27], pages 513–530.

[19] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress
in Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptology and
Information Security in Latin America, Guadalajara, Mexico, August 23-26, 2015, Pro-
ceedings, pages 40–58, 2015.

[20] Ivan Damgård, Marcel Keller, Enrique Larraia, Christian Miles, and Nigel P. Smart. Im-
plementing AES via an actively/covertly secure dishonest-majority MPC protocol. In Ivan
Visconti and Roberto De Prisco, editors, SCN 2012, volume 7485 of LNCS, pages 241–263.
Springer, 2012.

[21] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P.
Smart. Practical covertly secure MPC for dishonest majority - or: Breaking the SPDZ
limits. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ESORICS, volume
8134 of LNCS, pages 1–18. Springer, 2013.

[22] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Safavi-Naini and Canetti [57], pages
643–662.

[23] D. Demmler, T. Schneider, and M. Zohner. Ad-hoc secure two-party computation on mobile
devices using hardware tokens. In USENIX Security Symposium (USENIX Security’14),
pages 893–908. USENIX, 2014.

PRACTICE D13.1 Page 45 of 48

A Set of New Protocols

[24] D. Demmler, T. Schneider, and M. Zohner. ABY - a framework for efficient mixed-protocol
secure two-party computation. In Network and Distributed System Security (NDSS’15).
The Internet Society, 2015.

[25] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2014, 2015.

[26] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free garbled
circuits with applications to efficient zero-knowledge. EUROCRYPT, 2015:598, 2015.

[27] Juan A. Garay and Rosario Gennaro, editors. Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II, volume 8617 of Lecture Notes in Computer Science. Springer, 2014.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a complete-
ness theorem for protocols with honest majority. In Symposium on Theory of Computing
(STOC’87), pages 218–229. ACM, 1987.

[29] Torbjörn Granlund and Peter L. Montgomery. Division by invariant integers using multi-
plication. SIGPLAN Not., 29(6):61–72, June 1994.

[30] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for
Automating Secure Two-partY computations. In Computer and Communications Security
(CCS’10), pages 451–462. ACM, 2010.

[31] Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better
than custom protocols? In Network and Distributed Security Symposium (NDSS’12). The
Internet Society, 2012.

[32] IETF. The Transport Layer Security (TLS) Protocol Version 1.2. Technical report, Internet
Engineering Task Force (IETF), 2008.

[33] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permu-
tations. In ACM Symposium on Theory of Computing (STOC’89), pages 44–61. ACM,
1989.

[34] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages 145–161. Springer,
2003.

[35] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using gar-
bled circuits: how to prove non-algebraic statements efficiently. In ACM Conference on
Computer and Communications Security, pages 955–966, 2013.

[36] S. Kamara, P. Mohassel, M. Raykova, and S. Sadeghian. Scaling private set intersection to
billion-element sets. In Financial Cryptography and Data Security (FC’14), volume 8437
of LNCS, pages 195–215. Springer, 2014.

[37] Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical actively
secure MPC with dishonest majority. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, 2013 ACM CCS ’13, pages 549–560. ACM, 2013.

PRACTICE D13.1 Page 46 of 48

A Set of New Protocols

[38] F. Kerschbaum, T. Schneider, and A. Schröpfer. Automatic protocol selection in se-
cure two-party computations. In Applied Cryptography and Network Security (ACNS’14),
volume 8479 of LNCS, pages 566–584. Springer, 2014. Extended abstract published in
NDSS’13.

[39] Florian Kerschbaum. Frequency-hiding order-preserving encryption. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015.

[40] Florian Kerschbaum and Axel Schröpfer. Optimal average-complexity ideal-security order-
preserving encryption. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pages 275–286. ACM, 2014.

[41] Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, pages 20–31. ACM, 1988.

[42] V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In
Advances in Cryptology – CRYPTO’13 (2), volume 8043 of LNCS, pages 54–70. Springer,
2013.

[43] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building blocks
and applications to auctions and computing minima. In Cryptology And Network Security
(CANS’09), volume 5888 of LNCS, pages 1–20. Springer, 2009.

[44] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and ap-
plications. In International Colloquium on Automata, Languages and Programming
(ICALP’08), volume 5126 of LNCS, pages 486–498. Springer, 2008.

[45] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible garbling for
XOR gates that beats free-xor. In Garay and Gennaro [27], pages 440–457.

[46] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013,
volume 8043 of LNCS, pages 1–17. Springer, 2013.

[47] Yehuda Lindell and Ben Riva. Cut-and-choose yao-based secure computation in the on-
line/offline and batch settings. In Garay and Gennaro [27], pages 476–494.

[48] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay – a secure two-party computation
system. In USENIX Security’04, pages 287–302. USENIX, 2004.

[49] C. Meadows. A more efficient cryptographic matchmaking protocol for use in the absence
of a continuously available third party. In Symposium on Security and Privacy (S&P’86),
pages 134–137. IEEE, 1986.

[50] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra.
A new approach to practical active-secure two-party computation. In Safavi-Naini and
Canetti [57], pages 681–700.

[51] B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on OT
extension. In USENIX Security Symposium, pages 797–812. USENIX, 2014.

PRACTICE D13.1 Page 47 of 48

A Set of New Protocols

[52] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set
intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz, editors,
24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., pages 515–530. USENIX Association, 2015.

[53] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-
party computation is practical. In Proceedings of the 15th International Conference on the
Theory and Application of Cryptology and Information Security: Advances in Cryptology,
ASIACRYPT ’09, pages 250–267, Berlin, Heidelberg, 2009. Springer-Verlag.

[54] Hasso Plattner. A common database approach for oltp and olap using an in-memory
column database. In Proceedings of the ACM International Conference on Management of
Data, SIGMOD, 2009.

[55] Raluca Ada Popa, Frank H. Li, and Nickolai Zeldovich. An ideal-security protocol for
order-preserving encoding. In 34th IEEE Symposium on Security and Privacy, S&P, 2013.

[56] P. Pullonen, D. Bogdanov, and T. Schneider. The design and implementation of a two-
party protocol suite for SHAREMIND 3. Technical report, CYBERNETICA Institute of
Information Security, 2012. T-4-17.

[57] Reihaneh Safavi-Naini and Ran Canetti, editors. Advances in Cryptology - CRYPTO 2012,
volume 7417 of LNCS. Springer, 2012.

[58] T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with
low depth circuits. In Financial Cryptography and Data Security (FC’13), volume 7859 of
LNCS, pages 275–292. Springer, 2013.

[59] A. C. Yao. Protocols for secure computations. In FOCS’82, pages 160–164. IEEE, 1982.

[60] A. C. Yao. How to generate and exchange secrets. In Foundations of Computer Science
(FOCS’86), pages 162–167. IEEE, 1986.

[61] Andrew Chi-Chih Yao. Protocols for secure computations. In Proceedings FOCS 1982,
pages 160–164. IEEE Computer Society, 1982.

[62] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, volume 9057 of Lecture Notes in Computer Science, pages
220–250. Springer, 2015.

[63] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar ram-cpu cache
compression. In Proceedings of the 22nd International Conference on Data Engineering,
ICDE, 2006.

PRACTICE D13.1 Page 48 of 48

	Introduction
	Contents
	Publications

	Improved Secure Computation Protocols
	Fast Garbling of Circuits Under Standard Assumptions
	The Results
	Experimental Results and Discussion

	Efficient Constant Round Multi-Party Computation Combining the BMR and SPDZ Protocols
	Expected Runtimes

	ABY: Mixed-Protocol Secure Computation DSZ15
	Arithmetic Sharing
	Boolean Sharing
	Yao Sharing
	Yao to Boolean Sharing (Y2B)
	Boolean to Yao Sharing (B2Y)
	Arithmetic to Yao Sharing (A2Y)
	Boolean to Arithmetic Sharing (B2A)

	Tools with Improved Efficiency
	Simple and Efficient Oblivious Transfer
	A Novel OT Protocol

	Active Secure Oblivious Transfer Extension ALSZ15
	Token-Aided Mobile GMW DSZ14
	Multiplication Triple Pre-Computation in the Init Phase
	Seed Transfer in the Setup Phase

	Two-Party Unsigned Arithmetic Based on Additive Secret Sharing
	Introduction
	Overview of the Protocol Stack

	Zero-Knowledge from Garbled Circuits (and GC for ZK)
	Zero-Knowledge Vs. Generic 2PC
	Zero-Knowledge From Garbled Circuits
	Garbled Circuits for Zero-Knowledge
	Overview of The Garbling Schemes

	Order-Preserving Encryption for Secure Database Qeuries
	Optimal Average-Complexity Ideal-Security Order-Preserving Encryption
	Introduction
	Scheme

	Frequency-Hiding Order-Preserving Encryption
	Introduction
	Scheme
	Compression

	Protocols for Private Set Intersection
	Contributions
	Evaluation
	Generic Secure Computation-based PSI Protocols
	Special Purpose PSI Protocols

	Conclusion
	List of Abbreviations

