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Executive Summary

The objective of work package WP21 is to provide general architectures for both secure compu-
tation services and applications. The idea is to show developers how to combine the deployment
and trust models of different cryptographic techniques with programmable secure computation
technology to implement information systems with better privacy and security guarantees.
Deliverable 21.2 provides the general architecture for building and deploying programmable
secure computation systems on the cloud. It finds ways to unify the existing cryptographic
technologies and integrate them with the cloud applications and the programming tools in
a general way, while taking into account the secure deployment and trust models devised in
Deliverable 21.1.
The resulting general architecture for the Secure Platform for Enterprise Applications and
Services (SPEAR) enables the easy development and deployment of secure cloud applications
on top of it, as well as adding and replacing the underlying secure computation and assur-
ance technologies in the applications, as necessary. SPEAR allows to leverage trust and data
privacy issues in the cloud computing infrastructure and relies on its Distributed Aggregation
and Security Services (DAGGER) sub-platform in order to provide Cryptography-as-a-Service
for privacy-sensitive cloud services and applications. As part of this work, we also show how
SPEAR & DAGGER can be constructed in a number of alternative ways using different sets of
secure computation technologies in each example. The architecture presented in this deliverable
is a core contribution of PRACTICE and as such completely new.
In this document we mainly focus on defining the general structure for building SPEAR &
DAGGER, whereas the detailed description of the parts related to implementation and integra-
tion of secure computation techniques into the DAGGER subsystem of SPEAR are presented
in deliverable D14.1 [5].
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Chapter 1

Introduction

1.1 Purpose

This document describes the general architecture for building programmable secure computa-
tion systems on the cloud. The purpose is to show how to construct a secure cloud platform that
allows the use of advanced and practical cryptographic technologies in general purpose cloud
applications in order to provide sophisticated security and privacy guarantees of those technolo-
gies to all parties in cloud-computing scenarios. The ultimate goal of enabling such capabilities
is to remove the need of cloud users to trust their cloud providers for data confidentiality and
integrity.

1.2 Scope

Based on the state-of-the-art analysis performed in the PRACTICE deliverable D22.1 [11] we
have come to the conclusion, that a significant amount of technological research has been done
in the past by the partners of the PRACTICE project and a number of research artifacts rel-
evant to this project exists as a result. Among these artifacts are the programmable secure
computation frameworks and techniques, secure database implementations, various secure pro-
gramming languages, formal verification, as well as software and hardware assurance techniques.
By closely inspecting these technologies we have found, that a lot of it, at least partially, has
the properties and functionality we would expect from the platform we are building. Thus,
it is reasonable to consider stacking and complementing these technologies in a smart way to
achieve the platform functionality we require.
Based on this knowledge, we attempt to further analyze the cryptographic technologies to find
ways to unify their approaches and simplify their integration with cloud applications and pro-
gramming tools, while taking into account their secure deployment and trust models devised
in deliverable D21.1 [13]. As a result of this, we present the Secure Platform for Enterprise
Applications and Services (SPEAR) that enables easy development and deployment of secure
cloud applications on top of it, as well as adding and replacing the underlying secure computa-
tion and assurance technologies in the applications, as necessary. In this document we mainly
focus on defining the general structure for building SPEAR, whereas the detailed description
of the parts related to implementation and integration of secure computation techniques into
the SPEAR system are presented in deliverable D14.1 [5].
We begin by analyzing various architectural drivers that shape the SPEAR architecture in
Chapter 2. First, we discuss the general motivation behind this work by stating the business
requirements in Section 2.2. We then identify the potential stakeholders and the goals they
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wish to achieve with the system in Section 2.3. Next, we document the use cases involving
the stakeholders in Section 2.4. Based on the goals and the use cases we derive the required
functionality in Section 2.5 and its characteristics in Section 2.6. We continue by presenting
the abstract architecture design of SPEAR in Chapter 3 using a series of architectural views,
that capture the functionality from different perspectives. The abstract architecture described
in that chapter will be independent of any particular technologies. Finally, we show multiple
alternative ways of constructing SPEAR in Chapter 4 using different sets of suitable technology
artifacts developed by different research groups. We consider both the existing artifacts from
the state-of-the-art as well as the ones to be designed and implemented in PRACTICE.
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Chapter 2

Architectural Drivers

Architectural drivers are the set of requirements that shape the system architecture and have
significant influence over the design decisions. They determine which structures to pick for
system design, and can be considered the building blocks for decision making. Changing ar-
chitectural drivers for a developed system is troublesome due to manifold interdependencies in
the architecture. Therefore, it is important to get them right very early in the project.

2.1 Overview

Goal

Use Case

Functional
Requirement

Design

Implementation

Quality Attribute

Constraint

Product

Actor

Is

Influence

Drive

Define

...with these restrictions

...with these characteristics

Guide

Drive

Is enabled by implementing...

Is achieved by enabling...

Figure 2.1: The structured requirements diagram with relationships.

For this architecture we will consider the business, stakeholder, functional and quality re-
quirements. We first define the business requirements that specify the general objectives and
constraints of the architecture and are essential to ensure that the solutions deliver business
value and meet business needs. Next we start looking at more specific requirements that are
structured in a way shown on Figure 2.1 1. By identifying the stakeholders, their roles and
goals, we determine the users (actors) and what they want to do with the system. The users’

1Structured requirements: http://tynerblain.com/blog/2006/05/23/non-functional-requirements-era/
under the CC BY 4.0 license: http://creativecommons.org/licenses/by/4.0/
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goals can be achieved by enabling certain use cases that consist of the users’ interactions and
the expected system responses. From the use cases we then deduce the system’s functional
requirements, that need to be implemented in order to enable the use cases. The functional
requirements are presented as short and clear descriptions of system’s capabilities (i.e. what
the system shall do). Additionally, we consider the Quality Attributes (QA) that define the
characteristics of the functional requirements. The QA-s are driven by the goals and their choice
may also be influenced by the use cases. The functional requirements drive the architecture’s
design choices, that are restricted by constraints, that represent limitations on how a solution
must be implemented. The architecture design guides the implementation, which is also the
final product.

2.2 Business Requirements

Business requirements are high level goals and requirements that provide value when satisfied,
and are typically understood by a management and a board of directors. These describe the
general motivation behind the SPEAR architecture from a “business” point of view, and mostly
center on cost, schedule, market and marketing considerations. In the following we list the
identified business requirements.

Requirement B1: Develop the PRACTICE Secure Platform for Enterprise Applications and
Services (SPEAR) for providing programmable cryptography and secure computation as
a service in cloud infrastructures.

Requirement B2: Enable cloud service providers to open new markets, increase their market
share, and conquer foreign markets, where reach has been limited due to confidentiality
and privacy concerns.

Requirement B3: Enable European customers to save costs by globally outsourcing to the
cheapest cloud providers while still maintaining guaranteed security and legal compliance.

Requirement B4: Allow cloud service providers to reduce their risks of litigation, by making
it infeasible for them to perform insider attacks on the data entrusted to them.

Requirement B5: Since technology is for the benefit of the user, we need a simple way to ex-
plain the security assumptions and guarantees to potential users. Cloud service providers
can use this information to explain the unique selling points of their services when com-
pared to standard systems.

Requirement B6: Minimize the cost and time of constructing new secure cloud services and
applications.

PRACTICE D21.2 Page 4 of 68
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2.3 Stakeholders

In this section we identify all the different stakeholders and user roles of the SPEAR system.
For each stakeholder we create a user profile including all the roles the users play that are
relevant to the system. For each role, we identify all the significant goals the users have that
the system will support. The results are presented in Table 2.1

Stakeholder Roles Significant goals

Cloud User Application user Goal 1: Access/use the cloud application.

Input Party Goal 2: Provide input data to cloud application for
processing and storage.
Goal 3: Retain complete control of their data,
protecting it from any third party.

Result Party Goal 4: Get computation result data from the
cloud application.

Application
Service
Provider

Application developer Goal 5: Develop the cloud application.
Goal 6: Deploy the cloud application.
Goal 7: Use secure technologies in its application
to address the privacy concerns of cloud users.

Application Service
Provider management

Goal 8: Offer service to cloud users, get paid in
return.
Goal 9: Maintain respect and trust of cloud users.

Secure
Technology
Provider

Secure Technology
Developer

Goal 10: Develop secure computation technologies
such as secure hardware, secure computation engine,
secure computation protocols/techniques.
Goal 11: Deploy secure computation technologies
to the cloud infrastructure.

Secure Technology
Provider management

Goal 12: Offer secure technology as a service, get
paid in return.
Goal 13: Maintain respect and trust of its
customers and partners.

Cloud Service
Provider

Computing party Goal 14: Host the runtimes of the application and
any supporting platforms.
Goal 15: Conduct data processing and storage on
behalf of its customers.

Cloud Service
Provider management

Goal 16: Offer infrastructure as a service, get paid
in return.
Goal 17: Maintain respect and trust of its
customers and partners.

Table 2.1: Stakeholders with their roles and goals.
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2.4 Use Cases

We now describe the possible use cases that need to be enabled by the SPEAR system in order
to archive the goals identified in Section 2.3. A use case defines a goal-oriented set of interactions
between external actors and the system under consideration. Essentially, use cases capture who
(actor) does what (interaction) with the system and for what purpose (goal), without dealing
with system internals. Both normal and alternative interaction sequences are considered. A
complete set of use cases specifies all the different ways to use the system, and therefore defines
all behavior required of the system, bounding the scope of the system. Figure 2.2 presents the
different architecturally significant use cases.

UC 1: Develop the
cloud application

UC 2: Deploy the
cloud application

UC 3: Access the
cloud application

UC 4: Input user data to
the cloud application

UC 5: Make a secure query
to the cloud application

UC 6: Deploy secure
technology to the secure

cloud platform

Secure Technology Provider

Cloud User

Cloud Service ProviderApplication Service Provider

< < I n c l u d e > >
< < I n c l u d e > >

Figure 2.2: The architecturally significant use cases for this architecture.

We now provide the detailed descriptions for these use cases in the form of tables. For each use
case we give the following information:

Use Case # The number of a use case followed by its title.

Actors The list of main actors involved in the use case. For each actor we name the corre-
sponding stakeholder and its role (as defined in Table 2.1).

Goals The goals of the stakeholders (as defined in Table 2.1), that the use case achieves.

Brief A short description of the use case.

Steps A more detailed description of the use case. Namely, the list of steps defining the main
course of action that the stakeholders are supposed to take in order to achieve the goals.

Variations An optional field containing a possible alternative course of action.

Post-conditions An optional field describing the important conditions that must hold true
after the use case has been executed.
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Use Case 1: Develop the cloud application.

Actors: Application Service Provider in the role of Application developer
Application Service Provider in the role of management
Cloud Service Providers

Goals: 5, 7, 9

Brief: Application developer wants to develop a cloud application that uses
advanced cryptography techniques to protect user’s data.

Steps: 1. The management of the Application Service Provider has a cloud
business idea and orders its Application developer to implement
the idea on the cloud.

2. Application developer looks up the information about SPEAR ca-
pabilities of various Cloud Service Providers and selects the most
suitable ones.

3. Application developer uses the supported secure programming lan-
guage and its standard library to specify the algorithms that com-
pute on user data using secure computation technology.

4. The programming language allows the application developer to con-
trol when and how much information about the user data is opened
in plaintext without requiring any cryptographic knowledge.

5. Application developer uses the supported programming language
to specify the general backend logic of the cloud application.

6. Application developer uses the supported programming language
to specify the corresponding general frontend logic of the cloud
application.

Table 2.2: Use Case 1. Develop the cloud application.
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Use Case 2: Deploy the cloud application.

Actors: Application Service Provider in the role of Application developer
Application Service Provider in the role of management
Cloud Service Provider (CSP)

Goals: 6, 9, 12, 14, 16

Brief: Application developer has finished developing the secure cloud applica-
tion and needs to deploy it to the cloud.

Steps: 1. The management of the Application Service Provider pays Cloud
Service Provider(s) to get access to the required secure cloud plat-
form.

2. Each CSP allocates for the Application Service Provider the fol-
lowing SPEAR resources:

(a) secure and regular hardware

(b) secure platform for running the secure algorithms

(c) the necessary application servers, services and tools for run-
ning the application backend logic

3. Application developer gets the necessary access information from
its management and uses these to access and setup the SPEAR
application.

4. Application developer configures the allocated or custom applica-
tion servers.

5. Application developer configures the secure platform with a subset
of available cryptographic techniques.

6. Application developer deploys the backend logic to the application
servers.

7. Application developer deploys the secure algorithms to the secure
platform.

8. Application developer deploys the frontend logic to the application
servers or to digital distribution platform (in case of mobile app).

9. Application developer tests the application

10. Application developer goes live with the application

Table 2.3: Use Case 2. Deploy the cloud application.
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Use Case 3: Access the cloud application

Actor: Cloud User
Application Service Provider (ASP)
Cloud Service Providers (CSP)

Goals: 1, 8, 15

Brief: Cloud User wants to access the cloud application service provided by the
ASP

Steps: 1. Cloud User types in the web address of the cloud application service
hosted at CSP.

2. Cloud User is displayed the frontend logic (the UI) of the cloud
application

3. Cloud User can navigate around the cloud application and perform
tasks intended by the cloud application.

4. ASP monetizes its cloud application for the offered services.

Variations
(optional):

Cloud User visits the app store platform on his mobile device or a per-
sonal computer and downloads the frontend for the cloud application.

Table 2.4: Use Case 3. Access the cloud application

Use Case 4: Input user data to the cloud application

Actor: Cloud User in the role of Input Party (IP)
Application Service Provider (ASP)
Cloud Service Providers in the role of Computing Parties (CP)

Goals: 2, 3, 8, 15

Brief: Input Party wants to input its data securely to the cloud application.

Steps: 1. IP loads the frontend logic of the cloud application.

2. IP uses the capabilities of the frontend logic to securely encrypt its
input data.

3. IP uses the frontend logic to securely send the encrypted input data
to the CP(s) that host the cloud application of the ASP.

4. The cloud application on each CP securely receives the IP’s inputs
and then acts according to the backend logic to either store the
received data or initiate a secure algorithm with it.

Post-
conditions:

Nobody but the Input Party has access to its plaintext private input
data.
Nobody but the original owners of the input data available on the cloud
application has access to its plaintext representation.

Table 2.5: Use Case 4. Input user data to the cloud application
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Use Case 5: Make a secure query to the cloud application

Actor: Cloud User in the role of Result Party (RP)
Application Service Provider (ASP)
Cloud Service Providers in the role of Computing Parties (CP)

Goals: 4, 8, 15

Brief: Result Party wants to make a secure query to the the cloud application
to get some results based on available private input data.

Steps: 1. RP loads the frontend logic of the cloud application.

2. RP uses the capabilities of the frontend logic to form a secure query
with necessary public and private arguments, encrypting the pri-
vate ones.

3. RP uses the frontend logic to securely send the query with public
and encrypted arguments to the CP(s), that host the cloud appli-
cation for the ASP.

4. The cloud application on each CP securely receives the RP’s query,
and then acts according to the backend logic to initiate a secure
algorithm based on the query.

5. CP(s) perform the secure computation on encrypted data using
public and encrypted query parameters, and return some public
and encrypted results.

6. The cloud application on all CP(s) acts according to backend logic
to make the results available to appropriate RP(s).

7. If appropriate, the RP receives the public and encrypted results,
and then uses the frontend capabilities to decrypt and display the
results.

Post-
conditions:

Nobody but the original owners of the input data available to the cloud
application has access to the respective plaintext representations.
Nobody learns more new information than it was intended by design of
the cloud application.

Table 2.6: Use Case 5. Make a secure query to the cloud application
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Use Case 6: Deploy secure technology to the secure cloud platform

Actors: Secure Technology Provider in the role of Secure Technology Developer
(STD)
Secure Technology Provider in the role of the Secure Technology Provider
management (STP management)
Cloud Service Providers (CSP)
Application Service Provider

Goals: 11, 12, 13, 14, 17

Brief: STD has finished developing the secure technology and needs to deploy it
as a capability of the SPEAR secure cloud platform at the Cloud Service
Providers.

Steps: 1. The STP management has a collaboration opportunity with the
Cloud Service Provider(s) by offering secure technology for the se-
cure cloud platform.

2. Each CSP allocates the necessary resources to integrate the follow-
ing secure technology into its SPEAR infrastructure:

(a) secure hardware supporting secure computation on encrypted
data and offering hardware assurance

(b) secure software based on advanced cryptographic technology
allowing to perform secure computation on encrypted data.

3. STD and CSP collaborate to install the mentioned secure technol-
ogy into the cloud infrastructure in a modular and easily integrable
way.

4. STD and CSP collaborate to test the mentioned secure technology.

5. STD and CSP collaborate to go live with the mentioned secure
technology.

6. CSP offers the secure technology as part of its programmable secure
cloud platform capabilities to the Application Service Providers
allowing to develop cloud applications that utilize the advantages
provided by the secure technology.

Table 2.7: Use Case 6. Deploy secure technology to the secure cloud platform
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2.5 Functional Requirements

In this section we list the functional requirements that are required to be implemented in order
to enable the use cases described in Section 2.4. A functional requirement is a short but detailed
one-sentence statement of a capability of a system, i.e. what the system must be able to do
without defining how this is to be accomplished. Functional requirements outline exactly what
needs to be delivered and would typically be read by business analysts, developers, project
managers and testers.

2.5.1 Cloud Application

A Cloud Application is the a business service that a Cloud User would consume. It is developed
by Application Developers (as defined in Section 2.3) on top of Secure Cloud Platform (SPEAR)
and deployed on SPEAR-enabled clouds.

Requirement F1: The cloud application shall be capable of performing general purpose busi-
ness logic on its backend.

Requirement F2: The cloud application shall be capable of providing a navigable application
UI on its frontend.

Requirement F3: The frontend and the backend business logic of the cloud application shall
be capable of communicating with each other using secure channels.

Requirement F4: The cloud application shall be capable of protecting the processed user’s
data by the means of secure cloud platform.

Requirement F5: The frontend of the cloud application shall be capable of encrypting and
decrypting the data according to the cryptographic techniques used by the cloud appli-
cation.

Requirement F6: The cloud application shall be usable from the web, from mobile devices
and by the standalone software.

Requirement F7: The cloud application shall have the capability to store the necessary data
securely.

2.5.2 Secure Cloud Platform

A Secure Cloud Platform is the PRACTICE Secure Platform for Enterprise Applications and
Services (SPEAR) for providing cryptography and secure computation as a service for the Cloud
Applications. It is developed by Secure Technology Developers (as defined in Section 2.3) and
deployed as part of the cloud infrastructures.

Requirement F8: The Secure Cloud Platform shall provide a Secure Programming Language
for specifying the secure algorithms that compute on encrypted data.

Requirement F9: The secure algorithms shall be capable of utilizing the available secure
computation technology (both software and hardware) to compute on encrypted data.

Requirement F10: The Secure Programming Language shall not require in-depth crypto-
graphic knowledge from the developer of secure algorithms.
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Requirement F11: The Secure Programming Language shall allow to reuse a library of pre-
existing algorithms to simplify the specification of complex secure computation algo-
rithms.

Requirement F12: The Secure Programming Language shall allow the developer to control
when and how much encrypted information is opened as plaintext.

Requirement F13: The implemented secure algorithms shall be deployable without the need
to rebuild the whole application.

Requirement F14: The secure algorithms shall be evaluable by request of the cloud applica-
tion.

Requirement F15: The evaluation engine shall be configurable with a set of secure compu-
tation techniques.

Requirement F16: The evaluation engine shall make the configured secure computation tech-
niques available to the secure algorithms during the evaluation.

Requirement F17: The evaluation engine shall allow the use of both the software and the
hardware secure computation technologies.

Requirement F18: The Secure Cloud Platform shall enable the use of centralized and dis-
tributed deployment models of secure computation technologies, as devised in D21.1 [13].

Requirement F19: The evaluation engine shall allow the secure algorithms to store the in-
termediate or final results in plaintext and encrypted forms.

Requirement F20: The evaluation engine shall allow the secure algorithms to access the
previously stored plaintext and encrypted data for further processing.

2.6 Quality Attributes

The quality attributes accompany the functional requirements by adding a quality dimension
to them. Quality attributes specify the measurable criteria that can be used to judge how well
the system must do what it does. We focus on the relevant qualities for the system necessary
to cover the functional requirement presented in Section 2.5. For each quality attribute we
present a list of requirements and considerations that need to be accounted for while designing
the secure cloud platform.

Security is the capability of a system to prevent malicious or accidental actions outside of
the designed usage, and to prevent disclosure or loss of information while still providing
its services to legitimate users. A secure system aims to protect assets and prevent
unauthorized modification of the information. In detail, the platform must:

• Provide sophisticated security and privacy guarantees for all parties in cloud-computing
scenarios.

• Remove the need of users to trust their cloud providers for data confidentiality and
integrity, as these might not be respected either intentionally or out of negligence.

• Protect the privacy of cloud user’s data while storing or processing the data.
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• Remove the ability of insiders to disclose secrets or disrupt the service. Mitigate
insider threats and data leakage for computations in the cloud.

• Consider techniques that allow computation on encrypted data. These go beyond
current approaches that can only protect data at rest within cloud storage in cases
where insiders may misbehave.

• Consider that the outsourced data and computation might be co-located with the
data and computations of other, potentially malicious, clients of the same cloud
provider. The cloud service provider might not be able to adequately enforce sep-
aration mechanisms between its different customers (tenants). This could enable
malicious customers to break the security boundaries between themselves and other
customers, or themselves and the cloud provider, and to learn information about the
data or computation of other customers.

• Consider that while virtualization allows cloud providers to abstract the underlying
physical resources and to logically isolate between customers by assigning them vir-
tual domains (VM, separate memory), it does not completely protect from covert and
side-channel attacks (e.g. loss of entropy, similar pseudo-random output, isolation
failures in cloud infrastructure, shared hardware).

• Consider that by wrongly using the cloud, tenants may be unaware of security and
privacy vulnerabilities that could unintentionally cause harm to themselves or even
to other tenants.

• Enable the cloud to build user trust in the information security measures deployed
in cloud services.

Performance is an indication of the responsiveness of a system to execute any action within
a given time interval. It can be measured in terms of latency or throughput. Latency
is the time taken to respond to any event. Throughput is the number of events that
take place within a given amount of time. The platform should account for the following
performance considerations:

• Computation on encrypted data is usually one or more orders of magnitude slower
compared to computation on plaintext. The cloud applications must account for that
and apply practices like vectorization and smart branching to make secure algorithms
perform faster.

• Cloud applications should make use of parallelization of computation whenever pos-
sible in order to bring down computation time. This includes using multiple cloud
instances to split the computation effort.

Modifiability is the ability of the system to undergo the changes with a degree of ease.
These changes could impact components, services, features, and interfaces when adding
or changing the functionality, fixing errors, and meeting new business requirements. The
platform must:

• Allow switching the data protection techniques and implementations in cloud appli-
cations.

• Allow using new secure data processing algorithms in cloud applications.

• Allow using new or updated applications without redeploying the cloud application
or the underlying secure computation technologies.
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Usability is concerned with how easy it is for the user to accomplish a desired task and the
kind of user support the system provides. The platform must:

• Enable a seamless application development process that abstracts the programmer
from most, if not all, cryptographic details. This will significantly reduce the learning
curve for development of secure cloud applications so that developers would not be
required to have cryptographic training. This, in turn, will help save costs in the
most expensive part of application development and ease the deployment of secure
and private cloud applications.

Compatibility is the ability of the system to work with other systems. The platform must:

• Support multiple end user platforms: web interfaces, mobile devices, desktops and
server systems.

• Allow to deploy the secure cloud platform on any cloud infrastructure.

• Allow using any storage facility in the platform and applications.

• Allow to implement the secure cloud platform using different technology providers.

Testability Is the ability of the system to be tested before deployment. The platform must:

• Allow for automatic testing of the cloud application locally and on a test deployment.

• Allow for automatic testing of the individual modules within SPEAR.
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Chapter 3

Unified Architecture

This chapter describes the general architecture for the SPEAR platform that conforms with
the previously identified architectural drivers. The essence of the system is captured from a
number of architectural viewpoints, each analyzing and describing the design from a different
perspective. The two conceptual level views (Logical and Process views) capture the static
structure and dynamic behavior of the system, while the two physical level views (Development
and Deployment views) explain the mapping of the logical structure and processes into physical
components and environments. We begin by looking at the system from the high level and then
continue zooming into the architecture to unveil more details.

3.1 Logical View

The logical view describes the architecturally significant parts of the static design model. We
present the overall decomposition of the system in terms of its package hierarchy, layers and
classes, discuss their responsibilities and show how the functional requirements are realized in
their relationships.

3.1.1 Overview

Cloud computing is a model for on-demand delivery of scalable and virtualized computing
resources to business applications. Cloud services provide users and enterprises with various
capabilities to store and process their data in third party data centers. While allowing the users
to efficiently and flexibly benefit from the offered technologies, these services also reduce the
infrastructure maintenance and application development costs. As a result, organizations and
individuals choose to outsource their data to the cloud, where an untrusted party is in charge
of storage and computation.
Cloud Service Providers provide cloud computing services via a layered delivery model that
consists of three basic layers stacked on top of each other as shown in Figure 3.1 and briefly
described below.

Infrastructure-as-a-Service (IaaS) provides access to the lowest level data center hardware
resources, such as computing power, storage and network, in an easy-to-consume way,
allowing to run the existing workloads on the cloud without any additional software re-
architecting. The main enabling technology for this layer is virtualization. Virtualization
software called hypervisor abstracts and separates a number of physical computing devices
into one or more “virtual” devices, so that each can be easily used and managed to perform
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Figure 3.1: The high-level view on the layered cloud architecture.

computing tasks. The amount and kinds of resources allocated to each virtual device
can be chosen and scaled up or down dynamically according to customers’ needs. An
operating system and business applications are installed and run on the virtual devices.
Cloud providers bill the IaaS service based on the amount of resources allocated and
consumed.

Platform-as-a-Service (PaaS) provides a platform for developing and deploying applica-
tions in the cloud. It offers a set of services and the development environment that ab-
stract the application software and hardware infrastructure (such as the servers, operating
system, middleware and configuration details), allowing customers to provision, develop,
test, stage and monitor applications without the complexity of managing the infrastruc-
ture typically associated with these processes. By providing the development platform,
facilitating application deployment, and streamlining application life-cycle, PaaS gives
developers the ability to rapidly consume IaaS and improves the time to market with
minimal capital costs. PaaS also allows developers to extend their applications with vari-
ous specialized functionality only available in the cloud and delivered as services through
the PaaS platform.

Software-as-a-Service (SaaS) provides on-demand application services that users can ac-
cess, and relies on the PaaS to manage the infrastructure needed to instantiate and run
the services, simplifying the maintenance and support. SaaS applications can scale and
request features on demand, and are rolled out frequently, which makes them easy to
integrate with existing applications and systems. There is no need to deploy or maintain
the service software as this is done automatically. A single service instantiation can be
shared by multiple tenants depending on functionality or load balancing needs. SaaS
services are typically billed on a pay-per-use or subscription basis, which simplifies the
licensing matters.

In the following we present the general architecture for the Secure Platform for Enterprise
Applications and Services (SPEAR), that covers all the layers of the cloud delivery model
discussed above, allowing to leverage trust and data privacy issues in the cloud computing
infrastructure. SPEAR relies on the Distributed Aggregation and Security Services (DAGGER)
sub-platform in order to provide Cryptography-as-a-Service for privacy-sensitive cloud services
and applications. We focus on the parts of the architecture necessary for building SPEAR.
The sections below will further decompose the architecture into packages, layers and significant
classes, as shown in Figure 3.2 and Figure 3.3.

PRACTICE D21.2 Page 17 of 68



Unified architecture for programmable secure computations

3.1.2 SPEAR

The PRACTICE Secure Platform for Enterprise Applications and Services (SPEAR) provides
a cryptographically secure computation platform as a service for cloud applications and ser-
vices. The purpose is to protect user data from unauthorized access from cloud providers and
other users in the cloud setting, while still allowing business applications to benefit from the
information contained in the data.
To provide this kind of security, SPEAR complements the layered cloud delivery model discussed
earlier with security components and corresponding interfaces to the cloud. The cloud infras-
tructure together with SPEAR’s securty components and interfaces allow developers to design
and implement cloud applications based on different trust, security and privacy requirements.

SPEAR

Cloud Infrastructure

DAGGER

Application Service

Secure Storage

Secure Data Analysis Algorithms

Secure Service Interface

Secure Computation Protocols

Computing Virtual Machine

Cloud Client

Figure 3.2: A decomposed high-level view of the SPEAR architecture.

As displayed in Figure 3.2, SPEAR consists of security related cloud infrastructure hardware
resources, the Distributed Aggregation and Security Services (DAGGER) security sub-platform,
the formal verification module, and the application service layer. The entire package works
across a number of heterogeneous Cloud Client devices providing a common platform to securely
access the cloud.
From application developers’ point of view, the SPEAR technology stack is hosted on the
cloud in a Platform-as-a-Service model allowing to create secure cloud applications on top of
it. The developers can select the most suitable combination of SPEAR mechanisms to address
their specific security needs. SPEAR is responsible for setting up the desired DAGGER and
Cloud Infrastructure and running applications utilizing these. The corresponding setup and
configuration processes are abstracted from the cloud user, increasing the ease of use and the
overall security of the system. Later in Chapter 4 we describe a number of alternative ways to
construct SPEAR. In the following subsections we describe the layers of the SPEAR architecture
in a bit more detail.
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Cloud Client

A Cloud Client is a non-cloud application or device used to control and otherwise interact with
the cloud system. The client should make it easy for its users to work with a SPEAR-enabled
clouds and applications.
The client can be seen as used by the Cloud User and/or the Application Service Provider
stakeholders as described in the table in Section 2.3. For the Cloud User the client is the user
interface used for accessing the cloud application, providing input data and viewing the results.
For the Application Service Provider the client should allow uploading new applications to the
SPEAR-enabled cloud and configuring existing applications running on the cloud.
The Cloud Client could be implemented as e.g. a web-interface, a mobile application or a
command line interface (CLI).

Application Service

An Application Service should be seen as a Software-as-a-Service (SaaS) layer, which enables
Application Service Providers to easily develop and roll out new SPEAR applications, that
Cloud Users can consume. The idea is to separate the general purpose application from the
actual secure computation logic, enabling the developers to either switch the underlying security
engine or reuse the application across multiple different instances of SPEAR. This layer contains
both the required software for running the rolled out applications, as well as the application
itself.

DAGGER

The PRACTICE Distributed Aggregation and Security Services (DAGGER) is the key sub-
system of SPEAR that represents the middleware for using cryptographically secure computing
in PaaS/SaaS cloud applications, and this way achieving increased security guarantees. DAG-
GER can be seen as a Platform-as-a-Service (PaaS) layer, and in particular exposes the following
features:

• Libraries for integrating with cloud applications and user interfaces.

• A high-level language for specifying secure data analysis algorithms in applications.

• A compiler for the DAGGER language.

• A set of (possibly advanced) algorithms that can be used in applications.

• A set of secure computation protocols for computing on encrypted data.

• A programmable security engine capable of executing secure computation protocols ac-
cording to algorithm specification.

• Secure data storage compatible with secure computing.

DAGGER is responsible for performing secure computation according to specified algorithms.
Based on requirements listed in Section 2.5, the platform offers a language, a compiler and
a library of standard algorithms that non-cryptographers can use for specifying the secure
algorithms necessary for the applications. The compiler converts the high-level language into
specifications understandable by the DAGGER engine, such that these can be executed.
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The DAGGER service is used by the Application Service layer via the provided libraries and
interfaces. Because of the nature of the underlying cryptographic mechanisms of secure compu-
tation, DAGGER is built as a distributed service, that may communicate with other configured
DAGGER nodes over the network. For that reason, the whole SPEAR stack may have to be
replicated accordingly. While it should be possible to plug in a different DAGGER in the ap-
plication, doing so might alter the requirements for the application and the underlying Cloud
Infrastructure. This makes the applications to some extent dependent on the properties of a
concrete DAGGER, and the changes in its configuration must be carefully evaluated for each
application. Finally, DAGGER is also responsible for storing persistent data such as user input
and pre-generated data in a way compatible with secure computing.
In Chapter 4 we describe several versions of SPEAR based on different DAGGER implementa-
tions. Also, the architecture of components and interfaces for integrating cryptographic tech-
niques into the DAGGER secure computing platform can be found in PRACTICE deliverable
D14.1 [5]. A concrete implementation of these interfaces is reported in deliverable D14.2 [4].

Formal Verification

Another component in SPEAR is the formal verification module that includes mathematical
methods and techniques, as well as tools, used to establish verifiable assurance of the soundness
of the DAGGER secure computation platform on its various levels, and to perform a quantita-
tive evaluation of the deployed security technology and software. The Section 3.5 will go into
the details of this feature of SPEAR.

Cloud Infrastructure

The Cloud Infrastructure of SPEAR belongs to the Infrastructure-as-a-Service (IaaS) layer
that enables the upper layers to run on (virtualized) hardware. IaaS is configured with specific
resources, such as specialized security hardware modules, required by particular DAGGER
subsystems that SPEAR applications build on. These resources further improve security and
performance in applications, and can be offered as a service together with standard computing
power, storage and network resources. SPEAR should be able to access these resources from
its other layers.
Another intention here is to develop DAGGER separately from the infrastructure, so that it can
be integrated to various cloud platforms. This will allow to cover larger market. However, due
to the potential demands (either because of SPEAR or DAGGER components) to the Cloud
Infrastructure, such as special hardware requirements, the amount of potential cloud providers
the customers can choose from would be limited.

Class Diagram

A general class diagram of SPEAR is presented in Figure 3.3. It shows full decomposition of the
architecture into classes and relationships among them. In the following sections we are going
to describe the responsibilities of classes as well how these relate to each other. A summarizing
table will be provided in Section 3.1.14.
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3.1.3 Application Frontend

An Application Frontend is the part of the SPEAR Application Service layer that acts as a
client side access point to the SPEAR cloud application that a Cloud User would use via his
Cloud Client. It provides the user with an Application User Interface as well as Application
Frontend Logic and mechanisms required to access and interact with the Application Backend
through its interface on the cloud, as shown in Figure 3.4.

SPEAR

DAGGER

Application
Frontend Logic

+init(cfg : string)
+deini t ( )
+getTypes() : Data Type []

<< In te r face>>
PSF Interface

+name() : str ing
+sizePublic() : short
+sizeSecret() : short
+encrypt(in : Arg [], out : Arg []) : boolean
+decrypt(in : Arg [], out : Arg []) : boolean

<< In te r face>>
Data Type

Application UI

<< In te r face>>
Query Interface

-types : Data Type[]

Protocol Suite
Frontend

<< In te r face>>
Application

Backend Interface

access

query

load access encrypt/decrypt data

Figure 3.4: The class diagram for Application Frontend.

In a typical scenario the Application Frontend would be realized as an HTML/CSS/JavaScript
web interface accessed via a standard web browser. This means the Cloud User would provide
inputs to the application by submitting web forms and view the results and other application
specific information as pages in his browser. However, in other scenarios the Application Fron-
tend could take different forms, such as a standalone (CLI, GUI, mobile) application, or even
an add-on/plug-in library to such applications.
Depending on the configuration of a SPEAR cloud application the Application Frontend may
communicate with one or more SPEAR nodes. Similarly, the inputs and outputs must be
securely and correctly processed in a way compatible with a particular SPEAR configuration
(i.e. the DAGGER protocols and their deployment model). For this purpose the Application
Frontend is served with the configuration of the SPEAR application, and a set of Protocol Suite
Frontend plug-ins (described in Section 3.1.11) that it uses via PSF Interface and Data Type
interface to encrypt the clear-text inputs indented to be secret before sending and decrypt the
secret outputs of the application before presenting them to the Cloud User.
In some SPEAR configurations, due to technological specifics of DAGGER, the Application
Frontend Logic may access the DAGGER service directly, bypassing the Application Back-
end. In these cases the frontend is supplied with and uses the Query Interface (described in
Section 3.1.5) of DAGGER in order to interact with it, and may even participate in secure com-
putation. In web-based cloud applications, however, this is not the case, and such interaction
flows through the Application Backend, allowing for more elaborate secure applications in the
cloud.

Responsibilities:

• Provide an Application UI.

• Access and interact with the SPEAR Application Backend.
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• Apply Protocol Suite Frontend plug-ins to securely process inputs and outputs.

3.1.4 Application Backend

An Application Backend is the server side part of the SPEAR Application Service layer that
runs on the cloud infrastructure. It consists of the Application Backend Logic representing
the general purpose application business logic, and the Application Backend Interface that it
implements allowing the Application Frontend in the Cloud Client to access the application
logic (see Figure 3.5).

SPEAR

DAGGER

Application Backend Logic

Secure
Computat ion
Specification

<< In te r face>>
Application Backend Interface

<< In te r face>>
Secure Storage

Inter face

<< In te r face>>
Query Interface

<< In te r face>>
Maintenance

Inter face

querymaintainaccess

rely on supported secure queries

Figure 3.5: The class diagram for Application Backend.

In the cloud scenario the Application Backend would almost always be a web service (e.g. using
Representational State Transfer (REST) APIs), although other existing and new inter-process
communication technologies can be used. The Application Backend Logic is developed using
any general purpose programming language and/or platform suitable for building cloud services.
It is up to the Application Developer to configure the entry point of SPEAR in a way such that
the users have to make the least amount of choices to use the application service.
The Application Backend builds around the tools and technologies of the DAGGER platform,
that it uses through corresponding interfaces in order to provide security in applications. The
Application Backend is “context-unaware” in the sense that it does not know about the details
of the DAGGER’s configuration. These are abstracted from the application and handled by
DAGGER internally.
The whole application package can be served in two different ways: i) as a standalone business
application, or ii) as a configurable Software-as-a-Service built around the business application.
We will now discuss each option separately.

Business Application

The first option is that the Application Backend represents a standalone Business Application
built to serve a specific business purpose using a particular DAGGER configuration. The
Application Backend Logic is programmed so that it knows exactly the data model and which
elements in it represent sensitive information. It executes the general purpose business logic in
clear-text and uses DAGGER functionality to securely process the sensitive data in encrypted
form.
The secure data analysis algorithms for processing sensitive data are expressed as Secure Com-
putation Specifications (see Section 3.1.6). The Application Developers may use the DAGGER
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secure language (see Section 3.1.7) to implement custom tailored algorithms for their applica-
tion, or rely on some pre-defined algorithms already included in the DAGGER platform. The
Application Backend Logic is aware of the available algorithms and queries their execution by
the DAGGER layer using the Query Interface (described in Section 3.1.5).
The backend logic may use DAGGER’s secure storage via the Secure Storage Interface to store
and retrieve public and private application data. It may also contact the Application Frontend
in case user input is required.

Responsibilities:

• Communicate with the Application Frontend.

• Perform general business logic in clear-text.

• Query the DAGGER system to process sensitive data in encrypted form.

• Come with custom secure data analysis algorithms.

• Use the Secure Storage module.

General Service

The second option builds around the previous Business Application option and serves it in a
higher level Software-as-a-Service (SaaS) model. In this case the Application Backend Logic
is developed in a way that allows constructing different Business Applications based on some
predefined application service framework and then rolling these out as separate application
instances for a fee. An example of such a service would be a hypothetical secure survey ap-
plication (e.g., based on the prototype described in the deliverable D23.1 [14]) that provides
the framework for creating surveys based on desired configuration of the DAGGER layer and
allows deploying these separately on the cloud. The granularity and flexibility of application
service building blocks may vary, potentially allowing to construct very different applications
based on the same service.
In SaaS case, the Application Backend Logic should be able to setup and maintain the DAGGER
according to some configuration. This can be done via the Maintenance Interface. There are
various configuration aspects to DAGGER. Below we present a list of examples, that is not
exhaustive nor are all bullets necessarily required:

• Location of other SPEAR nodes.

• Credentials for secure communication.

• The protocols DAGGER should support.

• Secure Storage options.

Responsibilities:

• Communicate with the Application Frontend to configure an application

• Instantiate, manage and configure Business Applications

• Create, manage and configure DAGGER instances
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3.1.5 Secure Service Interface

A Secure Service Interface (SSI) is the interface library for integrating DAGGER into the
SPEAR applications services. The library allows SPEAR applications to setup and communi-
cate with the Secure Computation Engine (SCE) (see Section 3.1.8) of the DAGGER platform.
For these purposes SSI implements the Maintenance Interface and the Query Interface respec-
tively, as displayed in Figure 3.6.
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Query Interface
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Maintenance Interface

1
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Figure 3.6: The class diagram for Secure Service Interface.

The Maintenance Interface is targeted towards the Software-as-a-Service type of Application
Backend Logic and provides capabilities required for managing and facilitating the deployment
of SCE instances. More specifically, the interface allows configuring and instantiating an SCE
on the cloud infrastructure with a set of Protocol Suites (described in Section 3.1.10), specifying
their node topology, the credentials for secure network communication, and other settings
relevant for the particular SCE implementation. The interface also allows to gracefully shut
down the created SCE instances.
The Query Interface is used either by the Business Application type of Application Backend
Logic or the Application Frontend Logic to make secure queries to the deployed SCE instances.
Depending on the DAGGER implementation the queries are formed using a command API or
a query language (e.g. inspired by query languages like SQL or MDX) exposed by the Query
Interface. A query would trigger an SCE to execute a number of integrated data processing
procedures expressed as Secure Computation Specifications (see Section 3.1.6) and available to
the SCE instances. The typical queries would involve providing input data (both public and
secret) and requesting secure computations on the combination of these and the data stored in
Secure Storage. If the expressive power of a query language allows, the queries may dynamically
trigger rather complex aggregations and data mining algorithms, that otherwise would have to
be specified as dedicated procedures. Once the SCE completes the query request, the results
are also made available via the Query Interface.
The Secure Service Interface can be implemented either as a standalone component (tool or
library) or an API. The standalone option would assume some kind of inter-process communi-
cation protocol between the SSI and an SCE instance, such as Remote Procedure Call (RPC)
or a Transmission Control Protocol (TCP), and therefore, support being used on the client
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side of an application. Whereas the API version would tightly couple the SSI/SCE with the
Application Backend in a single package and is, hence, less flexible.
An SSI would typically be specific to a particular DAGGER implementation. However, it could
be possible to create an SSI that all DAGGERs understand. In this case each DAGGER would
be required to implement the translation module from an abstract SSI to its own version of
SSI. This would also increase the potential for reusability of applications.

Responsibilities:

• Provide interface for setting up the DAGGER SCE instances.

• Provide interface for making secure queries to the SCE.

3.1.6 Secure Computation Specification

A Secure Computation Specification (SCS) is the representation of integrated data processing
procedures of the DAGGER platform. It corresponds to the Secure Data Analysis Algorithms
layer of the SPEAR platform, and contains the business logic (i.e. arbitrary functions on private
data) that a SPEAR application requires to compute securely.
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Secure Computation
Specification

Secure Language
Compiler
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SCS Format

load
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Figure 3.7: The class diagram for Secure Computation Specification.

The Secure Computation Specifications are expressed according to a pre-defined SCS Format,
that can be understood and evaluated by the Secure Computation Engine (see Figure 3.7). For
increased performance a preferable format would be something low level, such as a byte-code
or, in some cases, even generic native machine code, that the Computing Virtual Machine of
an SCE can efficiently operate with. To simplify the development of secure applications, the
Secure Computation Specifications can be specified and compiled using a high level language
as discussed in Section 3.1.7.
An SCS operates with relatively high-level secure computation primitives, such as secure oper-
ations represented by the DAGGER Secure Computation Protocols (see Section 3.1.10), that
abstract away any cryptographic implementation specifics internal to the protocols. For ex-
ample an SCS may express a program computing the average over n secret integers using an
appropriate set of secure operations (e.g. addition and division, or a single atomic operation for
computing an average), but it does not deal with randomness and sending messages between
computing parties according to some secure computation scheme. The latter is delegated to
the Secure Computation Protocol implementations.
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In addition to secure operations that compute on encrypted values, an SCS can describe com-
putations on public values. Besides enabling the description of more complex algorithms, these
may also allow finding a balance between the security and performance in SPEAR applications
by performing parts of computation and branching in clear-text.
For more details regarding the Secure Computation Specifications, their format, evaluation by
an SCE and the protocol integration, please refer to the deliverable D14.1 [5]

Responsibilities:

• Represent integrated data processing procedures of the DAGGER platform.

• Express computations on public and private data values.

• Operate using relatively high-level primitives independent from cryptographic details.

3.1.7 Secure Language Compiler

As we discussed in Section 3.1.6, DAGGER allows the description of arbitrary integrated data
processing procedures in the SCS Format understandable to the underlying Secure Computation
Engine. However, this kind of an intermediate representation is not intended to be suitable
for the Application Developers to write their secure applications. Instead of using low-level
instructions (e.g. NAND gates) the developer would use a more human-readable high-level
programming language to express the required computations, and use the respective Secure
Language Compiler tool to convert the high-level specification to a low-level SCS. The language
can be seen as being abstract and may be compiled to multiple SCS Formats understood by
different SCEs, allowing it to work across different DAGGER implementations.
The high-level language is domain specific in the sense that it has features to describe generic
secure computation. The most important feature is the ability to differentiate between public
and private data values on the language level, adding the security dimension to the language. It
allows the programmer to indicate which values should be kept secret and which are public, and
provides language features to convert the data between these ”environments“. Furthermore, the
language should make it possible to compute on both public and private values. These features
also give rise to static analysis of information flow between the ”environments“ in order to trace
their security and determine potential data security breaches in applications.
While the non-confidential data could be processed using public data types and without the
use of secure computation, the private values may be computed using different kinds of Se-
cure Computation Protocols. The language should allow distinguishing between these as well.
Preferably, this should be done in the most generic way possible so that the specified application
is kept, to a large degree, independent of any particular secure computation technology used
during the evaluation, making the application code reusable in different DAGGER configura-
tions and other applications. This has the added benefit of removing the need for the developer
to deal with the details of the underlying technologies and simplifying his work.
The mentioned independence can be achieved, for example, by allowing the programmer to
specify the codenames for the security ”environments“ in the high-level code and later during
deployment configure the mapping of those to the desired kinds of Secure Computation Protocol
modules. Alternatively, one could imagine the Application Developer only defining the desired
characteristics (e.g. security against the semi-honest adversaries) for the used secure operations,
and letting the underlying DAGGER system then choose the best suited protocols within this
category for the application.
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While the language allows the Application Developers to create new secure algorithms for their
specific purposes, it may also provide them with its own standard library of secure algorithms.
A secure language coupled with such a library would significantly simplify the development of
SPEAR applications.

Responsibilities:

• Provide a language for expressing Secure Computation Programs.

• Compile programs written in the language to a Secure Computation Specification.

3.1.8 Secure Computation Engine

A Secure Computation Engine (SCE) is the core engine of the DAGGER platform that pow-
ers the programmable secure computation on the cloud. It brings together the functionality
necessary to enable successful execution of secure applications based on Secure Computation
Technologies.
An SCE contains a Computing Virtual Machine (see Section 3.1.9) capable of evaluating Secure
Computation Specifications (see Section 3.1.6), and can be configured with a set of Secure Com-
putation Protocol Suites (see Section 3.1.10) that provide the required cryptographic security.
It also has access to facilities such as Secure Storage (see Section 3.1.12) and Secure Hardware
(see Section 3.1.13) that can be used during secure computation. The architecture explaining
how these parts are tied together within the SCE is presented in the deliverable D14.1 [5].
Because of the distributed nature of the protocols, the SCE is also built as a distributed service.
It know about the other SCE instances in the same deployment and can communicate with
them over the network, allowing the protocols to send and receive messages between the SCE
instances and jointly perform secure computation.
Once set up and running, the SCE is responsible for processing the secure queries received
from the Application Service layer (see Section 3.1.3 and Section 3.1.4) via the Secure Service
Interface (described in Section 3.1.5). To process a query, the SCE initiates the evaluation of a
number of Secure Computation Specifications deployed to it, and executes the required protocols
loaded from the configured Protocol Suites, securely computing the specified functions.

Responsibilities:

• Process secure queries.

• Initiate the evaluation of Secure Computation Specifications.

• Load and execute Secure Computation Protocols.

• Communicate with other SCE instances.

• Provide access to Secure Storage and Secure Hardware.

3.1.9 Computing Virtual Machine

A Virtual Machine (VM) is the part of a Secure Computation Engine that is in charge of
executing the instructions specified in the Secure Computation Specification. It interprets
or compiles the instructions from the SCS Format to its internal representation and takes
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the necessary steps to execute the Secure Computation Protocols as specified by the SCS.
In some cases the VM may also be almost non-existent and rely on the process of its caller,
e.g. the Secure Service Interface or the Application Service, to execute the instructions. The
exact construction depends on the DAGGER implementation. For more details regarding the
architecture of the Virtual Machine please refer to deliverable D14.1 [5].

Responsibilities:

• Evaluate Secure Computation Specifications.

• Execute instructions and corresponding Secure Computation Protocol implementations.

3.1.10 Secure Computation Protocol Suite

A Secure Computation Protocol Suite (or Protocol Suite) is the implementation of a certain
secure computation technique that the DAGGER platform uses in order to provide the actual
security for the SPEAR cloud applications. A Protocol Suite contains and exposes a set of
Secure Computation Protocols (see Figure 3.8), each representing a basic universally composable
(i.e. remaining secure even if arbitrarily composed) operation supported by the implemented
technique, which together define the capabilities of the Protocol Suite.

DAGGER

Protocol SuiteProtocol

-Computing Virtual Machine

Secure Computation Engine

-types : Data Type[]

Protocol Suite
Frontend

1

1..*

1

1
compatible withload

call

Figure 3.8: The class diagram for Secure Computation Protocol Suite.

The cryptographic mechanisms of secure computation implemented by the Protocol Suites al-
low for distributed computation of arbitrary functions on private (secret) inputs, while hiding
any information about the inputs from the functions. Put differently, these mechanisms sup-
port computation on encrypted data. As such, they enable information security protection in
computation, since the cloud only has access to encrypted forms of the data. This protection is
valid even assuming the existence of unprotected side-channels and information leakage between
different users of the same cloud, since sensitive data is no longer exposed to the infrastructure.
In fact, this technology is the only technology that can ensure the privacy and security of com-
putations in a level of security that is as strong as the encryption that is used to secure stored
data. A few examples of such cryptographic secure computation techniques are SPDZ [3] and
Yao [21] schemes. For an overview of kinds of existing techniques and their deployment and
trust models please refer to the deliverable D21.1 [13].
The computational operations exposed by the Protocol Suites are designed so that they can
be composed into programs, and can be though of as secure programming building blocks for
SPEAR applications. The Computing Virtual Machine (see Section 3.1.9) of an SCE loads the
operations from the Protocol Suites and executes the required ones according to Secure Compu-
tation Specification (see Section 3.1.6). Internally, the protocols may require access to certain
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facilities, such as network communication, Secure Storage (see Section 3.1.12) and Secure Hard-
ware (see Section 3.1.13). The Protocol Suites follow generic design and are interchangeable,
so the SPEAR applications can be configured according their security and deployment require-
ments. The detailed architecture for implementing Protocol Suites and integrating them into
DAGGER can be found in the deliverable D14.1 [5].

Responsibilities:

• Implement a secure computation technique.

• Expose composable secure operations.

• Perform the actual Secure Computation.

• Access facilities like network, storage and secure hardware.

3.1.11 Protocol Suite Frontend

As we described earlier, the SPEAR applications on the cloud infrastructure rely on the Protocol
Suites to securely process private data. The cryptographic computation techniques implemented
by the Protocol Suites internally keep the processed data in some kind of encrypted form. While
the Protocol Suites allow to encrypt and decrypt data on the server side (e.g. to initialize
private variables or to open provably safe intermediate results), the similar functionality must
also be supported on the client side. This is required to allow the Application Frontend (see
Section 3.1.3) to encrypt user inputs and decrypt outputs of the SPEAR application, as it is
imperative that only the intended end users get to see the secret values in clear-text form.
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Protocol Suite

-data : byte[]
-size : long

Arg

+init(cfg : string)
+deini t ( )
+getTypes() : Data Type []

<< In te r face>>
PSF Interface

+name() : str ing
+sizePublic() : short
+sizeSecret() : short
+encrypt(in : Arg [], out : Arg []) : boolean
+decrypt(in : Arg [], out : Arg []) : boolean

<< In te r face>>
Data Type

-types : Data Type[]

Protocol Suite
Frontend

Data Type Impl

1

1
compatible with

Figure 3.9: The class diagram for Protocol Suite Frontend.

A Protocol Suite Frontend (PSF) is the component that provides the required encryption and
decryption functionality to the Application Frontend in a way compatible with the Protocol
Suite used by the DAGGER engine. Each Protocol Suite implementing a particular secure
computation scheme must, therefore, also have a corresponding Protocol Suite Frontend (see
Figure 3.9). The Protocol Suites with their corresponding frontend components are first de-
veloped (potentially using different programming languages) and then, preferably, deployed to
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the DAGGER PaaS, so the SPEAR applications can request and call the one they require. In
web scenarios the Protocol Suite Frontend could be implemented as, e.g., a JavaScript module
served by the Application Backend (see Section 3.1.4). Potentially, the frontend component
may also be deployed together with the Application Frontend in a single package.
The Protocol Suite Frontends are implemented using generic interfaces, enabling them to be
switched out in the Application Frontend in accordance with the DAGGER instance configura-
tion and the SPEAR application requirements. The PSF Interface, as displayed in Figure 3.9,
provides methods to initialize/deinitialize the PSF and read the data types supported by the
PSF. The initialization step is required as some encryption schemes may be configured with
additional parameters. Since the Protocol Suites may support encryption of different types
of clear-text values, the Protocol Suite Frontend must provide respective encryption and de-
cryption functionality for each such data type via the Data Type interface. For each type a
PSF additionally provides its name and sizes in bytes for both the public and secret versions.
These can be used to prepare the necessary input and output byte arrays as arguments for the
”encrypt“ and ”decrypt“ methods.

Responsibilities:

• Used by the Application Frontend.

• Provide encryption and decryption functionality compatible with the corresponding Pro-
tocol Suite for all the supported data types.

3.1.12 Secure Storage

The Secure Storage deals with persistent storage of both the public and private data in a
way compatible with secure computing. It can build on top of existing relational, no-sql or
other kinds of storage technologies and provides an extra security layer on top of those. It can
potentially communicate with hardware based secure storage in order to store vital information
such as encryption keys. Examples of common objects to store include secret shares of user
inputs and precomputed data used by the protocols. The way the secure data is stored is up
to the DAGGER implementation and should be based on an analysis of the sensitivity of the
data. Secure Storage is intended to be used by the Secure Computation Engine during secure
query processing as well as by the Application Service.

Responsibilities:

• Store public and private data in a way compatible with secure computing.

3.1.13 Secure Hardware

Besides the standard cloud infrastructure capabilities used for hosting the SPEAR instances,
there may be additional requirements for specialized hardware modules, such as trusted secure
hardware. It should be possible to configure SPEAR instances with dedicated Secure Hard-
ware. The cloud data centers would contain the required Secure Hardware devices and allow
assigning them to SPEAR instances during their configuration. The SPEAR instances would be
installed with the corresponding drivers, allowing the DAGGER platform to access the allocated
hardware via the Secure Hardware Interfaces that the drivers implement (see Figure 3.10).
The requirements for the infrastructure is defined by the configuration of the SPEAR and DAG-
GER instances. If the selected Protocol Suites internally depend on the particular specialized
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Figure 3.10: The class diagram for Secure Hardware.

hardware, then it will have to be provided by the host system. There might also be non-tight
requirements, such as access to the AES native instruction, where not having access to a re-
quirement would reduce an attribute such as speed, but it would not prevent the system from
running. These trade-offs must be made known to the person who decides the configuration
of infrastructure for a specific SPEAR application. For additional details on using hardware
enchanted security for integrity please refer to Section 3.5.3.

Responsibilities:

• Provide hardware based security.

• Improve performance of security related features.

3.1.14 Summary

To simplify the comprehension of the logical view, we additionally summarize the responsibilities
of the main logical components in Table 3.1.

Logical component Responsibilities

Application Frontend

• Provide an Application UI.

• Access and interact with the SPEAR Application Backend.

• Apply Protocol Suite Frontend plug-ins to securely process inputs
and outputs.

Application Backend
(Business Application)

• Communicate with the Application Frontend.

• Perform general business logic in clear-text.

• Query the DAGGER system to process sensitive data in encrypted
form.

• Come with custom secure data analysis algorithms.

• Use the Secure Storage module.

Table 3.1: The logical components and their responsibilities summarized.
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Table 3.1 – continued from previous page

Logical component Responsibilities

Application Backend
(General Service)

• Location of other SPEAR nodes.

• Credentials for secure communication.

• The protocols DAGGER should support.

• Secure Storage options.

Secure Service
Interface

• Provide interface for setting up the DAGGER SCE instances.

• Provide interface for making secure queries to the SCE.

Secure Computation
Specification

• Represent integrated data processing procedures of the DAGGER
platform.

• Express computations on public and private data values.

• Operate using relatively high-level primitives independent from
cryptographic details.

Secure Language
Compiler

• Provide a language for expressing Secure Computation Programs.

• Compile programs written in the language to a Secure Computa-
tion Specification.

Secure Computation
Engine

• Process secure queries.

• Initiate the evaluation of Secure Computation Specifications.

• Load and execute Secure Computation Protocols.

• Communicate with other SCE instances.

• Provide access to Secure Storage and Secure Hardware.

Computing Virtual
Machine

• Evaluate Secure Computation Specifications.

• Execute instructions and corresponding Secure Computation Pro-
tocol implementations.

Secure Computation
Protocol Suite

• Implement a secure computation technique.

• Expose composable secure operations.

• Perform the actual Secure Computation.

• Access facilities like network, storage and secure hardware.

Protocol Suite
Frontend

• Used by the Application Frontend.

• Provide encryption and decryption functionality compatible with
the corresponding Protocol Suite for all the supported data types.

Secure Storage
• Store public and private data in a way compatible with secure

computing.

Secure Hardware
• Provide hardware based security.

• Improve performance of security related features.

Table 3.1: The logical components and their responsibilities summarized.
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3.2 Process View

Where as the logical view in Section 3.1 described the individual components of the architecture
and their responsibilities, in the process view in this section we look at the processes involving
these components and in particular how the components of Section 3.1 interact with each other.
We note in a concrete application many of the involved processes and interactions are highly
specific to concrete implementations of SPEAR and DAGGER used and also to the application
itself. Thus, we will only deal with the following fundamental processes that any application
running on SPEAR must support in some form: 1) loading the frontend 2) giving input to the
application 3) performing secure computation with the application 4) querying output from the
application. Note that these process are not necessarily mutually exclusive, e.g., performing
secure computation may also involve giving some input and so on. Breaking this down in
separate process is mainly for the simplicity of the exposition.
We will go into each of these processes in detail below.

3.2.1 Loading the Frontend

As we will also discuss in the deployment view in Section 3.4, the Application Frontend and
Protocol Suite Frontend components must be somehow deployed to the Cloud Clients. We
could assume that these are simply pre-installed at the clients. However, often it will be more
convenient to have the Cloud Client load the frontend components each time it interacts with
the SPEAR system. Think for example of a web application serving the frontend components
as some combination of HTML and JavaScript. This will allow for a minimum of requirements
on the Cloud Client and also allow the application provider to easily make frequent rolling
adjustment releases to the application. Here we describe the main steps to be taken in this
process. The corresponding sequence and communication diagrams are depicted in Figure 3.11
and Figure 3.12.

1. A cloud user (acting as an application user according to Table 2.1) instructs the Cloud
Client to load the Application Frontend components.

2. The Cloud Client contacts the Application Backend on one of the SPEAR instances,
and requests the frontend components. In order to ensure security this must be done
in an authenticated way, i.e., both the Application Backend and the Cloud Client must
somehow validate that they are in contact with the expected entity (e.g., by a common
login mechanism).

3. The Application Backend sends the Application Frontend to the Cloud Client, and the
Cloud Client installs the Application Frontend.

4. Once the Application Frontend is installed and running at the Cloud Client, the Applica-
tion Frontend then requests the Protocol Suite Frontend from the Application Backend.

5. The Application Backend uses the Secure Service Interface to request the Protocol Suite
Frontend compatible with the configuration of its DAGGER. The resulting Protocol Suite
Frontend is sent to the Application Frontend.

6. The Cloud Client displays the Application UI included in the Application Frontend to
the cloud user indicating that the frontend has been loaded and is ready for use.
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Figure 3.11: The sequence diagram for Loading the Frontend.
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Figure 3.12: The communication diagram for Loading the Frontend.

We note that there can be several variations on the this general process. For example, instead of
having the Application Frontend load the Protocol Suite Frontend once installed at the Cloud
Client, the Application Backend may serve all the frontend components in one go.
Also, if the trust model assumes an active adversary the Cloud Client may also need to validate
that the loaded frontend components has not been modified by a corrupt SPEAR instance. This
in turn can be achieved in a number of ways. The frontend components could, for example, be
signed by a trusted authority. After having loaded the frontend components the Cloud Client
would then have to check these signatures in order to finish the process. Alternatively, if no such
authority is present, one could imagine more involved protocols requiring interaction between
the Cloud Client and several (if not all) of the SPEAR instances.
As mentioned above, the process of loading the frontend components may have to be done
each time the cloud user interacts with the application. For simplicity, in the following process
descriptions we will assume that this has already been done.
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3.2.2 Giving Input

Once the frontend components is in place at the Cloud Client, any non-trivial application must
take some input data to compute on. The input will be supplied by cloud users using the Cloud
Client and the Application Frontend. When dealing with secure computation applications this
process is complicated by the fact that certain inputs are private, meaning they must be kept
secret from either some or all of SPEAR instances hosting the secure computation application.
In order to do this, and still allow for secure computation on the private input, the Application
Frontend utilizes the Protocol Suite Frontend. We describe the process step by step below. The
corresponding sequence and communication diagrams are in Figure 3.13 and Figure 3.14.

1. A cloud user (acting as an input party according to Table 2.1)uses the Cloud Client and
the Application UI to submit input data to the Application Frontend Logic.

2. The Application Frontend Logic may at this point do some local computation on the
input data. For example, this can include some preparation of the private input data
before it is submitted to the Application Backend on the SPEAR instances. Note, that
this may be the last chance for the application to do computation on the private input
data in unencrypted form. Thus, this step can be very important for the performance of
the application, as once the data is submitted to the Application Backend, it may only
be possible to compute on the private data using secure computation techniques.

3. The Application Frontend Logic separates private from the non-private input data. The
non-private data may be sent to the Application Backend in clear text.

4. The Application Frontend Logic hands the (possibly prepared) private input to the Pro-
tocol Suite Frontend using the Protocol Suite Frontend Interface. The Protocol Suite
Frontend encrypts the private input data in a format compatible with the Protocol Suite
used on the SPEAR instances, and hands the encrypted data back to the Application
Frontend Logic. We note that the process of encrypting the data may be interactive. In
particular the Protocol Suite Frontend may have to interact with the Application Backend
on one or more of the SPEAR instances in order to complete the process.

5. Once the Application Frontend receives the encrypted data it sends this data to the
Application Backend of the SPEAR instances.

6. The Application Backend then stores the received input data in its Secure Storage using
the Secure Storage Interface.

7. At this point the Application Backend may need to interact with the Application Backend
of other SPEAR instances to synchronize the process of giving input. For example, they
may need to agree on the order in which input was given. What exactly is needed for this
synchronization process is dependent on the SPEAR/DAGGER implementation and the
concrete application.

8. Finally, the Application Backend should acknowledge to the Application Frontend that
the input was received and securely stored, and the Application Frontend should notify
the cloud user of that through the Application UI.

We note, that in case the Secure Computation Engine of the DAGGER platform has the
capability of synchronized storage of data to Secure Storage, then as an alternative to steps 6
and 7 the Application Backend could use the Query Interface of the Secure Service Interface to
store inputs.
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Figure 3.13: The sequence diagram for Giving Input.
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Figure 3.14: The communication diagram for Giving Input.

3.2.3 Secure Computation

Depending on the concrete application the secure computation involved in the application
may be initiated by either one or more cloud users in the role of Application User or by the
application itself, once some condition is met.
For example, in a financial benchmarking scenario [8][10] banks submit requests to the appli-
cation to securely compute a financial benchmark of a prospective customer. I.e., the secure
computation is initiated at the request of certain application user. In this case the secure com-
putation could be initiated by the Application Frontend directly or through the Application
Backend.
Alternatively, in a secure survey system [14] the cloud users may simply continuously reply
to the survey, and after some time limit the application will stop accepting answers and start
securely computing the survey results. I.e., in this scenario the secure computation is initiated
by the application itself based on some trigger (in this case a point in time).
Here we will focus on the latter case, and go through the process step by step when secure
computation is initiated by the application. The corresponding sequence and communication
diagrams are in Figure 3.15 and Figure 3.16.

1. The Application Backend of the involved SPEAR instances recognizes that a certain
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condition is met requiring a computation to be done which requires secure computation.

2. The Application Backend forms a query to the DAGGER to request the needed secure
computation to be done. To form the query the Application Backend may need to fetch
private and non-private data from the Secure Storage component, or specicify in the query,
where the DAGGER system should fetch the required data.

3. The Application Backend submits the query to DAGGER using the Secure Service Inter-
face.

4. The Secure Service Interface may need to coordinate with the similar service interface
on the other SPEAR instances. E.g., before the secure computation is done the SPEAR
instances may need to agree that secure computation is to be done and what computation
should be done. Alternatively such synchronization could also be implemented in the
Application Backend or the DAGGER system itself.

5. When ready the Secure Service Interface will then forward the query to the Secure Com-
putation Engine of the DAGGER.

6. The Secure Computation Engine will then load the Secure Computation Specification
indicated by the query, and the Secure Computation Protocol Suite it is configured to
use.

7. SCE then starts executing the secure computation according to the specification by calling
the specified protocols in the Protocol Suite. Doing this may require the SCE to read and
store values in the Secure Storage component.

8. The protocols being called by the SCE will typically communicate with their counterparts
being called on the other SPEAR instances. They may also make calls to the specialized
Secure Hardware.

9. Once the secure computation indicated in the query is completed, the SCE makes the
result available to the Application Backend. The SCE does this either by storing the
result in the Secure Storage or returning it through the Secure Service Interface.

10. After the secure computation is done, or possibly while it is taking place the Application
Backend may also perform regular computation on non-private data.

Note that, as the inner workings of the SCE can be quite complex, we here just give a broad
strokes look into this component. For more details on the processes involved in the SCE we
refer to deliverable D14.1 [5].
Outside of the SCE there are also a number of design decisions left open here. For exam-
ple, should the application block waiting for a secure computation query to be handled, or
should it continue to handle requests from cloud users? Should the DAGGER try to handle
multiple request for secure computation concurrently, or should it queue queries handling just
one at a time? These decisions will be up to a combination of the concrete application and
SPEAR/DAGGER implementations.
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Figure 3.15: The sequence diagram for Secure Computation.
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Figure 3.16: The communication diagram for Secure Computation.

3.2.4 Querying for Output

Finally once an application has done some secure computation, the cloud users in the role of
Result Parties will need to read the resulting output of this computation. This process is more
or less the process of giving input in reverse. Like the input data, the output data can also be
either private or non-private and involve very similar complications. For completeness we will
give a quick step by step description of this process.

1. The cloud user requests the output of a given computation using the Cloud Client and
the Application UI.

2. The Application Frontend Logic forwards this request to the Application Backend.

3. If the result data is ready (i.e., the computation is done), the Application Backend will
fetch the results from the Secure Storage component. This data is then sent to the
Application Frontend.

4. If the result includes encrypted private data, the Application Frontend will use the Pro-
tocol Suite Frontend to decrypt this data.

5. Finally, the Application Frontend may do some local computation on the decrypted data
before it is presented to the cloud user via the Application UI and the Cloud Client.
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3.3 Development View

The development view is targeted towards the developers needing to implement or improve an
instance of the architecture. It describes how the logical structure of the system maps into the
physical development artifacts, representing the static organization of the software with respect
to the software development environment.

3.3.1 Overview

The overall component structure of the SPEAR platform is displayed in Figure 3.17. The
components implement the logical structure described in Section 3.1 and communicate via the
interfaces (boundaries) by making calls or sending messages. Each component can be viewed
as a separate module that can be developed and tested independently from the rest of the
system, allowing to organize the development in teams. Because of the abstract nature of this
architecture, most components relatively closely correspond to the classes shown in Figure 3.3.
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Figure 3.17: The general component view of the architecture.

When SPEAR is setup, the Cloud Client application connects to the SPEAR instances Applica-
tion Backend in order to interact with the application (i.e., fetch the Application Frontend, use
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it via the Application UI, provide inputs and receive results). For the security of the application
the Application Frontend comes with the necessary Protocol Suite Frontend plug-ins allowing it
to encrypt and decrypt various types of data in a way compatible with the underlying Protocol
Suites used by the DAGGER in a particular application.
The Application Backend implements the general business logic of the application. The parts
of the logic the application needs computed securely are described as Secure Computation
Specifications in a format understood by the DAGGER using the Secure Language Compiler.
The Application Backend either comes with its own SCSs or relies on the pre-available ones.
The Secure Service Interface library is then used for configuring and querying the DAGGER.
The Application Backend can use it for both tasks, while the Application Frontend can only use
it to make queries. When queried to run the secure computation, the library calls the Secure
Computation Engine to perform the computation requested. The Secure Computation Engine
loads the Secure Computation Specification needed to perform the requested computation,
and evaluates it using the Computing Virtual Machine. The virtual machine does this by
translating the specification to concrete calls to Secure Computation Protocols included in the
Secure Computation Protocol Suites supported by the Secure Computation Engine. The engine
may also provide the protocols with access to Secure Hardware via its interfaces in the installed
drivers. Both the engine and the application backend can use Secure Storage for storing or
retrieving data in a way compatible with secure computing.
The formal verification component indicates the parts of DAGGER that are covered by formal
verification activities undertaken in the project, aiming to ensure that a particular DAGGER
instance is behaving according to the protocol design and implemented correctly for some degree
of abstraction. These activities will be described in detail in Section 3.5.
From the developers perspective the system can be split into four larger packages (as displayed
in Figure 3.18), each responsible for particular features of the architecture and potentially being
developed by different stakeholders. For each large package we first state the rules that govern
the inclusion to the package, followed by the detailed description of its sub-packages, their
contents and relationships.

3.3.2 SPEAR Application

This package deals with the components related to the business logic of SPEAR Application
Services (both the business applications and the general SaaS services). It includes the appli-
cation frontends and backends, as well as the necessary secure data analysis algorithms. The
package is mostly developed by Application Developers (as defined in Section 2.3), although the
secure data analysis algorithms may be implemented by Secure Technology Developers as well.

ApplicationFrontend contains the Application Frontend Logic and the Application UI com-
ponents. Depends on the interfaces in the ApplicationBackend package to access the
application backend. Depends on the interfaces in the ProtocolFrontendSDK package to
access the Protocol Suite Frontend components. Potentially, but not necessarily, depends
on the SSI package to access the SCE.

ApplicationBackend contains the Application Backend Logic components and its Applica-
tion Backend Interface. The backend logic is accompanied with and relies on the SCSs
developed in the SecureApplication package. Depends on the SSI package to access the
SCE. Depends on the Resources package to access Secure Storage.

SecureApplication contains a set of Secure Computation Specifications that represent the
custom computations on private data required for the application. These are developed
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Figure 3.18: The development package overview of the architecture.

either by the Application Developers or the Secure Technology Developers using the lan-
guage and compiler provided by the SecureApplicationSDK package. The compiled ap-
plications conform with the SCS Format contained in the same SDK package, so SCE can
evaluate them.

3.3.3 DAGGER Core

This package contains the core DAGGER components and services responsible for providing
the secure computation capabilities to SPEAR Application package above. It also provides the
software development kits required for developing and using secure computation technologies in
applications and the DAGGER Core. The package is developed by an independent organization
of Secure Technology Developers.

SSI contains the Secure Service Interface component and its Maintenance Interface and Query
Interface structures. Depends on the SCE package to access the required interfaces of
the Secure Computation Engine.
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SCE contains the Secure Computation Engine and the Computing Virtual Machine compo-
nents. Depends on the SCS Format provided by SecureApplicationSDK package in order
to be able to read and evaluate SCSs. Depends on the ProtocolSDK package to use the
required interfaces needed to access the the loadable Protocol Suites. Depends on the
Resources package to access Secure Storage, and any other resources the package might
provide.

Resources contains the Secure Storage component and its Secure Storage Interface. Poten-
tially also contains the modules for other generic types of resources the SCE might need,
e.g. hardware modules. Depends on the HardwareInterfaces package to implement hard-
ware modules that SCE can generically work with. Deliverable D14.1 [5] describes how
the resources are used by the SCE and the Protocol Suites.

SecureApplicationSDK contains the Secure Language Compiler and the SCS Format nec-
essary for development of Secure Applications that the SCE can execute.

ProtocolFrontendSDK contains the PSF Interface and Data Type structures necessary for
development and use of Protocol Suite Frontends.

ProtocolSDK contains whatever interfaces and APIs the SCE and the Protocol Suites need to
work together. These interfaces are designed and documented in the deliverable D14.1 [5].
For this document we just proclaim the need for a package with such interfaces.

3.3.4 DAGGER Protocols

This package involves everything related to secure computation protocols. It is developed by
the Secure Technology Developers, but the work can be delegated to a separate and unrelated
organization from the one responsible for the DAGGER Core package.

ProtocolSuite contains the implementations of the Protocol Suite and Protocol components.
Realizes the interfaces provided by the ProtocolSDK package to make the Protocol Suites
usable by SCE.

PSFrontend contains the Protocol Suite Frontend and Data Type Impl components. Realizes
the interfaces of the ProtocolFrontendSDK package to make the Protocol Suite Frontends
usable by Application Frontends.

3.3.5 SPEAR Hardware

This package is responsible for secure hardware and making it usable by the upper packages.
The package can be developed by an independent organization of Secure Technology Developers.

SecureHardware contains the Secure Hardware Drivers and respective Secure Hardware In-
terface structures that the SCE and Protocol Suites might use to access secure hardware.
Depends on the implementation of the physical hardware.

SecureHardwarePhys just represents the existence of the physical secure hardware modules.
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3.4 Deployment View

The deployment view describes how the development artifacts map onto physical environments
such as hardware. It shows what are the physical nodes of the system, what software runs on
the nodes, and which nodes communicate.

3.4.1 Overview

The SPEAR platform is designed to be usable on the cloud in a Platform-as-a-service (PaaS)
model. It provides the building blocks allowing to construct secure applications that can then be
deployed onto the cloud. The deployment model of a SPEAR application highly depends on the
particular secure computation technique used in the DAGGER component of the application.

SPEAR
Instance 1

SPEAR
Instance 2

SPEAR
Instance M

End User
Client 1

End User
Client N

Figure 3.19: A high-level deployment view of the SPEAR architecture.

The various types of secure computation techniques, their deployment and trust models have
been analyzed in the deliverable D21.1 [13]. In general they can be grouped as centralized and
distributed. The centralized secure computation techniques like fully homomorphic encryption
use a single server to process and secure the data. The distributed techniques, such as general
secure multi-party computation (MPC), use several servers to process data. Their security
guarantees rely on the assumption that the servers are hosted by separate organizations that
do not collaborate. This means that the SPEAR application, in general, consists of a network of
interconnected SPEAR instances, with each individual instance deployed on a separate cloud
provider (see Figure 3.19) to satisfy the security requirements. In such a distributed cloud
deployment, several cloud servers are responsible for the security of the application. If the
SPEAR application is built using a centralized technique, it can reside at a single cloud provider,
and can be considered as the special case of the general model.
In either case, each SPEAR instance in a single SPEAR application deployment follows the
same configuration with, possibly, some minor deviations in its settings depending on the roles
assigned to the instances by the application or the underlying secure computation technique.
As it is also displayed on the high-level diagram, the SPEAR application running on a network
of SPEAR instances can be accessed by multiple end users via Cloud Clients.
In theory, there is no limitation on the amount of different users who can input data to the appli-
cation, nor the amount of SPEAR instances used in the computation, although in practice some
reasonable limits would apply. This, again, highly depends on the particular implementation
of the application and the chosen secure computation techniques, and a trade-off would have to
be made between performance and security. Protocols with more nodes generally require more
communication and become a bottleneck quite fast.
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In the following we describe in more detail, how the software is deployed on the physical
nodes. The focus will be on a single SPEAR instance and two types of Cloud Clients. The
corresponding detailed deployment diagram can be found in Figure 3.20.
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Figure 3.20: A detailed deployment view of the architecture.

3.4.2 SPEAR Instance

A SPEAR instance of an application is physically deployed on a single cloud provider. On the
lowest level the SPEAR instance can be seen as the overall cloud infrastructure allocated and
managed for the particular SPEAR application. It includes a virtual machine container, that is
configured with scalable resources like processor cores, memory, network, and, if required, some
SPEAR Secure Hardware. All these resources are made accessible to the virtual machine via
hardware virtualization. Optionally, a database is also allocated. The virtual machine is set
up with a suitable operating system, on which the software is deployed and run. The drivers
required to access the secure hardware are included as part of the OS installation. Below we
list the software deployed on a SPEAR instance.

Application Server This is an execution environment node that allows running the SPEAR
application backend and exposes its interface to the Cloud Clients. Typically this would
be an application server with a web interface.
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AppBackend.lib This artifact is compiled from the ApplicationBackend package and deployed
on the Application Server, where it is then executed to run the general SPEAR application
logic.

ssi.lib This artifact is compiled from the SSI package and together with its configuration file
(ssi.config) deployed on the Application Server. The application in the AppBackend.lib
artifact uses this library to access the Secure Computation Engine (SCE).

ssi.config This represents the deployment specification for the ssi.lib artifact and describes
settings related to accessing an SCE. For example, if the SCE is accessed via the network
interface, then corresponding network addresses and settings are specified.

SCE.bin This artifact is compiled from the SCE package and together with its configura-
tion file (SCE.config) deployed on the operating system. When executed, this artifact
manifests the Secure Computation Engine node.

SCE.config This configuration file represents the deployment specification for SCE.bin arti-
fact. It describes settings such as the credentials of the SCE, the other SCE nodes that
this node communicates with (residing on separate SPEAR instances of the same SPEAR
application), the Protocol Suites this node should use, and what storage and hardware
modules to load.

SecureApp.scs This artifact is compiled from the SecureApplication package and deployed
on the Secure Computation Engine node.

ProtocolSuite.lib This artifact is compiled from the ProtocolSuite package and together with
its configuration file (ProtocolSuite.config) deployed on the Secure Computation Engine
execution environment. When loaded, it provides the SCE with secure operations.

ProtocolSuite.config This configuration file represents the deployment specification for the
ProtocolSuite.lib artifact. It contains settings specific to the implementation of a secure
computation technique in the library.

SecureHardware.driver This artifact is compiled from the SecureHardware package and is
required by the SCE.bin and ProtocolSuite.lib to work with the secure hardware devices.
It is deployed on the OS when SPEAR instance is set up.

Secure Storage An execution environment responsible for secure persistent storage and used
by the Application Server and the Secure Computation Engine. There is a requirement
that the Secure Storage is only accessible within the same SPEAR instance and not
outside of it. It may rely on its own storage mechanisms, or use an external database
node allocated for the SPEAR instance.

Ideally, all of these artifacts should be exchangeable, meaning that the blocks can be replaced
with alternative compatible blocks implementing same or similar interfaces, if need be. This is
a design choice for enabling modifiability of the platform structure.

3.4.3 Cloud Client

The SPEAR cloud applications can be accessed by cloud users over the network from a variety
of End User Devices (see Figure 3.20), such as a PC, a smartphone or even an embedded
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system. The device should have a sufficiently advanced operating system capable of running
the required Cloud Client software supported by the SPEAR application.
The Cloud Client software is installed on the End User Device and is responsible for hosting the
components that allow the user to interact with the SPEAR application deployed on SPEAR
instances. In this architecture we targeted two kinds of Cloud Client software: web clients and
standalone clients.
The Web Cloud Client is basically a web browser capable of displaying web pages and running
the required JavaScript, Java applets or other similar browser plug-ins. With a web client the
Application Frontend is pulled from the Application Backend of a subset of SPEAR instances,
and then displayed to and used by the user. The advantage of this solution is that the user
doesn’t have to fetch all the software for all versions and protocols in advance, but can fetch only
the needed ones. This increases compatibility with the SPEAR instances, should the application
deployment change over time. However, one has to ensure that the software received from the
backend is not modified or sent by a malicious party. This can be done with, e.g., a public key
infrastructure where the SPEAR instance signs the data it sends. The client would then only
need a public key of the SPEAR instance installed beforehand.
The Standalone Cloud Client is a self-contained client that is run as a separate process, and
not as an add-on of an existing software. It is typically installed on the end user device in
advance (e.g. via a digital distribution platform). In addition to the Application Frontend the
standalone client also contains the necessary logic for displaying the application UI as well as
communicating with the SPEAR instances, as it cannot rely on a host client like a browser for
these capabilities. Since the limitations usually enforced by the host client software no longer
apply, the standalone client can be customized with a wider choice of capabilities, including the
custom networking protocols allowing to access the DAGGER engine of the SPEAR instances
bypassing the general backend logic. Other advantages of this solution are that it allows to save
on communication (i.e. no need to fetch the frontend as in case of web clients) and can rely on
other mechanisms to ensure that the software is legitimate. For example, in case of an app store
one would trust its curator to handle the certificates for signing the software properly. The end
user can also receive the required software directly from the Secure Technology Provider and
then manually install the software on his device, completely omitting any third parties in the
delivery chain.
Below is the list of software deployed on the Cloud Clients.

AppFrontend.lib This artifact is compiled from the ApplicationFrontend package. It allows
the user to navigate and use the SPEAR application.

PSFrontend.lib This artifact is compiled from the PSFrontend package and provides the
AppFrontend.lib with capabilities to encrypt and decrypt data in a way compatible with
the SPEAR configuration on the cloud. While the Web Cloud Client fetches the required
PSFrontend libraries over the web, the Standalone Cloud Client comes with a preconfig-
ured set of such libraries.

ssi.lib This artifact is compiled from the SSI package and deployed on the Standalone Cloud
Client. The application in the AppFrontend.lib artifact uses this library to directly access
the Secure Computation Engine (SCE) on the SPEAR instances.

SPEAR.config This configuration file represents the deployment specification for the client
side artifacts above and is deployed on the Cloud Client software. It describes the general
configuration of the SPEAR application and includes settings such as the location of
SPEAR instances that the Cloud Client should communicate with, and the Protocol
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Suite Frontends used by the SPEAR application and available to the Cloud Client. Other
application specific settings may also be included.

3.5 Verification and Integrity

One important additional aspect is to gain assurance that a given scheme is actually working
as expected. The goal is to enable users to understand to what extent they can trust the
results produced by a given computation. This is especially relevant for the future business
applications (e.g. the Supply Chain Management Prototype developed in WP24), where the
users providing private organizational data to a cloud system for processing are later required
to base their business decisions on the outputs they receive from the computation. This aspect
has three dimensions that are mutually complementary:

Cryptographic Protocols The correctness of the execution of the protocol (as usually proven
in a mathematical proof) indicates that the cryptographic protocols indeed produce the
expected outcomes with the desired security guarantees.

Formal Methods Are tools that can validate given formal properties of a system. An example
is the correct implementation, i.e., whether a desired protocol (the researcher’s intent)
has been correctly translated into a specified protocol, and then correctly implemented in
a given programming language.

Hardware-enhanced Assurance The last aspect is to protect software at execution time
and design hardware that supports the security of the software that is executed.

3.5.1 Integrity assured by Cryptographic Protocols

Cryptographic protocols usually guarantee that outside attacks can be detected. E.g. if the
network is disrupted or messages corrupted, then the protocol can detect such failures and
will either recover or else identify a failure of the protocol. The Task 1.3.2 in WP13 of the
PRACTICE project focuses on this aspect.
Depending on the protocol, there are different variants of protocol integrity. One approach is
that protocols fail if attacked. I.e., a participant usually notices if a problem has occurred.
Another potential objective is “universal verifiability”. This indicates that cryptographic pro-
tocols produce evidence that is sufficient for outsiders to validate the computation and a result
of a protocol. For example for electronic voting universal verifiability allows a voter to validate
that his vote was indeed counted.
The main focus of the PRACTICE project is privacy-preserving computation in the cloud.
However, when it comes to secure computation in the cloud, there are security issues besides
privacy that arise naturally. For cloud computation to be useful, it is important that the
results obtained through secure computation are correct; cloud providers should not be able
to manipulate the outcome of a computation. The importance of correctness of the protocol
outcome is implicit in Goal 4 of Table 2.1.
Protocols for secure multi-party computation (MPC) form the basis of much of the work in
the PRACTICE project. There exist MPC protocols which ensure that the outcome of a
computation is consistent with the input. However, such protocols are generally less efficient
than protocols which do not guarantee correctness. Furthermore, these protocols can only
guarantee the correctness of the output to those who participate in the execution of the protocol.
When MPC is used to distribute a computation entirely between external parties, as is the case
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in PRACTICE, the consistency between input and result is no longer guaranteed to the input
and result parties. Therefore, these protocols may not be sufficient to ensure that the outcome
of a computation is correct.
To avoid the need to involve possibly many result parties in the computation protocol, the
parties who execute the computation protocol should prove the correctness of the outcome to
the result parties in a way requiring minimal interaction from the result parties. A protocol
which allows the receivers of result to verify the correctness of those results in this manner is
called a verifiable computation (VC) protocol.
The notion of verifiable computation can be taken further than just allowing the result parties
to verify the computation result. In cases where the general public has an interest in the correct
execution of a computation, it might be beneficial to allow anyone to verify the correctness of the
protocol outcome. A protocol which allows this is called universally verifiable. A universally
verifiable protocol should require no interaction and minimal communication on part of the
verifier. Even if universal verifiability is not required in a particular application, a universally
verifiable protocol may still be of interest, as it allows for verifiable computation with minimal
overhead for the result parties.
Verifiable computation can be achieved by having the computation parties either show that
they have correctly carried out the computation protocol or prove directly that the output is
consistent with the input. Both approaches will be described in more detail in the following.
MPC protocols which ensure the correctness of the protocol outcome typically do so by letting
each participant prove, in a mathematical sense, for every protocol step they carry out to every
other participant that it has carried out the step correctly. If each step of the protocol is carried
out correctly, it follows that the outcome of the entire protocol is consistent with the input.
In order to avoid revealing any of the privacy sensitive information that is being computed on,
these proofs are performed through an interactive protocol that reveals no information other
than that a protocol step has been executed correctly. The interactive nature of these proofs
prevent them from being usable to convince external parties of the correct execution. In some
security models, which may be reasonable in practice, it is possible to transform these interactive
proof protocols into a non-interactive protocol, whose resulting proof is transferable to others.
This allows the computation parties to convince those not involved in the computation that
the computation protocol has been carried out according to specification [17, 18].
Verifiable computation has also been studied independently from privacy-preserving methods
of computation. Verifiable computation allows for outsourcing computation and being able to
verify that the result is correct. VC is of independent interest and has been studied separately
from methods for privacy-preserving computation. It is possible to create a protocol for out-
sourced computation that is both privacy-preserving and verifiable by appropriately combining
certain MPC and VC protocols.
For VC to be practical, verifying the correctness of a result should be more efficient than
carrying out the computation in the first place. Due to a recent breakthrough in the field,
a VC scheme now exists which can be considered nearly practical [16]. When this scheme is
combined with an MPC protocol, the efficiency requirement for VC implies that the overhead
of augmenting the MPC protocol to be verifiable is relatively minor [19] for the result parties.
This approach of augmenting MPC protocols with VC protocols can be applied fairly generally,
however in order to minimize the overhead introduced by the VC protocol and ensure that the
resulting protocol is efficient, current VC techniques require an MPC protocol based on linear
secret sharing.
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3.5.2 Formal Verification

The PRACTICE project covers a wide range of cryptographic protocols, software development
techniques and application scenarios. However, given the available resources, only a fraction
of these solutions can be covered by formal verification. This led to two possible strategies
when designing a formal verification framework for PRACTICE: i. concentrating on a single
layer in the stack, providing a more extensive coverage of the technologies in that layer; or ii.
addressing all layers, but limiting the scope of the covered techniques at each layer. As described
in Deliverable D22.2, we have opted for the latter option, as we believe that it is more useful
to demonstrate the feasibility of providing end-to-end formal guarantees of correctness and
security throughout all stages of the development process. This led to the design of a complete
formal verification framework, consisting in three layers:

• A verified secure computation protocol suite that can be used to enrich arbitrary secure
computation engines. This will be responsible for taking secure computation descriptions
and executing them according to well-defined semantics. More specifically, this will consist
in a verified implementation of Yao’s two-party secure function evaluation protocol based
on garbled circuits and oblivious transfer, to be formalized and mathematically proved as
secure using cryptographic proof tools.

• An intermediary secure computation description processing stack, with the purpose of
converting high-level specification of programs into secure computation descriptions, com-
patible to be executed within the computation engine. Here, to avoid mis-compilation
vulnerabilities, we intend to apply mechanized program verification methods to the com-
piler itself, to prove that the generated code behaves as prescribed by the semantics of
the source program.

• A high-level language to allow application developers to specify the secure computations
to be performed, so that these can meet the intended functional and security requirements.
In this regard, we are particularly interested in extending the security guarantees that
the domain-specific SecreC language provides when manipulating secure computation
specifications. This will consist in the construction of a tool that allows the specification
and verification of information flow restrictions imposed by an application.

Deliverable D12.3, submitted in M22, describes these formal verification components in greater
detail, as well as the associated formal verification requirements. The role of this framework
within the architecture of PRACTICE is to provide high-assurance instances to some of the com-
ponents described in Section 3.3: a Secure Computation Protocol Suite, and a Secure Language
and Compiler that can generate compatible Secure Computation Specifications. Figure 3.17
(also on Figure 3.21, for convenience) includes a Formal Verification component that specifies
this coverage of the ongoing formal verification activities within the PRACTICE architecture.

Since formal verification activities will be covering only a subset of the DAGGER components,
deployment requires that they are integrated into (at least) one instance of the DAGGER
package. This requires the implementation of two interfaces (observable in Figure 3.21): an
interface to enable the Secure Computation Engine to load a Secure Computation Specification,
and a Protocol API allowing the Secure Computation Engine to load, initialize and run the
verified protocol suite. The work developed in the context of verifying high-level computation
specifications and descriptions will yield additional instances of the Secure Language Compiler
component that can operate as isolated tools, and so their integration in the PRACTICE
architecture requires no further work.
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Figure 3.21: A highlighted section of Figure 3.17.

The integration of the formally verified components into a DAGGER instance will be carried
out within WP14. The deliverable D14.1, also submitted on M24, refines the low-level part
of the PRACTICE architecture, and specifies how protocol suite implementations (that follow
the defined architecture) can be flexibly ported between the several DAGGER instances. The
formally verified components themselves will be fully detailed and implemented in D14.3 (due
M36) using the architecture in D14.1.

3.5.3 Using Hardware-enhanced Security for Integrity

The final goal is to ensure that hardware can guarantee correct execution of a program, that
the hardware can convince others of this fact, and finally using hardware security capabilities
(such as a secure key store) to enhance security and efficiency of implementation.
The goal of run-time integrity is to isolate executed software from malicious adversaries to
ensure integrity. The standard tool is the software isolation where the operating system ensures
that critical processes cannot be accessed by other potentially untrusted processes. Another
protection mechanism are trusted execution environments (TEE), e.g. [12]. A TEE enforces
mandatory isolation of a critical process (e.g. a cryptographic key store). Unlike traditional
isolation of processes by the operating system, TEEs usually do not consider the operating
system to be trusted. The simplest traditional approach is to add an isolated processor (e.g. a
smart card). Recent TEEs like ARM TrustZone, Intel TrustLite and Intel SGX provide TEE
capability as part of the main processor. This simplifies integration (since the bus between the
TEE and the processor is usually protected) and also allows for cheaper manufacturing cost.
Another aspect of run-time integrity is attestation. Attestation augments integrity protection
by allowing others to validate that the software is indeed unmodified. An attestation protocol
developed in PRACTICE [1] allows scalable attestation of huge numbers of nodes. Once a
verifier is convinced that a set of computing nodes is correct, the verifier can then invoke these
nodes for critical services.
For a more detailed overview on trusted hardware please refer to deliverable D12.2 [10].
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Chapter 4

Architecture Implementations

Up until now we have been describing the general architecture for SPEAR and DAGGER in
a completely abstract way. In this chapter we will show how the general architecture can be
implemented in several alternative ways using different sets of particular secure technologies.
Before we can continue we first need to get the context of what technologies there are and how
they correlate with the architecture. Figure 4.1 displays the big picture diagram containing the
important layers of the SPEAR and DAGGER architecture, and maps all the current technology
artifacts of all the partners in the PRACTICE project, and the possible relationships of those
artifacts onto these layers. By looking at the big picture it is possible to isolate different ways
of building the architecture from top to bottom.
In the following sections we are going to show the slices of the big picture, i.e. more specific
versions of the big picture, explaining how the architecture can be implemented on specific
platforms using certain technology stacks.
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4.1 Enterprise web applications

4.1.1 Example variant with FRESCO

FRESCO is a framework for doing MPC with the focus of streaming circuits and enabling
runtime changes of the circuit construction if need be. It is generic enough that any protocol
could be implemented in FRESCO and the architecture described in this deliverable fits quite
well with FRESCO. FRESCO is written in Java, and uses no virtual machine for evaluating.
Instead, FRESCO’s SCE contains an evaluator written in Java which handles the evaluation
directly from the Secure Computation Specification which, in FRESCO’s case, consists of a cir-
cuit description. This description is, as mentioned before, dynamic and is subject to change on
runtime. An application developer must use the Java language to write the circuit descriptions.
FRESCO does not contain the entire stack of the architecture, but implements only (most of)
DAGGER. Figure 4.2 describes the component-view from FRESCO’s point of view, if FRESCO
would be expanded to implementing both SPEAR and DAGGER. However, Figure 4.2 is in
line with an instantiation of the architecture in another research project where FRESCO was
used.
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Figure 4.2: The component view with the Java platform and the FRESCO framework.
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The concept is that the Application Developer develops an application using the circuit de-
scription language from FRESCO to write protocol-independent applications. The application
is input as a generator of the circuit description along with the input of the user(s). Then,
when running, the application gets context by choosing the protocol to run the application.
This choice can be done by the application programmer, but could also be a configuration
decision from the person configuring DAGGER. Then, the circuit description is evaluated by
the evaluator which expands the description to a new sub-circuit (small enough for the memory
available) for each request to the generator. The appointed protocol is then invoked in order
to perform the actual MPC on this sub-circuit. If needed, the protocol fetches data from the
storage facility, which is currently the file system or an in-memory storage.
The components currently not implemented are the Secure Service Interface and, in part, the
Protocol Suite Frontend. These could be instantiated in FRESCO. As for the Secure Service
Interface, the application is written using the circuit descriptions and is therefore just a single
circuit description generator. Thus, there is really nothing to translate other than basically
casting from an abstract query to a circuit description generator. As for the Protocol Suite
Frontend, FRESCO would need, for each implemented protocol, to implement a way to in-
put/output data. In the cloud setup, this is not always trivial - especially for protocols secure
against malicious adversaries such as SPDZ. There are certainly solutions and, for giving input,
one of these are based on precomputed Beaver-triples1. The idea is to have each SPEAR node
send their share of a triple. The user then reconstructs it and checks that a + b = c and sends
his input x as x − a. The servers can now compute the user’s input as [a] + (x − a) = [x].
The frontend would in the case of SPDZ be located at the End Cloud Client and would do as
described above. Similar methods could be used for other protocols in order to let the user give
input and receive output.
Since FRESCO is written in Java and does not currently utilize any specific hardware instruc-
tions or secure modules, this means that it can be deployed on any cloud setup. We also
note, that a FRESCO is compatible with the architecture for integrating secure computation
techniques into DAGGER, and an implementation of that architecture based on FRESCO is
described in the deliverable D14.2 [4] also due M24.

4.1.2 Example variant with Sharemind

Sharemind is a general purpose MPC application server. In this section we describe how Share-
mind may be used for implementing a web application on the Java platform. The general
architecture of the described system can be found on Figure 4.3. The entire DAGGER stack
is implemented in the Sharemind framework. Sharemind components are designed to be ap-
plication independent where possible, thus allowing for easier and faster development of new
applications.
Common Java libraries are used to implement the web service. Application specific Java handles
the business logic on the public data and forms the Application Backend. The Application
Frontend can be served either by the same Java server or by a different source, depending on
the requirements of the application. The Java Application Backend uses a Java Native Interface
(JNI) client library to issue requests to the Sharemind Secure Computation Engine. This library
acts as the Secure Service Interface and serves as a proxy between the Application Backend
and the Sharemind SCE, transferring public and secret shared data over a secure channel. The
JNI library is required to call the C/C++ Sharemind client library from Java code.

1A Beaver triple can be seen as [a] + [b] = [c] where a and b are random, but sums to c. [ ] denotes a secret
shared value.
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Figure 4.3: The component view with the Java platform and the Sharemind framework.

As an alternative to the Java web service, the service can also be implemented using Node.js2

(see Figure 4.4). Node.js is a JavaScript runtime built on the Chrome’s V8 JavaScript engine.
In this case, the business logic that forms the Application Backend is written in JavaScript.
As before, the server can also serve the Application Frontend if required. Similarly to the
JNI library, the Node.js server uses a loadable module implemented as a Node.js add-on and
embodying the Secure Service Interface to communicate with the Sharemind SCE. The same
C/C++ Sharemind client library is wrapped by the loadable module. However, in this case,
the calls are made from the JavaScript code instead of the Java code.
The business logic for the private data is specified in application specific SecreC code. With the
SecreC compiler this code is compiled into Sharemind bytecode forming the Secure Computation
Specification for the application. Upon execution, the bytecode receives the provided input from
the client and returns the outputs produced by the execution.
When queries are requested from the Sharemind SCE, the appropriate bytecode is executed on
the Sharemind Computing Virtual Machine. The virtual machine loads a Secure Computation
Protocol Suite through a modular API. The running bytecode issues calls to the Secure Com-

2Node.js – https://nodejs.org/
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Figure 4.4: The component view with the Node.js platform and the Sharemind framework.

putation Protocols implemented in the protocol suite which are then executed by the virtual
machine.
The protocol suite also implements the secret sharing of public values and reconstruction of the
public values from the shares. A Protocol Suite Frontend client library implementation, which
is compatible with the server, is available for the web client as a JavaScript library.
For the Secure Storage of the private data it is possible to use the Sharemind database ca-
pabilities or alternatively use the Application Backend itself to store the data. In the latter
case, Sharemind will only be used as a stateless Secure Computation Engine. Note that for
some types of applications it is better to store the data on the Sharemind side for performance
reasons, because Sharemind can then read the data directly from the disk.
The general data-flow of the web application may be as follows:

1. The web client inputs some public and private data through a web interface. The private
data is secret shared in the browser.

2. The web client sends the data to the Java server over an HTTPS connection.

3. The Java server parses the data and requests a query on the private data from the Share-
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mind Secure Computation Engine. The request is sent to Sharemind by a C/C++ library
over a TLS connection, called through Java Native Interface.

4. The Sharemind SCE performs the requested operations, executing the protocols specified
by the bytecode, and returns the results in either secret shared or public form to the Java
server.

5. The Java server returns the results to the web client.

6. The web client re-assembles the shares into public values and displays the results.

In a standard deployment setting, there are multiple instances of the components, depending
on the used protocol suite. For example, the additive 3-party secret sharing scheme requires
three instances of most of the components. Each set of components is deployed on a different
server. Although it is possible for the Sharemind server to reside on different infrastructure
from the web server, it is usually not necessary.
We note, that Sharemind is also compatible with the protocol integration architecture described
in PRACTICE deliverable D14.1 [5]

4.2 Standalone CLI and GUI applications

4.2.1 Example variant with ABY

ABY is a framework for efficient mixed-protocol secure two-party computation [7]. It con-
siders a semi-honest adversary and is written in C/C++. ABY efficiently combines secure
computation schemes based on Arithmetic sharing, Boolean sharing (GMW), and Yao’s gar-
bled circuits and makes available best-practice solutions in secure two-party computation. It
allows to pre-compute almost all cryptographic operations and provides novel, highly efficient
conversions between secure computation schemes based on pre-computed oblivious transfer ex-
tensions. ABY allows the designer to express the functionality in form of standard operations as
known from high-level languages and mix several secure computation protocols. ABY supports
several standard operations and provides example applications, such as private set intersection,
biometric matching and modular exponentiation. In the layered architecture in Figure 4.1,
ABY serves as the Secure Computation Engine.
There are two ways for providing Secure Computation Specification to the ABY framework.
Firstly, it can be implemented by the developer of the application in the C/C++ language,
including special ABY share types and the conversion methods between them. The developer
thus has to be familiar with the advantages of different sharing methods and use them as
efficiently as possible. Secondly, the developer may use combinational circuits generated by
TinyGarble [20]. It optimizes circuits described in Hardware Description Language (HDL) for
secure computation, and a toolchain that evaluates these in ABY was proposed in [6]. The
advantage of this approach is that HDL circuits can be generated from high-level synthesis.
In this section, we detail the first approach using only the ABY framework from [7]. We describe
how DAGGER is instantiated using this mixed-protocol framework and detail a possible SPEAR
instantiation.

Instantiation of DAGGER Using the ABY Framework

The ABY framework can be used to instantiate DAGGER in the general architecture depicted
in Figure 4.1, being a two-party secure computation framework enabling secret sharing with
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three sharing types (Arithmetic, Boolean and Yao sharing). The ABY framework serves as a
Secure Computation Engine within the DAGGER. The component view of ABY is depicted
in Figure 4.5. ABY has all the components that we rely on for secure computation, but in its
current form, it is not deployed as a cloud application. We describe the existing components
and their relations to each other.
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Figure 4.5: The component view with the ABY framework.

A secure computation developer for describing a given functionality in the ABY framework, as
Secure Language, uses the C/C++ programming language extended with special share types
(ashr, bshr, yshr for arithmetic, Boolean and Yao sharing, respectively), sharing objects and
efficient conversions between the sharings (B2A, A2Y, Y2B and B2Y). An object is explicitly
instantiated for each sharing that is then used in the mixed protocol (ArithmeticSharing,
BooleanSharing, YaoSharing). These objects provide an interface to the atomic operations
and abstract from the underlying representation [7]. Thus, they serve as the Secure Compiler.
The developer specifies his application in the Secure Language and manually constructs the
corresponding Boolean or arithmetic circuits using a wide variety of building blocks, which is
then compiled into the Secure Computation Specification, the circuit representation of ABY. As
mentioned before, ABY supports three types of sharings, i.e., has three protocols in its Secure
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Computation Protocol Suite: arithmetic circuits via Beaver’s multiplication triples [2] that
are pre-computed with oblivious transfers (called Arithmetic sharing), the Goldreich, Micali,
Wigderson (GMW) protocol [9] (called Boolean sharing) and using garbled circuits [22, 23]
(Yao sharing). An advantage of using ABY is the ability to construct efficient mixed protocols
that are used as Secure Computation Protocol : as shown in the architecture instantiation of
ABY in Figure 4.5, it uses one or more (up to three) secure computation protocols from the
Secure Computation Protocol Suite. ABY does not rely on a Computing Virtual Machine for
executing the instructions in the specification, in our case the Secure Service Interface performs
the execution of instructions. As for now, this Secure Service Interface is the command-line
interface of any GNU/Linux distribution. As Secure Storage, ABY uses the file system or in-
memory storage, which could be replaced by a secure database when deployed in the cloud.
The Secure Computation Protocol Suite Frontend is C/C++, extended with the defined sharing
types ashr, bshr and yshr as mentioned before.

Instantiation of SPEAR Using the ABY Framework as DAGGER

We describe how to instantiate two SPEAR instances with the ABY framework as a Secure
Computation Engine within the DAGGER. In the layered architecture in Figure 4.1, one can
observe that ABY can be instantiated in multiple ways: there exist a scenario, where the End
User Client is a C/C++ client application and an other scenario, where it is a Web browser.
However, here we consider a standalone command-line application as End User Client in a
possible instantiation.
At its current state, ABY does not have an Application Frontend and Application Backend
implemented. Also, the Secure Service Interface would change when deployed in the cloud.
The Application Frontend is used by the End User Client and is responsible for encoding the
input and decoding the output. In ABY, three secret sharing types and efficient conversions
between them and the cleartext are implemented: Arithmetic, Boolean and Yao sharings, as
described above. The concrete sharing method could be specified by the developer correspond-
ing to the types that are used in the Secure Computation Protocol Suite Frontend (the best
suited for a given functionality). Then the Application Frontend would access the Application
Backend, providing a Secure Computation Specification in C/C++. The actual execution of the
secure computation could be performed after providing the Secure Service Interface the circuit
descriptions, which then translates them into the corresponding circuits.

4.2.2 Example variant with Sharemind

In this setting the main difference from the web application setting, described in Section 4.1.2,
is that the client communicates directly with the Sharemind Secure Computation Engine. The
architecture of the system is described on Figure 4.6.
The client Application Frontend is responsible for secret sharing the data and putting the shares
back together. It can also perform useful transformations on the data before it is sent to or
after it is processed by the SCE. For example, the client can filter invalid input values or draw
plots from computation results. The standalone client application can be built as a standard
C/C++ application. Other languages can also be used for the user interface, if the C/C++
bindings for the Sharemind client library are made available through a native interface.
The Application Backend is only used for maintenance tasks on DAGGER and is not required
in all setups. The other components have the same purpose and behavior as described in
Section 4.1.2.
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Figure 4.6: The component view with a standalone client and the Sharemind framework.

The standalone application has less components than the web application and therefore, the
data-flow is simpler. In the standard case, the data-flow can be as follows:

1. The client inputs some data through a CLI or a GUI. The private data is secret shared
in the client application.

2. The client application sends the data directly to the Sharemind SCE and requests some
operations to be performed on the data.

3. The Sharemind SCE performs the requested operations, executing the protocols specified
by the bytecode, and returns the results to the client in either secret shared or public
form.

4. The client re-assembles the shares into public values and shows results in a suitable
manner.

Similarly to the web application setting, the instances of the components have to be deployed
on multiple non-colluding servers. The number of servers depends on the protocol suites used
for the application.
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4.2.3 Example variant with SEEED/HANA

SEEED provides secure storage and search over encrypted data and implements parts of DAG-
GER as seen in Figure 4.1. A wide range of SQL statements over encrypted data can be per-
formed with SEEED without any intermediate decryption. This is achieved via a mechanism to
make encrypted data available in a structured way: the layering of various property-preserving
encryption schemes, so called onions of encryption. To ensure that the most secure encryption
scheme is used and to save space, the ciphertexts produced by the various schemes are nested,
like layers in an onion (hence the name), from most secure scheme (outermost layer) to plaintext
(center layer):

Randomized (Deterministic (Order Preserving (Plaintext Value))).

A special case is the homomorphic encryption scheme developed by Paillier [15] which requires
its own onion and special processing for the aggregate function SUM.
Applications built on top of SEEED can use custom onions to fit the needs of their users and
protect their data. For example, an application that only uses equality comparisons doesn’t
need the order-preserving layer presented above.

SEEED general sequence and data flow

The encryption (i.e. rewriting) of the SQL statements and decryption of the returned result
happen transparent to the application. The general sequence of this is as follows:

1. The End User sends a data request via plain SQL statements to the Java Interface which
forwards the request (if necessary with some additional processing) to the SEEED JDBC
driver.

2. The SEEED JDBC driver represents our Secure Service Interface component in the DAG-
GER framework (see Figure 4.1).

The driver has a Query Rewriting Logic and Crypto Library (and they correspond to the
Protocol Suite Frontend). The Query Rewriting Logic rewrites the received statements –
so they can be performed on the encrypted data – with the help of a Crypto Library. The
Crypto Library has access to a Key Store to manage the keys necessary for the different
encryption schemes so plaintext values can be encrypted with the scheme suited for the
SQL query. The rewritten SQL statements are sent to the HANA JDBC driver.

3. The SQL query engine in HANA – which can be seen as the Computing Virtual Ma-
chine component – interprets the rewritten SQL query, which is our Secure Computation
Language.

4. The encrypted database is the Secure Storage component in the DAGGER framework
and it is accessed with the help of the securely rewritten SQL operators.

As mentioned before, the encrypted SUM aggregation requires a special handling – the
Secure Computation Protocol – since addition of plaintexts is realized via multiplication
on their corresponding ciphertexts in Paillier’s encryption scheme [15].

5. The encrypted results of the query are sent back to the SEEED JDBC driver which is
able to decrypt the results (with the help of the Key Store) and (if necessary) further
process the decrypted results on a local temporary database.
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6. The decrypted result is then presented to the End User Client, which is a Java Application
or a Web Interface with an Application Service.

The Key Store is realized with the standard Java KeyStore. Furthermore, HANA provides the
Cloud Interface and Infrastructure for the SEEED applications.
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Chapter 5

Conclusion

In this document we have designed a flexible abstract architecture for the Secure Platform
for Enterprise Applications and Services (SPEAR), where application components can be ex-
changed, secure computation frameworks switched and the infrastructure it runs on can vary.
We have shown that it is actually possible to build such systems and can even be done in an
easy to approach manner.
We have discussed the main use cases involved in the architecture and derived the necessary
functional and quality requirements, that the developers wanting to implement an instance
of the SPEAR platform should conform to. We then presented a detailed description of the
conceptual static structure and dynamic behavior as well as the physical development and
deployment models of the platform. We also discussed how the SPEAR platform can be verified
and its integrity assured.
The platform architecture is easy to use for users in general, whether they are application
users or developers. The developers will have an easy time constructing applications that are
easy to deploy onto the SPEAR-enabled cloud. This also enables easy-to-deploy testing of
real-time scenarios without increasing the cost by much compared to normal local testing. It
also decreases the time to market, as the platform can be automatically set up by the cloud
with respect to the infrastructure, the underlying technologies and communication with other
nodes. For Application users, it means easy to use secure cloud applications. In theory, any
cloud application can be built using the SPEAR platform, that provides the applications with
security guarantees as long as the secure language is used correctly.
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