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Executive Summary

Typical mechanisms for secure computation outsourcing used in the real world guarantee con-
fidentiality: the parties involved in the computation are sure their inputs and the results they
obtain are secret. However, these protocols do not guarantee efficient verifiability. That is,
the parties involved in the protocol may not have the means to independently check that the
results of the computation are correct (in an efficient way or without relying on uncomfortably
strong trust assumptions) or to prove to third parties that the results are correct. Yet, in many
scenarios, such verifiability guarantees for the result of a protocol execution are crucial.

This deliverable presents a series of protocols which advance the state of the art in providing
efficient solutions to this problem that were developed by participants in PRACTICE WP13.
It is divided into two parts that correspond to two alternative approaches to the problem
of verifiability that offer different functionality, trust and efficiency tradeoffs for real-world
applications: i. verifiable multiparty computation and ii. verifiable computation from hardware
assumptions.

In the first part we discuss two protocols, the first of which (UVCDN) follows the approach of
enhancing the built-in proofs of correctness in a existing multiparty computation protocol to be
convincing to anyone, not just protocol participants. The second protocol, called Trinocchio,
uses the approach of layering a Verifiable Computation (VC) scheme on top of an Multiparty
Computation (MPC) protocol. To highlight the efficiency of the latter protocol, we discuss two
case studies, including some performance figures. Both protocols achieve universal verifiability
and do not rely on special hardware assumptions, so they can be deployed in practical systems.

The second part of this report deals with constructions of protocols for secure outsourced
computation that rely on modern trusted hardware technologies, namely technologies such as
Intel’s new SGX which provide Isolated Execution Environments (IEE) capabilities. We give
precise definitions of what IEE-enabled architectures offer, in the style of cryptographic provable
security, as to offer a strating point formalizing and proving the security of secure computation
protocols. We then design and formally prove the security of two protocols that permit carrying
out verifiable computation in two different scenarios: i. secure outsourcing of computation from
one computationally weak Client to a powerful but untrusted Worker; and ii. secure function
evaluation by multiple (mutually distrusting) Clients relying on an untrusted Worker. In both
cases, the designs are natural and formally justify how to leverage the extra guarantees offered
by the trusted hardware to obtain solutions to existing problems that offer better efficieny and
security trade-offs than previous solutions (in theory for now, but getting practical results for
these protocols is ongoing work). We conclude this report with an application of formal methods
techniques to the validation of our new approach to the analysis of advanced hardware-based
assumptions.
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Chapter 1

Introduction

Typical mechanisms for secure computation outsourcing used in the real world guarantee con-
fidentiality: the parties involved in the computation are sure their inputs and the results they
obtain are secret. However, these protocols do not guarantee efficient verifiability. That is,
the parties involved in the protocol may not have the means to independently check that the
results of the computation are correct (in an efficient way or without relying on uncomfortably
strong trust assumptions) or to prove to third parties that the results are correct. Yet, in many
scenarios, such verifiability guarantees for the result of a protocol execution are crucial.

Verifiability comes in a multitude of flavours. In some applications it is crucial for each party
involved to be able to obtain guarantees about the correctness of a computation result without
relying on trust in other parties. In other scenarios it may also be a requirement that one
party proves somehow to another that a result is correct. In particular, this is the case if
outsiders who did not participate in the computation are interested in its results. There are
several distinct scenarios possible: the set of “outsiders” may be known or unknown prior to
the computation, or it may be desirable that anyone can check the result of the computation,
“for the common good”. A classical example of this latter scenario is e-voting. In addition,
one may want that any party that participated in the computation should able to prove to
an external authority that they are using the correct result of the computation. For example,
medical researchers who publish statistical analysis results on patient data should be able to
prove correctness of the published data to an external party. Hence, in such cases, a securely
outsourced computation should be verifiable, meaning that a party that was involved in the
computation should be able to efficiently check that it was performed correctly, and possibly
efficiently transfer this guarantee to third parties.

In light of the above discussion, we distinguish between universal verifiability (also known as
public verifiability) where anybody can perform this check and designated verifiability where
only a specific set of parties, decided before the computation, can perform the check. We stress
that, in its strongest form, the requirement of verifiability goes beyond the trust assumptions
that parties in the computation place in each other: the verifier should be sure that, even if all
parties involved in the computation may attempt to cheat, the computation was still correctly
performed.

Deliverable D12.1 of WP12 (Application Scenarios and their Requirements) identified verifiabil-
ity as a critical property in many target applications relevant for PRACTICE. This deliverable
presents a series of protocols which advance the state of the art in providing efficient solutions
to this problem that were developed by participants in PRACTICE WP13 .
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1.1 Task description

This report is the second deliverable of work package WP13 (Protocol Specification and Design)
in the PRACTICE project. The main task of WP13 is the specification and design of new
protocols, which are intended to improve the state-of-the-art in secure multi-party computation,
in directions that are most relevant to secure computation in the cloud.

We recall the description of this deliverable in Annex I of the PRACTICE project proposal:

Task 13.2 – Efficient verifiability and precise specification of secure computation functionalities

Efficient (universal) verifiability of secure computations: The verifiability of the result of
a secure computation is often restricted to the parties taking part in the computation
itself. However, in general, verifiability should also be provided to other parties as well.
For instance, if secure linear programming is outsourced by several companies to several
service providers, the companies need an efficient way to verify the results produced by the
service providers. The research question w.r.t. verifiability is to (a) optimize efficiency and
(b) to set the scope for the verification, i.e., who will be convinced. For (a) related notions
are PCPs (Probabilistically Checkable Proofs), certificates of primality, etc. For (b) one
can consider for example the protocol partners as the scope, but it is more challenging to
consider any verifier (parties not taking part in the secure computation) as the scope. The
latter case corresponds to potentially ‘all dishonest’ parties (rather than ‘just’ a dishonest
majority).

Precise specification of secure computation functionalities: The typical approach to defin-
ing the security goals of multi-party computation protocols is to specify an ideal func-
tionality, and then declare that a concrete protocol is secure when it “realizes” this func-
tionality. Although this approach is intuitive at the high-level, the path to obtaining
meaningful results can be quite challenging and error-prone. This is a natural application
area for formal methods techniques. We will extend, adapt, and apply formal methods
to the task of specifying and analysing the security guarantees offered by secure compu-
tation protocols developed in the PRACTICE project. For example, one critical aspect
that can be addressed is to apply formal logics to the validation of the ideal functionalities
themselves.

Deliverable D13.2 – Efficient verifiability and precise specification of secure computation func-
tionalities

This deliverable is the outcome of Tasks 1.3.2. It will provide techniques for generating
proofs that enable to verify the outcome of secure computation.

PRACTICE D13.2 Page 2 of 110
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1.2 Overview

Tools such as language/compiler-based application frameworks, databases, application servers,
verification tools and deployment tools are being combined within the PRACTICE project into
an end-to-end secure computation software stack. These tools are to be used for the imple-
mentation and deployment of practical solutions for application scenarios described in D12.2,
following the specified functional and security requirements. Many application requirements
refer to the need for verifying computational correctness. Typically, verifiability is restricted to
the participants running the protocol, however many applications (Platform for Auctions, Tax
Fraud Detection, Joint Statistical Analysis Between State Entities, Privacy Preserving Genome-
Wide Association Studies Between Biobanks, Privacy Preserving Personal Genome Analyses
and Studies and Privacy Preserving Satellite Collision Detection) require for verifiability to
be extended for other parties as well. These factors raise two main research goals regarding
verifiability: to optimize the efficiency of verification techniques and to extend the verification
scope, so that end-users can reduce the level of trust that they deposit in other parties that
they interact with.

This report presents four new cryptographic protocols that permit realizing verifiable secure
computation. For each protocol, we give a precise specification of the functionality it realizes, as
well as a description of the protocol itself. Although we give some intuitive explanation about
how the protocols satisfy the required properties, we do not include full security proofs in this
report, as these are outside the scope of this deliverable. We note that all of the presented
protocols are also presented as independently published papers/technical reports and we refer
the interested reader to the full versions of those works instead.1

The report is divided into two parts that correspond to two alternative approaches to the
problem of verifiability that offer different functionality, trust and efficiency tradeoffs for real-
world applications: i. verifiable multiparty computation and ii. verifiable computation from
hardware assumptions.

Part I: Verifiable Multiparty Computation In this first part we focus on secure out-
sourced computing based on secure multiparty computation (MPC). MPC enables multiple
parties, each with its own private input, to compute some function of the combined data by
engaging in an interactive protocol. Protocols securely realizing MPC should ensure, among
other things, that the privacy of the input held by parties is not compromised and that the
result each party obtains as output of the protocol is consistent with all inputs, as well as the
output the other parties receive.

To securely outsource a computation to a single untrusted worker in a generic model of compu-
tation would require the use of so-called fully homomorphic encryption (FHE). At present, FHE
can be considered prohibitively inefficient for use in most applications. As a practical solution,
it is possible to construct protocols for secure outsourced computing from MPC by outsourcing
the computation to not just one, but several independent untrusted workers who are assumed
not to collude. When one or more clients wish to outsource some computation, they can do so
by distributing their inputs among the workers in such a way that the workers cannot obtain
any information about the inputs unless they collude with other workers. The workers then
interact with each other, following the MPC protocol to carry out the computation and return

1Note that the notation used in the following two chapters is based on their respective source material. As
each addresses different concerns, the notation is not fully unified across chapters.
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the results to the clients. As mentioned above, the advantage of the MPC based approach over
the use of FHE is that it is more efficient and therefore more practically relevant.

In the setting of MPC in which every party communicates interactively with every other party,
there is no meaningful way to define security for the situation in which every party is corrupt.
However, if we use MPC protocols as a basis for secure outsourced computing, we now have
to consider the implications for the clients in case all workers collude to undermine the clients’
security. We can directly argue that in this situation it is impossible for a protocol to offer in-
put privacy without resorting to FHE, as such a protocol would necessarily satisfy the required
properties of an FHE scheme. However, it is possible to ensure correctness of the result even
under the worst possible worker corruption. This can be done by either enhancing the existing
mechanisms that are already present in the underlying MPC protocol to ensure the correct-
ness of the result to protocol participants, or by turning to means from the field of verifiable
computing, in which this problem is studied independently. By ensuring that the results of a
computation cannot be tampered with even if all workers are corrupt, we limit the impact of
the worst case scenario.

We will discuss two protocols that have been developed as part of the PRACTICE project to
realize secure outsourced computing based on verifiable multiparty computation. The material
is based on two papers and we refer the interested reader to the full versions for details. The first
protocol [71], which we call UVCDN, is based on a specific MPC protocol due to [26, 29] and
follows the approach of enhancing the built-in proofs of correctness to be convincing to anyone,
not just protocol participants. Therefore, the resulting protocol achieves universal verifiability.
Both the underlying MPC protocols and the enhanced proofs of correctness require the use of
cryptographic schemes which satisfy linear homomorphic properties. This is a much weaker
requirement that full homomorphism and much more efficient schemes exist than for FHE.

For the second protocol [72], we use the approach of layering a Verifiable Computation (VC)
scheme on top of an MPC protocol. Although there is some freedom in the choice of the
underlying MPC protocol, we use specific properties of the VC scheme of [62] to make the
resulting protocol efficient and achieve the desired security properties. This second protocol,
named Trinocchio, ensures that even if all workers are corrupt, the protocol participants can
verify the correctness of the results. Making the protocol universally verifiable, i.e., enabling
any party to verify the correctness is part of ongoing work. To highlight the efficiency of the
Trinocchio protocol, we will discuss two case studies, including some performance figures.

Part II: Verifiable Computation From Hardware Assumptions The second part of
this report deals with another possibility to base secure outsourced computing on, namely
trusted secure hardware. Modern trusted hardware technologies have been examined in the
context Task 13.1. The main goal for this approach is to produce solutions that rely on specific
hardware developments to meet more demanding levels of performance and security, that would
not otherwise be feasible given the current theoretical and technological developments. It stands
to reason that this latter approach will allow for greater efficiency, but it requires the use of
trusted hardware that is still under active development and not yet commercially available,
whereas protocols based on MPC can be implemented on commodity hardware. Furthermore,
the use of trusted hardware requires the user to fully trust the designer and manufacturer of
the hardware, and it brings with it a significant challenge of precisely modeling and formalizing
the exact functionality an guarantees that are offered by highly complex devices that were
developed by practically-minded developers in an industrial environment.
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This report presents two protocols for secure verifiable computation that take advantage of
emerging secure hardware architectures—isolated-execution environments (IEE)—allowing for
the execution of arbitrary code within environments completely isolated from the rest of the
system. We begin by presenting precise definitions of what IEE-enabled architectures offer, in
the style of cryptographic provable security, so that higher-level secure computation protocols
can be formalized and proven secure using the guarantees offered by such architectures as formal
hardware assumptions. This modelling effort was one of the major contributions of the work
published in [8].

We then rely on the above formalization to design and formally prove two secure protocols
that permit carrying out verifiable computation in two different scenarios. The first scenario is
one where a single Client wishes to outsource computations to an untrusted Worker with full
confidentiality and integrity guarantees. The second scenario is one where multiple Clients wish
to collaborate to jointly evaluate a computation on their respective (secret) inputs. In both
cases, the designs are natural and formally justify how to leverage the extra guarantees offered
by the trusted hardware to obtain solutions to existing problems that offer better efficieny and
security trade-offs than previous solutions (in theory for now, but getting practical results for
these protocols is ongoing work).

A final challenge that we set out to tackle when we initiated the PRACTICE project was to
address the problem that the hand-made formalizations and descriptions that cryptographers
produce of the functionalities offered by secure computation protocols rapidly become too com-
plex and error-prone. We conclude this report with an application of formal methods techniques
to the validation of our new approach to the analysis of advanced hardware-based assumptions.
These results are important for two reasons. On the one hand, they show that our approach has
been fine-tuned so as to allow rigorous specification and validation—we note that this leaves
open the question of whether our abstractions are sound models of the underlying hardware
assumptions, which we believe is an important question raised by our work and which will be
answered in the coming years by follow up work. On the other hand, these results confirm that
today’s formal verification technologies are reaching a level of maturity that allow for an in-
creasing interaction between the cryptographic community and the formal methods community
that has been evident in many works that have emerged in the last years, and also by parallel
work being carried out in other PRACTICE work packages.

1.3 Structure of the report

The structure of this document is as follows. After this introductory chapter, we begin with
Part I: Verifiable Multiparty Computation. In Chapter 2 we present a construction of verifiable
multiparty computation from threshold homomorphic cryptosystems and, in Chapter 3, we
present the Trinocchio system, which provides privacy-preserving outsourcing of computation
via distributed verifiable computing. The second part of the deliverable, Part II: Verifiable
Computation from Hardware Assumptions then follows. In Chapter 4 we give a formalization
of isolated execution environments and introduce attested computation. Then, in Chapter 5, we
use this primitive to construct a secure outsourced computation protocol and, in Chapter 6, we
use it to achieve secure function evaluation. Finally, we present our work in formally specifying
and verifying protocols relying on this new hardware assumption in Chapter 7. We conclude
the report with some final remarks in Chapter 8.
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Part I

Verifiable Multiparty Computation
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Chapter 2

Universally Verifiable Multiparty
Computation from Threshold
Homomorphic Cryptosystems

2.1 Introduction

Multiparty computation (MPC) provides techniques for privacy-friendly outsourcing of compu-
tations. Intuitively, MPC aims to provide a cryptographic “black box” which receives private
inputs from multiple “input parties”; performs a computation on these inputs; and provides
the result to a “result party” (an input party, any third party, or the public). This black
box is implemented by distributing the computation between multiple “computation parties”,
with privacy and correctness being guaranteed in case of passive corruptions (e.g., [17]), active
corruption of a minority of computation parties (e.g., [26]), or active corruption of all-but-one
computation parties (e.g., [30]).

However, multiparty computation typically does not provide any guarantees in case all com-
putation parties are corrupted. That is, the result party has to trust that at least some of the
computation parties did their job, and has no way of independently verifying the result. In
particular, the result party has no way of proving to an external party that his computation
result is indeed correct. Universally verifiable multiparty computation addresses these issues by
requiring that the correctness of the result can be verified by any party, even if all computation
parties are corrupt [32]. It was originally introduced in the context of e-voting [24, 65], but it is
relevant whenever MPC is applied in a setting where not all of the parties that provide inputs
or obtain outputs are participants in the computation. In particular, apart from contexts like
e-voting where “the public” or an external watchdog wants to be sure of correctness, it is also
useful in scenarios where (many) different input parties outsource a computation to the cloud
and require a correctness guarantee.

Unfortunately, the state-of-the-art on universally verifiable MPC is unsatisfactory. The concept
of universally verifiable MPC was first proposed in [32], where it was also suggested that it can
be achieved for MPC based on threshold homomorphic cryptosystems. However, [32] does not
provide a rigorous security model for universal verifiability or analysis of the proposed con-
struction; and the construction has some technical disadvantages (e.g., a proof size depending
on the number of computation parties). The scheme recently proposed in [9] solves part of the
problem. Their protocols provide “public auditability”, meaning that anybody can verify the
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result of a computation, but only if that result is public. In particular, it is not possible for a
result party to prove just that an encryption of the result is correct, which is important if this
result is to be used in a later protocol without being revealed.

In this chapter, we propose a new security model for universally verifiable multiparty computa-
tion, and a practical construction achieving it. As in [32], we adapt the well-known actively se-
cure MPC protocols based on threshold homomorphic cryptosystems from [26, 29]. Essentially,
these protocols perform computations on encrypted values; security against active adversaries
is achieved by letting parties prove correctness of their actions using interactive zero-knowledge
proofs. Such interactive proofs only convince parties present at the computation; but making
them non-interactive makes them convincing also to external parties. Concretely, the result of
a computation is a set of encryptions of the inputs, intermediate values, and outputs of the
computation, along with non-interactive zero-knowledge proofs of their correctness. Correct-
ness of the result depends just on the correct set-up of the cryptosystem. Privacy holds under
the original conditions of [26], i.e., if under half of the computation parties are corrupted; but as
we discuss, this threshold can be raised to n− 1 at the expense of sacrificing robustness. (Note
that when computing with encryptions, we cannot hope to achieve privacy if all computation
parties are corrupted: this would essentially require fully homomorphic encryption.)

We improve on [32] in two main ways. First, we provide a security model for universal ver-
ifiability (in the random oracle model), and security proofs for our protocols in that model.
Second, we propose a new “multiparty” variant of the Fiat-Shamir heuristic to make the zero-
knowledge proofs non-interactive, which may be of independent interest. Compared to [32], it
eliminates the need for trapdoor commitments. Moreover, it makes the proof size independent
of the number of parties performing the computation. We achieve this latter advantage by
homomorphically combining contributions from the different parties.

As such, universally verifiable MPC provides a practical alternative to recent (single-party)
techniques for verifiable outsourcing. Specifically, many papers on verifiable computation focus
on efficient verification, but do not cover privacy [61, 76]. Those works that do provide privacy,
achieve this by combining costly primitives, e.g., fully homomorphic encryption with verifiable
computation [35]; or functional encryption with garbled circuits [44]. A recent work [4] also
considers the possibility of achieving verifiable computation with privacy by distributing the
computation; but it does not guarantee correctness if all computation parties are corrupted,
nor does it allow third parties to be convinced of this fact. In contrast, our methods guarantee
correctness even if all computation parties are corrupted, and even convince other parties than
the input party. In particular, any third party can be convinced, and the computation may
involve the inputs of multiple mutually distrusting input parties. Moreover, in contrast to
the above works, our methods rely on basic cryptographic primitives such as Σ-protocols and
the threshold homomorphic Paillier cryptosystem, readily available nowadays in cryptographic
libraries like SCAPI [34].

Outline First, we briefly recap the CDN scheme for secure multiparty computation in the
presence of active adversaries from [26, 29], instantiated using Paillier encryption (Section 2.2).
Then, we show how the proofs in this protocol can be made non-interactive using the Fiat-
Shamir heuristic and our new multiparty variant (Section 2.3). Finally, we propose a security
model for universally verifiable MPC, and show that CDN with non-interactive proofs is uni-
versally verifiable (Section 2.4). We conclude in Section 2.5. We list potentially non-obvious
notation in our pseudocode in Figure 2.1.
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a ∈R S sample a uniformly at random from S
send(v;P), recv(P) send v to/receive from P over secure channel
bcast(v) exchange v over broadcast channel
party P do S let party P perform S; other parties do nothing
parties i ∈ Q do S let parties i ∈ Q perform S in parallel

H : {0, 1}∗ → {0, 1}2l cryptographic hash function (l security parameter)
F ⊂ I ∪ P ∪ {R,V} global variable: set of parties found to misbehave
paillierdecode(x) threshold Paillier decoding:

((x− 1)÷N)(4∆2)−1 mod N
fsprove(Σ; v;w; aux) Fiat-Shamir proof (p. 12): (a, s) := Σ.ann(v, w);

c := H(v||a||aux); r := Σ.res(v, w, a, s, c);π := (a, c, r)
fsver(Σ; v; a, c, r; aux) verification of Fiat-Shamir Σ-proof (p. 12):

H(v||a||aux) = c ∧ Σ.ver(v; a; c; r)

Figure 2.1: Notation in algorithms, protocols, and processes

2.2 Secure Computation from Threshold Cryptography

We review the “CDN protocol” [26] for secure computation in the presence of active adversaries
based on a threshold homomorphic cryptosystem. The protocol involves m input parties i ∈ I,
n computation parties i ∈ P , and a result party R. The aim of the protocol is to compute a
function f(x1, . . . , xm) (seen as an arithmetic circuit) on private inputs xi of the input parties,
such that the result party obtains the result.

2.2.1 Computation using a Threshold Homomorphic Cryptosystem

The protocol uses a (t, n)-threshold homomorphic cryptosystem, with t = dn/2e. In such
a cryptosystem, anybody can encrypt a plaintext using the public key; add two ciphertexts
to obtain a (uniquely determined) encryption of the sum of the corresponding plaintexts; and
multiply a ciphertext by a constant to obtain a (uniquely determined) encryption of the product
of the plaintext with the constant. Decryption is only possible if at least t out of the n decryption
keys are known. A well-known homomorphic cryptosystem is the Paillier cryptosystem [60]:
here, the public key is an RSA modulus N = pq; a ∈ ZN is encrypted with randomness r ∈ Z∗N
as (1 + N)arN ∈ Z∗N2 ; and the product of two ciphertexts is an encryption of the sum of the
two corresponding plaintexts. (From now on, we suppress moduli for readability.) A threshold
variant of this cryptosystem was presented in [28]. The (threshold) decryption procedure is
a bit involved; we postpone its discussion until Section 2.2.2. The CDN protocol can also
be instantiated with other cryptosystems; but in this chapter, we will focus on the Paillier
instantiation.

Computation of f(x1, . . . , xm) is performed in three phases: the input phase, the computation
phase, and the output phase. In the input phase, each input party encrypts its input xi,
and broadcasts the encryption Xi. In the computation phase, the function f is evaluated
gate-by-gate. Addition and subtraction are performed using the homomorphic property of the
encryption scheme. For multiplication of X and Y , each computation party i ∈ P chooses a
random value di, and broadcasts encryptions Di of di and Ei of di · y. The computation parties
then compute X ·D1 · · ·Dn, and threshold decrypt it to learn x+ d1 + . . .+ dn. Observe that
this allows them to compute an encryption of (x + d1 + . . . + dn) · y, and hence, using the Ei,
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also an encryption of x · y. Finally, in the output phase, when the result of the computation
has been computed as encryption X of x, the result party obtains x by broadcasting random
encryption D of d and obtaining a threshold decryption x− d of X ·D−1.

Active security is achieved by letting the parties prove correctness of all information they
exchange. Namely, the input parties prove knowledge of their inputs Xi (this prevents parties
from choosing inputs depending on other inputs). The computation parties prove knowledge
of Di, and prove that Ei is indeed a correct multiplication of Di and Y ; and they prove the
correctness of their contributions to the threshold decryption of X · D1 · · ·Dn and X · D−1.
Finally, the result party proves knowledge of D. We now discuss these proofs of correctness
and their influence on the security of the overall protocol.

2.2.2 Proving Correctness of Results

The techniques in the CDN protocol for proving correctness are based on Σ-protocols. Recall
that a Σ-protocol for a binary relation R is a three-move protocol in which a potentially mali-
cious prover convinces an honest verifier that he knows a witness w for statement v such that
(v;w) ∈ R. First, the prover sends an announcement (computed using algorithm Σ.ann) to
the verifier; the verifier responds with a uniformly random challenge; and the prover sends his
response (computed using algorithm Σ.res), which the verifier verifies (using predicate Σ.ver).
Σ-protocols satisfy the following properties:

Definition 1. Let R ⊂ V ×W be a binary relation and LR = {v ∈ V | ∃w ∈ W : (v;w) ∈ R}
its language. Let Σ be a collection of probabilistic polynomial time algorithms Σ.ann, Σ.res,
Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set called the challenge
space. Then Σ is a Σ-protocol for relation R if:

Completeness If (a; s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special soundness If v ∈ V , c 6= c′, Σ.ver(v; a; c; r), and Σ.ver(v; a; c′; r′),
then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v;w) ∈ R.

Special honest-verifier zero-knowledgeness If v ∈ LR, c ∈ C, then
(a; r) ← Σ.sim(v; c) has the same probability distribution as (a; r) ob-
tained by (a; s) ← Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then
(a; r)← Σ.sim(v; c) satisfies Σ.ver(v; a; c; r).

Completeness states that a protocol between an honest prover and verifier succeeds; special
soundness states that there exists an extractor Σ.ext that can extract a witness from two conver-
sations with the same announcement; and special honest-verifier zero-knowledgeness states that
there exists a simulator Σ.sim that can generate conversations with the same distribution as full
protocol runs without knowing the witness. While special honest-verifier zero-knowledgeness
demands an identical distribution for the simulation, statistical indistinguishability is sufficient
for our purposes; in this case, we speak of a “statistical Σ-protocol”. In the remainder, we will
need that our Σ-protocols have “non-trivial announcements”, in the sense that when (a; r) and
(a′; r′) are both obtained from Σ.sim(v; c), then with overwhelming probability, a 6= a′. (Indeed,
this will be the case for all Σ-protocols in this chapter.) This property, which is required by
the Fiat-Shamir heuristic [2], essentially follows from the hardness of the relation; see [71] for
details.
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The CDN protocol uses a sub-protocol in which multiple parties simultaneously provide proofs
based on the same challenge, called the “multiparty Σ-protocol”. Namely, suppose each party
from a set P wants to prove knowledge of a witness for a statement vi ∈ LR with some
Σ-protocol. To achieve this, each party in P broadcasts a commitment1 to its announcement;
then, the computation parties jointly generate a challenge; and finally, all parties in P broadcast
their response to this challenge, along with an opening of their commitment. The multiparty
Σ-protocol is used as a building block in the CDN protocol by constructing a simulator that pro-
vides proofs on behalf of honest parties without knowing their witnesses (“zero-knowledgeness”),
and extracts witnesses from corrupted parties that give correct proofs (“soundness”).

The CDN protocol uses three Σ-protocols proving plaintext knowledge, correct multiplication
and correct decryption. These proofs directly correspond with each of the steps in the multi-
plication protocol that involves communication between parties.

2.2.3 Security of the CDN Protocol

In [26], it is shown that the CDN protocol implements secure function evaluation in Canetti’s
non-concurrent model [22] if only a minority of computation parties are corrupted. Essentially,
this means that in this case, the computation succeeds; the result is correct; and the honest
parties’ inputs remain private. This conclusion is true assuming honest set-up and security
of the Paillier encryption scheme and the trapdoor commitment scheme used. If a majority
of computation parties is corrupted, then because threshold dn/2e is used for the threshold
cryptosystem, privacy is broken. As noted [69, 51], this can be remedied by raising the threshold,
but in that case, the corrupted parties can make the computation break down at any point by
refusing to cooperate. In Section 2.4.1, we present a variant of this model in which we prove
the security of our protocols (using random oracles but no trapdoor commitments).

2.3 Multiparty Non-Interactive Proofs

In this section, we show how to produce non-interactive zero-knowledge proofs in a multiparty
way. At several points in the above CDN protocol, all parties from a set P prove knowledge
of witnesses for certain statements; the computation parties are convinced that those parties
that succeed, do indeed know a witness. In CDN, these proofs are interactive; but for universal
verifiability, we need non-interactive proofs that convince any third party. The traditional
method to make proofs non-interactive is the Fiat-Shamir heuristic; in Section 2.3.1, we outline
it, and show that it is problematic in a multiparty setting. In Section 2.3.2, we present a
new, “multiparty” Fiat-Shamir heuristic that works in our setting, and has the advantage of
achieving smaller proofs by “homomorphically combining” the proofs of individual parties. In
the remainder, C ⊂ I ∪P ∪{R,V} denotes the set of corrupted parties; and F denotes the set
of parties who failed to provide a correct proof when needed; this only happens for corrupted
parties, so F ⊂ C.

1A commitment scheme is a cryptographic scheme that let’s parties commit to some value such that it is
not possible to later change that value, but without revealing the value to other parties. These properties
are somewhat similar to those of an encryption scheme, and efficient instantiations of commitment schemes
based on encryption exist. One of the typical uses for commitments is, if a protocol calls for multiple parties to
communicate information, to prevent parties from choosing their messages based on the messages they’ve already
observed. This is done by first letting all parties commit to their message, and only after each commitment has
been published revealing the actual message.
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Our results are in the random oracle model [10, 77], an idealised model of hash functions. In
this model, evaluations of the hash function H are modelled as queries to a “random oracle”
O that evaluates a perfectly random function. When simulating an adversary, a simulator can
intercept these oracle queries and answer them at will, as long as the answers look random to
the adversary. Security in the random oracle model does not generally imply security in the
standard model [43], but it is often used because it typically gives simple, efficient protocols,
and its use does not seem to lead to security problems in practice [77]. See [71] for a detailed
description of our use of random oracles; and Section 2.5 for a discussion of the real-world
implications of the particular flavour of random oracles we use.

2.3.1 The Fiat-Shamir Heuristic

The obvious way of making the proofs in the CDN protocol non-interactive, is to apply the
Fiat-Shamir heuristic to all individual Σ-protocols. That is, party i ∈ P produces proof of
knowledge π of a witness for statement v as follows2:

(a; s) := Σ.ann(v;w); c := H(v||a||aux); r := Σ.res(v;w; a; s; c);π := (a; c; r).

Let us denote this procedure fsprove(Σ; v;w; aux). A verifier accepts those proofs π = (a; c; r)
for which fsver(Σ; v; π; aux) holds, where fsver(Σ; v; a, c, r; aux) is defined as H(v||a||aux) =
c ∧ Σ.ver(v; a; c; r).

Recall that security proofs require a simulator that simulates proofs of honest parties (zero-
knowledgeness) and extracts witnesses of corrupted parties (soundness). In the random oracle
model, Fiat-Shamir proofs for honest parties can be simulated by simulating a Σ-protocol
conversation (a, c, r) and programming the random oracle so that H(v||a||aux) = c. Witnesses
of corrupted parties can be extracted by rewinding the adversary to the point where it made
an oracle query for v||a||aux and supplying a different value. However, as the protocol consists
of multiple rounds and the adversary is invoked multiple times, it is possible for the adversary
to query the oracle in an earlier invocation than it uses the response. In that case, to extract
the witness, the adversary should be rewound to the point the query was made. This may in
turn require recursive rewinding to extract the witnesses for intermediate rounds. In fact, if
Fiat-Shamir proofs take place in R different rounds, then extracting witnesses may increase
the running time of the simulator by a factor O(R!). Hence, we can essentially only use the
Fiat-Shamir heuristic in a constant number of rounds.

Moreover, in the CDN protocol, applying the Fiat-Shamir heuristic to each individual proof
has the disadvantage that the verifier needs to check a number of proofs that depends linearly
on the number of computation parties. In particular, for each multiplication gate, the verifier
needs to check n proofs of correct multiplication and t proofs of correct decryption. Next,
we show that we can avoid both the technical problems and the dependence on the number
of computation parties by letting the computation parties collaboratively produce “combined
proofs”.

2Here, aux should contain at least the prover’s identity. Otherwise, corrupted parties could replay proofs
by honest parties, which breaks the soundness property below because witnesses for these proofs cannot be
extracted by rewinding the adversary to the point of the oracle query and reprogramming the random oracle.
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2.3.2 Combined Proofs with the Multiparty Fiat-Shamir Heuristic

The crucial observation (e.g., [33, 52]) allowing parties to produce non-interactive zero-knowledge
proofs collaboratively is that, for many Σ-protocols, conversations of proofs with the same chal-
lenge can be “homomorphically combined”. For instance, consider the classical Σ-protocol
for proving knowledge of a discrete logarithm due to Schnorr [66]. Suppose we have two
Schnorr conversations proving knowledge of x1 = logg h1, x2 = logg h2, i.e., two tuples (a1; c; r1)
and (a2; c; r2) such that gr1 = a1(h1)c and gr2 = a2(h2)c. Then gr1+r2 = (a1a2)(h1h2)c, so
(a1a2; c; r1 + r2) is a Schnorr conversation proving knowledge of discrete logarithm x1 + x2 =
logg(h1h2). For our purposes, we demand that such homomorphisms satisfy two properties.
First, when conversations of at least dn/2e parties are combined, the result is a valid conver-
sation (the requirement of having at least dn/2e conversations is needed for decryption proofs
to ensure that there are enough decryption shares). Second, when fewer than dn/2e parties
are corrupted, the combination of different honest announcements with the same corrupted
announcements is likely to lead to a different combined announcement. This helps to eliminate
the rewinding problems for Fiat-Shamir discussed above.

Definition 2. Let Σ be a Σ-protocol for relation R ⊂ V ×W . Let Φ be a collection of partial
functions Φ.stmt, Φ.ann, and Φ.resp. We call Φ a homomorphism of Σ if:

Combination Let c be a challenge; I a set of parties such that |I| ≥ dn/2e;
and {(vi; ai; ri)}i∈I a collection of statements, announcements, and re-
sponses. If Φ.stmt({vi}i∈I) is defined and Σ.ver(vi; ai; c; ri) holds for all
i, then also Σ.ver(Φ.stmt({vi}i∈I); Φ.ann({ai}i∈I); c; Φ.resp({ri}i∈I)).

Randomness Let c be a challenge; C ⊂ I sets of parties such that |C| <
dn/2e ≤ |I|; {vi}i∈I statements s.t. Φ.stmt({vi}i∈I) is defined; and
{ai}i∈I∩C announcements. If (ai; ·), (a′i; ·) ← Σ.sim(vi; c) ∀i ∈ I \ C,
then with overwhelming probability, Φ.ann({ai}i∈I) 6= Φ.ann({ai}i∈I∩C ∪
{a′i}i∈I\C).

Given a Σ-protocol with homomorphism Φ, parties holding witnesses {wi} for statements {vi}
can together generate a Fiat-Shamir proof (a;H(v||a||aux); r) of knowledge of a witness for
the “combined statement” v = Φ.stmt({vi}). Namely, the parties each provide announcement
ai for their own witness; compute a = Φ.ann({ai}) and H(v||a||aux); and provide responses
ri. Taking r = Φ.resp({ri}), the combination property from the above definition guarantees
that we indeed get a validating proof. However, we cannot simply let the parties broadcast
their announcements in turn, because to prove security in that case, the simulator needs to
provide the announcements for the honest parties without knowing the announcements of the
corrupted parties, hence without being able to program the random oracle on the combined
announcement. We solve this by starting with a round in which each party commits to its
announcement.

The multiparty Fiat-Shamir heuristic (Protocol 1) let parties collaboratively produce Fiat-
Shamir proofs based on the above ideas. Apart from the above procedure (lines 8, 9, 10, 13,
and 14), the protocol also contains error handling. Namely, we throw out parties that provide
incorrect hashes to their announcements (line 11) or incorrect responses (line 15). If we have
correct responses for all correctly hashed announcements, then we apply the homomorphism
(line 17–18); otherwise, we try again with the remaining parties. If the number of parties drops
below dn/2e, the homomorphism can no longer be applied, so we return with an error (line
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Protocol 1 MΣ: The Multi-Party Fiat-Shamir Heuristic

1. // pre: Σ is a Σ-protocol with homomorphism Φ, P is a set of non-failed
2. // parties (P ∩ F = ∅), vP = {vi}i∈P statements w/ witnesses wP = {wi}i∈P
3. // post: if |P \ F | ≥ dn/2e, then vP\F is the combined statement
4. // Φ.stmt({vi}i∈P\F ), and πP\F is a corresponding Fiat-Shamir proof
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F )← MΣ(Σ,Φ, P, vP , wP , aux) :=
7. repeat
8. parties i ∈ P \ F do
9. (ai; si) := Σ.ann(vi;wi);hi := H(ai||i); bcast(hi)

10. parties i ∈ P \ F do bcast(ai)
11. F ′ := F ;F := F ∪ {i ∈ P \ F | hi 6= H(ai||i)}
12. if F = F ′ then // all parties left provided correct hashes
13. c := H(Φ.stmt({vi}i∈P\F )||Φ.ann({ai}i∈P\F )||aux)
14. parties i ∈ P \ F do ri := Σ.res(vi;wi; ai; si; c); bcast(ri)
15. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi; ai; c; ri)}
16. if F = F ′ then // all parties left provided correct responses
17. return (Φ.stmt({vi}i∈P\F ),
18. (Φ.ann({ai}i∈P\F ); c; Φ.resp({ri}i∈P\F )))
19. until |P \ F | < dn/2e // until not enough parties left
20. return (⊥,⊥)

20). Note that, as in the normal Fiat-Shamir heuristic, the announcements do not need to be
stored if they can be computed from the challenge and response (as will be the case for the
Σ-protocols we consider).

Concerning security, recall that we need a simulator that simulates proofs of honest parties
without their witnesses (zero-knowledgeness) and extracts the witnesses of corrupted parties
(soundness). In [71], we present such a simulator. Essentially, it “guesses” the announcements
of the corrupted parties based on the provided hashes; then simulates the Σ-protocol for the
honest parties; and programs the random oracle on the combined announcement. It obtains
witnesses for the corrupted parties by rewinding to just before the honest parties provide their
announcements: this way, the corrupted parties are forced to use the announcements that they
provided the hashes of (hence special soundness can be invoked), whereas the honest parties
can provide new simulated announcements by reprogramming the random oracle. The simu-
lator requires that fewer than dn/2e provers are corrupted so that we can use the randomness
property of the Σ-protocol homomorphism (Definition 2). (When more than dn/2e provers are
corrupted, we use an alternative proof strategy that uses witness-extended emulation instead
of this simulator.)

2.4 Universally Verifiable MPC

In the previous section, we have shown how to produce non-interactive zero-knowledge proofs
in a multiparty way. We now use this observation to obtain universally verifiable MPC. We
first define security for universally verifiable MPC; and then obtain universally verifiable MPC
by adapting the CDN protocol.
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Process 2 TVSFE: trusted party for verifiable secure function evaluation

1. // compute f on {xi}i∈I for R with corrupted parties C; V learns encryption
2. TVSFE(C, (N, v, v0, {vi}i∈P)) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if |P ∩ C| ≥ dn/2e then send({xi}i∈I\C ,S) // send to corrupted majority
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. if R /∈ C then // honest R: adversary learns encryption, may block result

11. s ∈R Z∗N ; R := (1 +N)rsN ; res := (r, s); send(R,S)
12. if |P ∩ C| ≥ dn/2e and recv(S) = ⊥ then res := ⊥; R := ⊥
13. send(res,R)
14. else // corrupted R: adversary learns output, may block result to V
15. send(r,S); s := recv(S)

16. if s = ⊥ then R := ⊥ else R := (1 +N)rsN

17. // proof phase
18. if V /∈ C then send(R,V)

2.4.1 Security Model for Verifiable MPC

Our security model is an adaptation of the model of [22, 26] to the setting of universal veri-
fiability in the random oracle model. We first explain the general execution model, which is
as in [22, 26] but with a random oracle added; we then explain how to model verifiability in
this execution model as the behaviour of the ideal-world trusted party. The general execution
model compares protocol executions in the real and ideal world.

In the real world, a protocol π between m input parties i ∈ I, n computation parties i ∈ P , a
result party R and a verifier V is executed on an open broadcast network with rushing in the
presence of an active static adversary A corrupting parties C ⊂ I ∪ P ∪ {R,V}. The protocol
execution starts by incorruptibly setting up the Paillier threshold cryptosystem, i.e., generating
public key pk = (N, v, v0, {vi}i∈P) with RSA modulus N and verification values v, v0, vi, and
secret key shares {si}i∈P (see Section 2.2.2). Each input party i ∈ I gets input (pk, xi); each
computation party i ∈ P gets input (pk, si); and the result partyR gets input pk. The adversary
gets the inputs (pk, {xi}i∈I∩C , {si}i∈P∩C) of the corrupted parties, and has an auxiliary input
a. During the protocol, parties can query the random oracle; the oracle answers new queries
randomly, and repeated queries consistently. At the end of the protocol, each honest party
outputs a value according to the protocol; the corrupted parties output ⊥; and the adversary
outputs a value at will. Define EXECπ,A(k, (x1, . . . , xm), C, a) to be the random variable, given
security parameter k, consisting of the outputs of all parties (including the adversary) and the
set O of oracle queries and responses.

The ideal-world execution similarly involves m input parties i ∈ I, n computation parties
i ∈ P , result party R, verifier V , and an adversary S corrupting parties C ⊂ I ∪ P ∪ {R,V};
but now, there is also an incorruptible trusted party T . As before, the execution starts by
setting up the keys (pk, {si}i∈P) of the Paillier cryptosystem. The input parties receive xi as
input; the trusted party receives a list C of corrupted parties and the public key pk. Then, it
runs the code TVSFE shown in Process 2, which we explain later. The adversary gets inputs
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(pk, C, {xi}i∈I∩C , {si}i∈P∩C), and outputs a value at will. In this model, there is no random ora-
cle; instead, the adversary chooses the setO of oracle queries and responses (typically, those used
to simulate a real-world adversary). As in the real-world case, IDEALTSFE,S(k, (x1, . . . , xm), C, a)
is the random variable, given security parameter k, consisting of all parties’ outputs and O.

Definition 3. Protocol π implements verifiable secure function evaluation in the random or-
acle model if, for every probabilistic polynomial time real-world adversary A, there exists a
probabilistic polynomial time ideal-world adversary SA such that, for all inputs x1, . . . , xm;
all sets of corrupted parties C; and all auxiliary input a: EXECπ,A(k;x1, . . . , xm;C; a) and
IDEALTVSFE,SA(k;x1, . . . , xm;C; a) are computationally indistinguishable in security parameter
k.

We now discuss the trusted party TVSFE for verifiable secure function evaluation. Whenever
the computation succeeds, TVSFE guarantees that the results are correct. Namely, TVSFE sends
the result r of the computation and randomness s to R (line 13), and it sends encryption
(1 + N)rsN of the result with randomness s to V (line 18); if the computation failed, R gets
(⊥,⊥) and V gets ⊥.3 Whether TVSFE guarantees privacy (i.e., only R can learn the result) and
robustness (i.e., the computation does not fail) depends on which parties are corrupted. Privacy
and robustness with respect to R are guaranteed as long as only a minority of computation
parties are corrupted. If not, then in line 6, TVSFE sends the honest parties’ inputs to the
adversary; and in line 12, it gives the adversary the option to block the computation by sending
⊥. Note that the adversary receives the inputs of the honest parties after it provides the inputs
of the corrupted parties, so even if privacy is broken, the adversary cannot choose the corrupted
parties’ inputs based on the honest parties’ inputs. For robustness with respect to V , the result
party needs to be honest. If not, then in line 15, TVSFE gives the adversary the option to block
V ’s result by sending ⊥; in any case, it can choose the randomness. (Note that these thresholds
are specific to CDN’s “honest majority” setting; e.g., other protocols may satisfy privacy if all
computation parties except one are corrupted.)

Note that this model does not cover the “universality” aspect of universally verifiable MPC.
This is because the security model for secure function evaluation only covers the input/output
behaviour of protocols, not the fact that “the verifier can be anybody”. Hence, we design
universally verifiable protocols by proving that they are verifiable, and then arguing based on
the characteristics of the protocol (e.g., the verifier does not have any secret values) that this
verifiability is “universal”.

2.4.2 Universally Verifiable CDN

We now present the UVCDN protocol (Protocol 3) for universally verifiable secure function
evaluation. At a high level, this protocol consists of the input, computation, and multiplication
phases of the CDN protocol, with all proofs made non-interactive, followed by a new proof
phase. As discussed, we can use the normal Fiat-Shamir (FS) heuristic in only a constant
number of rounds; and we can use the multiparty FS heuristic only when it gives a “combined

3 Although we only guarantee computational indistinguishability and the verifier does not know what value
is encrypted, this definition does guarantee that V receives the correct result. This is because the ideal-world
output of the protocol execution contains R’s r and s and V’s (1 +N)rsN , so a distinguisher between the ideal
and real world can check correctness of V’s result. (If s were not in R’s result, this would not be the case, and
correctness of V’s result would not be guaranteed.) Also, note that although privacy depends on the security
of the encryption scheme, correctness does not rely on any knowledge assumption.
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Protocol 3 UVCDN: universally verifiable CDN

1. // pre: pk/{si}i∈P threshold Paillier public/secret keys, {xi}i∈I function input
2. // post: output R according to ideal functionality ITM 2
3. R← UVCDN(pk = (N, v, v0, {vi}i∈P), {si}i∈P , {xi}i∈I) :=
4. parties i ∈ I do // input phase

5. ri ∈R Z∗N ;Xi := (1 +N)xirNi ; πPK,i := fsprove(ΣPK;Xi;xi, ri; i)
6. hi := H(Xi||πPK,i||i); bcast(hi); bcast(Xi, πPK,i)
7. F := {i ∈ I | hi 6= H(Xi||πPK,i||i) ∨ ¬fsver(ΣPK;Xi; πPK,i; i)}
8. foreach i ∈ F do Xi := 1
9. foreach gate do // computation phase

10. if 〈constant gate c with value v〉 then Xc := (1 +N)v

11. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

12. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

13. if 〈multiplication gate c with inputs a, b〉 then // [29] multiplication
14. parties i ∈ P \ F do

15. di ∈R ZN ; ri, ti ∈R Z∗N ;Di := (1 +N)dirNi ;Ei := (Xb)
ditNi

16. bcast(Di, Ei)
17. (·, Dc, Ec; πCMc) :=
18. MΣ(ΣCM,ΦCM,P \ F, {(Xb, Di, Ei)}i∈P\F , {(di, ri, ti)}i∈P\F )
19. if |P \ F | < dn/2e then break
20. Sc := Xa ·Dc

21. parties i ∈ P \ F do Si := (Sc)
2∆si ; bcast(Si)

22. (·, S0,c, ·, ·; πCDc) :=
23. MΣ(ΣCD,ΦCD,P \ F, {(Sc, Si, v, vi)}i∈P\F , {∆si}i∈P\F )
24. if |P \ F | < dn/2e then break
25. s := paillierdecode(S0,c);Xc := (Xb)

s · E−1
c

26. if |P \ F | < dn/2e then parties i ∈ I ∪ P ∪ {R} do return ⊥
27. party R do d ∈R ZN ; s ∈R Z∗N ;D := (1 +N)dsN // output phase
28. party R do πPKd := fsprove(ΣPK;D; d, s;R); bcast(D, πPKd)
29. if ¬fsver(ΣPK;D; πPKd;R) then parties i ∈ I ∪ P ∪ {R} do return ⊥
30. Y := Xoutgate ·D−1; parties i ∈ P \ F do Yi := Y 2∆si ; bcast(Yi)
31. (·, Y0, ·, ·; πCD; y) := MΣ(ΣCD,ΦCD,P \ F, {(Y, Yi, v, vi)}i∈P\F , {∆si}i∈P\F , D)
32. if |P \ F | < dn/2e then parties i ∈ I ∪ P ∪ {R} do return ⊥
33. party R do
34. y := paillierdecode(Y0); r := y + d
35. send({(Dc, Ec,ΠCMc, S0,c,ΠCDc)}c∈gates, (D, πPKd, Y0, πCDy);V) // proof
36. return (r, s) // phase
37. parties i ∈ I ∪ P do return ⊥
38. party V do π := recv(R); return vercomp(pk, {Xi}i∈I , π)

statement” that makes sense. Hence, we choose to use the FS heuristic for the proofs by the
input and result parties, and the multiparty FS heuristic for the proofs by the computation
parties.

In more detail, during the input phase of the protocol, the input parties provide their inputs
(lines 4–8). As in the CDN protocol, each party encrypts its input and compiles a FS proof
of knowledge (line 5). In the original CDN protocol, these encryptions and proofs would be
broadcast directly; however, if a majority of computation parties are corrupted, then this allows
corrupted parties to adapt their inputs based on the inputs of the honest parties. To prevent
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Algorithm 4 vercomp: verifier’s gate-by-gate verification of the computation

1. // pre: pk public key, {Xi}i∈I encryptions, ({Πmuli},Πresult) tuple
2. // post: if ({Πmuli},Πresult) proves correctness of Y , Xo = Y ; otherwise, Xo = ⊥
3. Xo ← vercomp(pk = (N, v, v0, {vi}i∈P), {Xi}i∈I , ({Πmuli},Πresult)) :=
4. // verification of input phase: see lines 6–8 of UVCDN
5. // verification of computation phase
6. foreach gate do
7. if 〈constant gate c with value v〉 then Xc := (1 +N)v

8. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

9. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX
−1
b

10. if 〈multiplication gate c with inputs a, b〉 then
11. (D;E; a, c, r;S0; a′, c′, r′) := Πmulc; S := Xa ·D−1

12. if ¬fsver(ΣCM;Xb, D,E; a; c; r) then return ⊥
13. if ¬fsver(ΣCD;S, S0, v, v0; a′; c′; r′) then return ⊥
14. s := paillierdecode(S0);Xc := (Xb)

sE−1

15. // verification of output phase
16. (D; aout, cout, rout;Y0; adec, cdec, rdec) := Πresult

17. if ¬fsver(ΣPK;D; aout, cout, rout;R) then return ⊥
18. Y := Xoutgate ·D−1

19. if ¬fsver(ΣCD;Y, Y0, v, v0; adec, cdec, rdec;D) then return ⊥
20. y := paillierdecode(Y0)
21. return (1 +N)yD // encryption of y + d = r

this, we let each party first broadcast a hash of its input and proof; only after all parties have
committed to their inputs using this hash are the actual encrypted inputs and proofs revealed
(line 6). All parties that provide an incorrect hash or proof have their inputs set to zero (line
7–8).

The remainder of the computation follows the CDN protocol. During the computation phase, the
function is evaluated gate-by-gate; for multiplication gates, the multiplication protocol from [29]
is used, with proofs of correct multiplication and decryption using the multiparty FS heuristic
(lines 14–25). During the output phase, the result party obtains the result by broadcasting an
encryption of a random d and proving knowledge using the normal FS heuristic (lines 27–28);
the computation parties decrypt the result plus d, proving correctness using the multiparty
FS heuristic (line 31). From this, the result party learns result r (line 34); and it knows the
intermediate values from the protocol and the proofs showing they are correct.

Finally, we include a proof phase in the UVCDN protocol in which the result party sends
these intermediate values and proofs to the verifier (line 35). The verifier runs procedure
vercomp (Algorithm 4) to verify the correctness of the computation (line 38). The inputs to
this verification procedure are the public key of the Paillier cryptosystem; the encrypted inputs
{Xi}i∈I by the input parties; and the proof π by the result party (which consists of proofs
for each multiplication gate, and the two proofs from the output phase of the protocol). The
verifier checks the proofs for each multiplication gate from the computation phase (lines 6–14);
and the proofs from the output phase (lines 16–20), finally obtaining an encryption of the result
(line 21). While not specified in vercomp, the verifier does also verify the proofs from the input
phase: namely, in lines 7–8 of UVCDN, the verifier receives encrypted inputs and verifies their
proofs to determine the encrypted inputs {Xi}i∈I of the computation.

Apart from checking the inputs during the input phase, the verifier does not need to be present
for the remainder of the computation until receiving π from R. This is what makes verification
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“universal”: in practice, we envision that a trusted party publicly announces the Paillier public
keys, and the input parties publicly announce their encrypted inputs with associated proofs:
then, anybody can use the verification procedure to verify if a given proof π is correct with
respect to these inputs. We prove that the UVCDN protocol implements verifiable secure
function evaluation in the random oracle model in [71].

2.5 Concluding Remarks

Our security model is specific to the CDN setting in two respects. First, we explicitly model that
the verifier receives a Paillier encryption of the result (as opposed to another kind of encryption
or commitment). We chose this formulation for concreteness; but our model generalises easily
to other representations of the result. Second, it is specific to the setting where a minority of
parties may be actively corrupted; but it is possible to change the model to other corruption
models. For instance, it is possible to model the setting from [9] where privacy is guaranteed
when there is at least one honest computation party (and our protocols can be adapted to
that setting). The combination of passively secure multiparty computation with universal
verifiability is another interesting possible adaptation.

Our protocols are secure in the random oracle model “without dependent auxiliary input” [77].
This means our security proofs assume that the random oracle has not been used before the
protocol starts. Moreover, our simulator can only simulate logarithmically many sequential runs
of our protocol due to technical limits. These technical issues reflect the real-life problem that
a verifier cannot see if a set of computation parties have just performed a computation, or they
have simply replayed an earlier computation transcript. As discussed in [75], both problems can
be solved in practice by instantiating the random oracle with a keyed hash function, with every
computation using a fresh random key. Note that all existing constructions require the random
oracle model; achieving universally verifiable (or publicly auditable) multiparty computation in
the standard model is open.

Several interesting variants of our protocol are possible. First, it is easy to achieve publicly
auditable multiparty computation [9] by performing a public decryption of the result rather than
a private decryption for the result party. Another variant is basic outsourcing of computation, in
which the result party does not need to be present at the time of the computation, but afterwards
gets a transcript from which it can derive the computation result. Finally, it is possible to
achieve universal verifiability using other threshold cryptosystems than Paillier. In particular,
while the threshold ElGamal cryptosystem is much more efficient than threshold Paillier, it
cannot be used directly with our protocols because it does not have a general decryption
operation; but universally verifiable multiparty using ElGamal should still be possible by instead
adapting the “conditional gate” variant of the CDN protocol from [68].

Finally, to close the loop, we note that our techniques can also be applied to reduce the cost
of verification in universally verifiable voting schemes. Namely, for voting schemes relying on
homomorphic tallying, we note that the Σ-proofs for correct decryption of the election result by
the respective talliers can be combined into a single Σ-proof of constant size (independent of the
number of talliers). Similarly, for voting schemes relying on mix-based tallying, the Σ-proofs
for correct decryption of each vote by the respective talliers is reduced to a constant size per
vote.
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Chapter 3

Trinocchio: Privacy-Preserving
Outsourcing by Distributed Verifiable
Computation

3.1 Introduction

Recent cryptographic advances are starting to make verifiable computation more and more
practical. The goal of verifiable computation is to allow a client to outsource a computation to a
worker and cryptographically verify the result with less effort than performing the computation
itself. Based on recent ground-breaking ideas [47, 39], Pinocchio [61] was the first implemented
system to achieve this for some realistic computations.

In Pinocchio, the computation is performed on plaintext input and the protocol does not offer
clients any privacy from the worker. This feature would enable a client to save time by out-
sourcing computations, even if the inputs of those computations are so sensitive that it does
not want to disclose them to the worker. Also, it would allow verifiable computation to be
used in settings where multiple clients do not trust the worker or each other, but still want to
perform a joint computation over their respective inputs and be sure of the correctness of the
result. By outsourcing a computation to multiple workers, it is possible to guarantee privacy (if
not all workers are corrupted) and correctness, but existing constructions from the multiparty
literature lose the most appealing feature of verifiable computation: namely, that computations
can be verified very quickly, even in time independent from the computation size.

In this chapter, we describe Trinocchio, a protocol which allows for outsourcing a computation
in a privacy-preserving way to multiple workers, while retaining the fast verification offered by
verifiable computation. Trinocchio uses state-of-the-art [61]-style proofs, but distributes the
computation of these proofs to, e.g., three workers such that no single worker learns anything
about the inputs. The client essentially gets a normal Pinocchio proof, so we keep Pinocchio’s
correctness guarantees and fast verification. The critical observation is that the almost linear
structure of Pinocchio proofs (supporting verification based on bilinear maps) allows us to
distribute the computation of Pinocchio proofs such that individual workers perform essentially
the same work as a normal Pinocchio prover in the non-distributed setting.

While our Trinocchio protocol ensures correct function evaluation, it only fully protects privacy
against semi-honest workers. This is a realistic attacker model; in particular, it means that side
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channel attacks on individual workers are ineffective because each individual worker’s commu-
nication and computation are completely independent from the sensitive inputs. However, even
if an adversary should be able to obtain sensitive information, they are unable to manipulate
the result thanks to the use of verifiable computation. In this way, our protocol hedges against
the risk of more powerful adversaries.

3.1.1 Outline

We first recap the Pinocchio protocol for verifiable computation based on quadratic arithmetic
programs in Section 3.2. Next, we briefly define the security model for privacy-preserving out-
sourced computation in Section 3.3. In Section 3.4, we show how Trinocchio distributes the
proof computation of Pinocchio in the single-client scenario, and prove security of the construc-
tion. We generalise Trinocchio to the setting with multiple, mutually distrusting inputters and
outputters in Section 3.5. Finally, we demonstrate the feasibility of Trinocchio in Section 3.6 by
analysing its performance in two case studies: computing a multivariate polynomial evaluation
and proving optimality of a linear program. We finish with a discussion and conclusions in
Section 3.7.

3.2 Verifiable Computation from QAPs

In this section, we discuss the protocol for verifiable computation based on quadratic arithmetic
programs from [39, 61].

3.2.1 Modelling Computations as Quadratic Arithmetic Programs

A quadratic arithmetic program, or QAP, is a way of encoding arithmetic circuits, and some
more general computations, over a field F of prime order q. It is given by a collection of
polynomials over F.

Definition 4 ([61]). A QAP Q over a field F is a tuple Q = ({vi}ki=0, {wi}ki=0, {yi}ki=0, t), with
vi, wi, yi, t ∈ F[x] polynomials of degree deg vi, degwi, deg yi < deg t = d. The polynomial t is
called the target polynomial. The size of the QAP is k; the degree is the degree d of t.

In the remainder, for ease of notation, we adopt the convention that x0 = 1.

Definition 5. Let Q = ({vi}, {wi}, {yi}, t) be a QAP. A tuple (x1, . . . , xk) is a solution of Q
if t divides (

∑k
i=0 xivi) · (

∑k
i=0 xiwi)− (

∑k
i=0 xiyi) ∈ F[x].

In case t splits, i.e., t = (x − α1) · . . . · (x − αn), a QAP can be seen as a collection of rank-1
quadratic equations for (x1, . . . , xk); that is, equations v · w − y with v, w, y ∈ F[x1, . . . , xk] of
degree at most one. Namely, (x1, . . . , xk) is a solution of Q if t divides (

∑
i xivi) · (

∑
i xiwi)−

(
∑

i xiyi), which means exactly that, for every αj, (
∑

i xivi(αj))·(
∑

i xiwi(αj))−(
∑

i xiyi(αj)) =
0: that is, each αj gives a rank-1 quadratic equation in variables (x1, . . . , xk). Conversely, a
collection of d such equations (recall x0 ≡ 1)

(vj0 · x0 + . . .+ vjk · xk) · (w
j
0 · x0 + . . .+ wjk · xk)− (yj0 · x0 + . . .+ yjk · xk)

can be turned into a QAP by selecting d distinct elements α1, . . . , αd in F, setting target
polynomial t = (x− α1) · . . . · (x− αd), and defining v0 to be the unique polynomial of degree
smaller than d for which v0(αj) = vj0, etcetera.
A QAP is said to compute a function (xl+1, . . . , xl+m) = f(x1, . . . , xl) if the remaining xi give
a solution exactly if the function is correctly evaluated.
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Definition 6 ([61]). Let Q = ({vi}, {wi}, {yi}, t) be a QAP, and let f : Fl → Fm be a function.
We say that Q computes f if (xl+1, . . . , xl+m) = f(x1, . . . , xl) ⇔ ∃ (xl+m+1, . . . , xk) such that
(x1, . . . , xk) is a solution of Q.

For any function f given by an arithmetic circuit, we can easily construct a QAP that computes
the function f . Indeed, we can describe an arithmetic circuit as a series of rank-1 quadratic
equations by letting each multiplication gate become one equation. Apart from circuits contain-
ing just addition and multiplication gates, we can also express circuits with some other kinds of
gates directly as QAPs. For instance, [61] defines a “split gate” that converts a number a into
its k-bit decomposition a1, . . . , ak with equations a = a1 +2 ·a2 + . . .+2k−1 ·ak, a1 · (1−a1) = 0,
. . ., ak · (1− ak) = 0.

3.2.2 Proving Correctness of Computations

If QAP Q = ({vi}, {wi}, {yi}, t) computes a function f , then it is possible for a prover to prove
that (xl+1, . . . , xl+m) = f(x1, . . . , xl) by proving knowledge of values (xl+m+1, . . . , xk) such that
(x1, . . . , xk) is a solution of Q, i.e., t divides (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi). [61] gives a

construction of a proof system which does exactly this. The proof system assumes discrete
logarithm groups G1,G2,G3 with a pairing e : G1 × G2 → G3 for which the (4d + 4)-PDH,
d-PKE and (8d+ 8)-SDH assumptions [61] hold, with d the degree of the QAP. Moreover, the
proof is in the common reference string (CRS) model: the CRS consists of an evaluation key
used to produce the proof, and a verification key used to verify it. Both are public, i.e., provers
can know the verification key and vice versa.

To prove that t divides p = (
∑

i xivi) ·(
∑

i xiwi)−(
∑

i xiyi), the prover computes quotient poly-
nomial h = p/t and basically provides evaluations “in the exponent” of h, (

∑
i xivi), (

∑
i xiwi),

and (
∑

i xiyi) in an unknown point s that can be verified using the pairing. More precisely,
given generators g1 of G1 and g2 of G2 (written additively) and polynomial f ∈ F[x], let us
write 〈f〉1 for g1 · f(s) and 〈f〉2 for g2 · f(s). The evaluation key in the CRS, generated using
random s, αv, αw, αy, β, rv, rw, ry = rv · rw ∈ F, is:

〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβvi + rwβwi + ryβyi〉1, 〈sj〉1.

where i ranges over 0, l+m+ 1, l+m+ 2, . . . , k and j runs from 0 to the degree of t. The proof
contains the following elements:

〈Vmid〉1 =
∑

i〈rvvi〉1 · xi, 〈αvVmid〉1 =
∑

i〈rvαvvi〉1 · xi,
〈Wmid〉2 =

∑
i〈rwwi〉2 · xi, 〈αwWmid〉1 =

∑
i〈rwαwwi〉1 · xi,

〈Ymid〉1 =
∑

i〈ryyi〉1 · xi, 〈αyYmid〉1 =
∑

i〈ryαyyi〉1 · xi,
〈Z〉1 =

∑
i〈rvβvi + rwβwi + ryβyi〉1 · xi, 〈H〉1 =

∑
j〈sj〉1 · hj,

(3.1)

where i ranges over 0, l + m + 1, l + m + 2, . . . , k, and hj are the coefficients of polynomial
h = p/t.

To verify that t divides (
∑

i xivi)·(
∑

i xiwi)−(
∑

i xiyi) and hence (xl+1, . . . , xl+m) = f(x1, . . . , xl),
a verifier uses the following verification key from the CRS:

〈αv〉2, 〈αw〉2, 〈αy〉2, 〈β〉1, 〈β〉2, 〈rvvi〉1, 〈rwwi〉2, 〈ryyi〉1, 〈ryt〉2,
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where i ranges over 1, 2, . . . , l+m1. Given the verification key, a proof, and values x1, . . . , xl+m,
the verifier proceeds as follows. First, it checks that

e(〈Vmid〉1, 〈αv〉2) = e(〈αvVmid〉1, 〈1〉2);

e(〈αw〉1, 〈Wmid〉2) = e(〈αwWmid〉1, 〈1〉2);

e(〈Ymid〉1, 〈αy〉2) = e(〈αyYmid〉1, 〈1〉2) :

(3.2)

intuitively, under the d-PKE assumption, these checks guarantee that the prover must have
constructed 〈Vmid〉1, 〈Wmid〉2, and 〈Ymid〉1 using the elements from the evaluation key. It then
checks that

e(〈Vmid〉1 + 〈Ymid〉1, 〈β〉2) · e(〈β〉1, 〈Wmid〉2) = e(〈Z〉1, 〈1〉2) : (3.3)

under the PDH assumption, this guarantees that the same coefficients xi were used in 〈Vmid〉1,
〈Wmid〉2, and 〈Ymid〉1. Finally, the verifier computes evaluations 〈V 〉1 of

∑k
i=0 xivi as 〈Vmid〉1 +∑l+m

i=1 〈rvvi〉1 · xi; 〈W 〉2 of
∑k

i=0 xiwi as 〈Wmid〉2 +
∑l+m

i=1 〈rwwi〉2 · xi; and 〈Y 〉1 of
∑k

i=0 xiyi as

〈Ymid〉1 +
∑l+m

i=1 〈ryyi〉1 · xi, and verifies that

e(〈V 〉1, 〈W 〉2) · e(〈Y 〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2) : (3.4)

under the (8d + 8)-SDH assumption, this guarantees that, for the polynomial h encoded by
〈H〉1, t · h = (

∑
i xivi) · (

∑
i xiwi)− (

∑
i xiyi) holds.2

Theorem 1 ([39], informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and values x1, . . . , xl+m, the
above is a non-interactive argument of knowledge of (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a
solution of Q.

3.2.3 Making the Proof Zero-Knowledge

The above proof can be turned into a zero-knowledge proof, that reveals nothing about the
values of (xl+m+1, . . . , xk) other than that t divides (

∑
i xivi) · (

∑
i xiwi) − (

∑
i xiyi) for some

h, by performing randomisation. Namely, instead of proving that t ·h = (
∑

i xivi) · (
∑

i xiwi)−
(
∑

i xiyi), we prove that t · h̃ = (
∑

i xivi + δv · t) · (
∑

i xiwi + δw · t) − (
∑

i xiyi + δy · t) with
δv, δw, δy random from F. Precisely, the evaluation key needs to contain additional elements:

〈rvt〉1, 〈rvαvt〉1, 〈rwt〉2, 〈rwαwt〉1, 〈ryt〉1, 〈ryαyt〉1, 〈rvβt〉1, 〈rwβt〉1, 〈ryβt〉1, 〈t〉1.
Compared to the original proof, we let

〈V ′mid〉1 = 〈Vmid〉1 + 〈rvt〉1 · δv, 〈αvV ′mid〉1 = 〈αvV ′mid〉1 + 〈rvαvt〉1 · δv,
〈W ′

mid〉2 = 〈Wmid〉2 + 〈rwt〉2 · δw, 〈αwW ′
mid〉1 = 〈αwWmid〉1 + 〈rwαwt〉1 · δw,

〈Y ′mid〉1 = 〈Ymid〉1 + 〈ryt〉1 · δy, 〈αyY ′mid〉1 = 〈αyYmid〉1 + 〈ryαyt〉1 · δy,
〈Z ′〉1 = 〈Z〉1 + 〈rvβt〉1 · δv + 〈rwβt〉1 · δw + 〈ryβt〉1 · δy, 〈H ′〉1 =

∑
j〈sj〉1 · h̃j,

with h̃j the coefficients of h+ δvw0 +
∑

i δvxi ·wi + δwv0 +
∑

i δwxi · vi + δvδw · t− δy. Verification
remains exactly the same.

Theorem 2 ([39], informal). Given QAP Q = ({vi}, {wi}, {yi}, t) and values x1, . . . , xl+m, the
above is a non-interactive zero-knowledge argument of knowledge of (xl+m+1, . . . , xk) such that
(x1, . . . , xk) is a solution of Q.

1In [61], several terms of the verification key includes a value γ; however, a careful look at [61]’s proof
reveals that γ is actually not needed. We remove it because it simplifies notation, especially for our multi-client
protocols.

2 We remark that, as shown in [61], a verifier who has generated the evaluation and verification keys, can
use the randomness from the generation process to save several of the above pairing checks. We do not consider
this optimisation here.
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3.2.4 From Arguments of Knowledge to Verifiable Computation

In [61], the above argument of knowledge is used to construct a public verifiable computation
scheme. In such a scheme, a client outsources the computation of a function f to a worker,
obtaining cryptographic guarantees that the result it gets from the worker is correct. It is
defined as follows:

Definition 7 ([61]). A public verifiable computation scheme VC consists of three polynomial-
time algorithms (KeyGen,Compute,Verify):

� (EKf ; VKf ) ← KeyGen(f, 1λ): a probabilistic key generation algorithm that takes as ar-
gument a function f : Fl → Fm and a security parameter λ, outputting a public evaluation
key EKf and a public verification key VKf

� (~y; π) ← Compute(EKf ; ~x): a probabilistic worker algorithm that takes input ~x ∈ Fl and
outputs ~y = f(~x) ∈ Fk and a proof π of its correctness

� {0, 1} ← Verify(VKf ; ~x; ~y; π): a deterministic verification algorithm that outputs 1 if
~y = f(~x), 0 otherwise.

To outsource the computation of f , a client runs KeyGen and provides EKf to the worker. When
it needs f(~x), it provides ~x to the worker, who runs Compute and provides the result ~y = f(~x)
and proof π to the client. The client accepts ~y if Verify succeeds. We require that worker
cannot provide incorrect proofs even if it knows VKf , which makes this verifiable computation
scheme “public”. In fact, a trusted party could for once and for all perform KeyGen and
publish (EKf ,VKf ); any client who trusts this party can then use the published VKf to verify
computations. (Trusting this party is needed: the random values used in KeyGen are a trapdoor
with which the generator of the keys can produce false proofs.) A public verifiable computation
scheme should satisfy correctness and security. Correctness means that honest workers produce
accepting proofs:

Definition 8 ([61]). A public verifiable computation scheme VC is called correct if, for all
f : Fl → Fm and ~x ∈ F:

if (EKf ; VKf )← KeyGen(f, 1λ); (~y; π)← Compute(EKf ; ~x),

then Verify(VKf ; ~x; ~y; π) = 1.

Security means that corrupt workers cannot convince clients of wrong results:

Definition 9 ([61]). A public verifiable computation scheme VC is called secure if, for any
f : Fl → Fm and probabilistic polynomial time adversary A:

Pr[ (EKf ,VKf )← KeyGen(f, 1λ); (~x; ~y; π)← A(EKf ; VKf ) :

~y 6= f(~x) ∧ Verify(VKf ; ~x; ~y; π) = 1 ] = negl(λ).

Given a QAP Q that computes a function f , the argument of knowledge from Section 3.2.2
directly gives a public verifiable computation scheme known as Pinocchio [61]: KeyGen is the
computation of the evaluation and verification keys for Q; Compute computes (xl+1, . . . , xl+m) =
f(x1, . . . , xl), (xl+m+1, . . . , xk) such that (x1, . . . , xk) is a solution of Q, and proof (3.1); and
Verify are the checks (3.2–3.4) for this proof.

Theorem 3 (Pinocchio [61], informal). Let QAP Q be of degree d. Then the above construction
is a secure and correct public verifiable computation scheme under the d-PKE, (4d + 4)-PDH,
and (8d+ 8)-SDH assumptions.
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Secure function evaluation:

� Honest parties send inputs xi to
trusted party

� Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

� Trusted party computes function
(y1, . . . , ym) = f(x1, . . . , xm) (where
y1 = . . . = ⊥ if any xi = ⊥)

� Trusted party provides outputs yi for
corrupted parties to adversary

� Trusted party provides outputs yi to
honest parties

� Honest parties output received value;
corrupted parties output ⊥; adver-
sary chooses own output

Correct function evaluation:

� Honest parties send inputs xi to
trusted party

� Adversary sends inputs xi of cor-
rupted parties to trusted party (ac-
tive adversary may modify them)

� Trusted party computes function
(y1, . . . , ym) = f(x1, . . . , xm) (where
y1 = . . . = ⊥ if any xi = ⊥)

� Trusted party provides all inputs xi
to adversary

� Adversary gives subset of honest par-
ties to trusted party (passive adver-
sary gives all honest parties)

� Trusted party sends outputs yi to
given honest parties, ⊥ to others

� Honest parties output received value;
corrupted parties output ⊥; adver-
sary chooses own output

Figure 3.1: Ideal-world executions of secure (left) and correct (right) function evaluation. The
highlighted text indicates where the two differ.

3.3 Security Model for Privacy-Preserving Outsourcing

In this section, we define security for privacy-preserving outsourcing. Because we have interac-
tive protocols between multiple parties (as opposed to a cryptographic scheme, like verifiable
computation above), we define security using the ideal/real-paradigm [22]. In our setting, the
parties are several result parties that wish to obtain the result of a computation on inputs
held by several input parties, who are willing to enable the computation, but not to divulge
their private input values to anybody else. Therefore, they outsource the computation to sev-
eral workers. (Input and result parties may overlap.) The simplest case is the “single-client
scenario” in which one party is the single input/result party.

We consider protocols operating in three phases: an input phase involving the input parties
and workers; a computation phase involving only the workers; and a result phase involving the
workers and result parties. The work of the input parties and output parties should depend
only on the number of other parties and the size of their own in/outputs.

To define security, we will re-use the existing definition framework for secure function evalua-
tion [22]. These definitions not specific to the outsourcing setting; but the outsourcing setting
will become apparent when we claim that a protocol, e.g., implements secure function evalua-
tion if at most X workers are corrupted. Secure function evaluation is the problem to evaluate
(y1, . . . , ym) = f(x1, . . . , xm) with m parties such that the ith party inputs xi and obtains yi,
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and no party learns anything else. (In outsourcing, result parties have non-empty output, input
parties have non-empty inputs, and workers have empty in- and outputs.) A protocol π securely
evaluates function f if the outputs of the parties and adversary A in a real-world execution of
the protocol can be emulated by the outputs of the parties and an adversary SA in an idealised
execution, where f is computed by a trusted party that acts as shown in Figure 3.1. Security is
guaranteed because the trusted party correctly computes the function. Privacy is guaranteed
because the adversary in the idealised execution does not learn anything it should not. Secure
evaluation also implies input independence, meaning that an input party cannot let its input
depend on that of another, e.g., by copying the input of another party; this is guaranteed be-
cause the adversary needs to provide the inputs of corrupted parties without seeing the honest
inputs. Typically, protocols achieve secure function evaluation for a given, restricted class of
adversaries, e.g., adversaries that are passive and only corrupt a certain number of workers.
Protocols can require set-up assumptions; these are captured by giving protocol participants
access to a set of functions g1, . . . , gk that are always evaluated correctly. In this case, we say
that the protocol securely evaluates the function in the (g1, . . . , gk)-hybrid model. For details,
see [22].

We only achieve secure function evaluation if not too many workers are corrupted; we still
need to formalise that in all other cases, we still guarantee that the function was evaluated
correctly. This weaker security guarantee, which we call correct function evaluation, captures
security and input independence, as above, but not privacy. It is formalised by modifying the
ideal-world execution as shown in Figure 3.1. Namely, after evaluating f , the trusted party
provides all inputs to the adversary (modelling that the computation may leak the inputs),
who, based on these inputs, can decide which honest parties are allowed to see their outputs.
Hence, we guarantee that, if an honest party gets a result, then it gets the correct result of the
computation on independently chosen inputs, but not that the inputs remain hidden, or that it
gets a result at all. Note that, in this definition, the adversary has complete control over which
result parties see an output and which ones do not.

3.4 Distributing the Prover Computation

In this section, we present the single-client version of our Trinocchio protocol for privacy-
preserving outsourcing. In Trinocchio, a client distributes computation of a function x2 =
f(x1) to n workers (we consider here single-valued input and output, but the generalisation is
straightforward). Trinocchio guarantees correct function evaluation (regardless of corruptions)
and secure function evaluation (if at most θ workers are passively corrupted, where n = 2θ+1).
Trinocchio in effect distributes the proof computation of Pinocchio; the number of workers to
obtain privacy against one semi-honest worker is three, hence its name.

3.4.1 Multiparty Computation using Shamir Secret Sharing

To distribute the Pinocchio computation, Trinocchio employs multiparty computation tech-
niques based on Shamir secret sharing [12]. Recall that in (θ, n) Shamir secret sharing, a party
shares a secret s among n parties so that θ+ 1 parties are needed to reconstruct s. It does this
by taking a random degree-≤ θ polynomial p(x) = αθx

θ + . . .+αx+ s with s as constant term
and giving p(i) to party i. Since p(x) is of degree at most θ, p(0) is completely independent
from any θ shares but can be easily computed from any θ+ 1 shares by Lagrange interpolation.
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We denote such a sharing as JsK. Note that Shamir-sharing can also be done “in the exponent”,
e.g., J〈a〉1K denotes a Shamir sharing of 〈a〉1 ∈ G1 from which 〈a〉1 can be computed using
Lagrange interpolation in G1.

Shamir secret sharing is linear, i.e., Ja+ bK = JaK + JbK and JαaK = αJaK can be computed
locally. When computing the product of JaK and JbK, each party i can locally multiply its
points pa(i) and pb(i) on the random polynomials pa and pb. Because the product polynomial
has degree at most 2θ, this is a (2θ, n) sharing, which we write as [a · b] (note that reconstructing
the secret requires n = 2θ + 1 parties). Moreover, the distribution of the shares of [a · b] is not
independent from the values of a and b, so when revealed, these shares reveal information about
a and b. Hence, in multiparty computation, [a · b] is typically converted back into a random
(θ, n) sharing Ja · bK using an interactive protocol due to [40]. Interactive protocols for many
other tasks such as comparing two shared value also exist (see, e.g., [32]).

3.4.2 The Trinocchio protocol

We now present the Trinocchio protocol. Trinocchio assumes that Pinocchio’s KeyGen has been
correctly performed: formally, Trinocchio works in the KeyGen-hybrid model. Furthermore,
Trinocchio assumes pairwise private, synchronous communication channels. To obtain x2 =
f(x1), a client proceeds in four steps:

� The client obtains the verification key, and the workers obtain the evaluation key, using
hybrid calls to KeyGen.

� The client secret shares Jx1K of its input to the workers.

� The workers use multiparty computation to compute secret-shares Jx2K of the output and
J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K, J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1] of
the Pinocchio proof, as we explain next; and sends these shares to the client.

� The client recombines the shares into 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1, 〈Ymid〉1,
〈αyYmid〉1, 〈Z〉1, 〈H〉1 by Lagrange interpolation, and accepts x2 as computation result if
Pinocchio’s Verify returns success.

Algorithm 5 shows in detail how the secret-shares of the function output and Pinocchio proof
are computed. The first step is to compute function output x2 = f(x1) and values (x3, . . . , xk)
such that (x1, . . . , xk) is a solution of the QAP (line 4). This is done using normal multiparty
computation protocols based on secret sharing. If function f is represented by an arithmetic
circuit, then it is evaluated using local addition and scalar multiplication, and the multiplica-
tion protocol from [40]. If f is represented by a circuit using more complicated gates, then
specific protocols may be used: e.g., the split gate discussed in Section 3.2.1 can be evaluated
using multiparty bit decomposition protocols [27, 69]. Any protocol can be used as long as it
guarantees privacy, i.e., the view of any θ workers is statistically independent from the values
represented by the shares.

The next task is to compute, in secret-shared form, the coefficients of the polynomial h =
((
∑

i xivi) · (
∑

i xiwi) − (
∑

i xiyi))/t ∈ F[x] that we need for proof element 〈H〉1. In the-
ory, this computation could be performed by first computing shares of the coefficients of
(
∑

i xivi) · (
∑

i xiwi) − (
∑

i xiyi), and then dividing by t, which can be done locally using
traditional polynomial long division. However, this scales quadratically in the degree of the
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Algorithm 5 Trinocchio’s Compute protocol

1: . S = {α1, . . . , αd} denotes the list of roots of the target polynomial of the QAP
2: . T = {β1, . . . , βd} denotes a list of distinct points different from S
3: function Compute(EKf = {〈rvvi〉1}i, . . . , {〈sj〉1}j; Jx1K)
4: (Jx2K, . . . , JxkK)← f(Jx1K)
5: J~vK← {

∑
i vi(αj) · JxiK}j; J~V K← FFT−1

S (J~vK); J~v′K← FFTT (J~V K)
6: J~wK← {

∑
iwi(αj) · JxiK}j; J ~W K← FFT−1

S (J~wK); J~w′K← FFTT (J ~W K)
7: J~yK← {

∑
i yi(αj) · JxiK}j; J~Y K← FFT−1

S (J~yK); J~y′K← FFTT (J~Y K)
8: [~h′]← {(J~v′jK · J~w′jK− J~y′jK)/t(βj)}j; [ ~H]← FFT−1

T ([~h′])
9: J〈Vmid〉1K←

∑
i〈rvvi〉1 · JxiK

10: J〈αvVmid〉1K←
∑

i〈rvαvvi〉1 · JxiK
11: J〈Wmid〉2K←

∑
i〈rwwi〉2 · JxiK

12: J〈αwWmid〉1K
∑

i〈rwαwwi〉1 · JxiK
13: J〈Ymid〉1K←

∑
i〈ryyi〉1 · JxiK

14: J〈αyYmid〉1K←
∑

i〈ryαyyi〉1 · JxiK
15: J〈Z〉1K←

∑
i〈rvβvi + rwβwi + ryβyi〉1 · JxiK

16: [〈H〉1] =
∑

j〈sj〉1 · [ ~Hj]
17: return (Jx2K; J〈Vmid〉1K, J〈αvVmid〉1K, J〈Wmid〉2K, J〈αwWmid〉1K,
18: J〈Ymid〉1K, J〈αyYmid〉1K, J〈Z〉1K, [〈H〉1])

QAP and hence leads to unacceptable performance. Hence, we take the approach based on
fast Fourier transforms (FFTs) from [13], and adapt it to the distributed setting. Given a list

S = {ω1, . . . , ωd} of distinct points in F, we denote by ~P = FFTS(~p) the transformation from
coefficients ~p of a polynomial p of degree at most d − 1 to evaluations p(ω1), . . . , p(ωd) in the

points in S. We denote by ~p = FFT−1
S (~P ) the inverse transformation, i.e., from evaluations to

coefficients. Deferring specifics to later, we mention now that the FFT is a linear transformation
that, for some S, can be performed locally on secret shares in O(d · log d).

With FFTs available, we can compute the coefficients of h by evaluating h in d distinct points
and applying FFT−1. Note that we can efficiently compute evaluations ~v of v = (

∑
i xivi), ~w

of w = (
∑

i xiwi), and ~y of y = (
∑

i xiyi) in the zeros {ω1, . . . , ωd} of the target polynomial.
Namely, the values vk(ωi), wk(ωi), yk(ωi) are simply the coefficients of the quadratic equations
represented by the QAP, most of which are zero, so these sums have much fewer than k elements
(if this were not the case, then evaluating v, w, and y would take an unacceptable O(d · k)).
Unfortunately, we cannot use these evaluations directly to obtain evaluations of h, because this
requires division by the target polynomial, which is zero in exactly these points ωi. Hence, after
determining ~v, ~w, and ~y, we first use the inverse FFT to determine the coefficients ~V , ~W , and ~Y
of v, w, and y, and then again the FFT to compute the evaluations ~v′, ~w′, and ~y′ of v, w, and y
in another set of points T = {Ω1, . . . ,Ωk} (lines 5–7). Now, we can compute evaluations ~h′ of h
in T using h(Ωi) = (v(Ωi) ·w(Ωi)− y(Ωi))/t(Ωi). This requires a multiplication of (θ, n)-secret
shares of v(Ωi) and w(Ωi), hence the result is a (2θ, n)-sharing. Finally, the inverse FFT gives

us a (2θ, n)-sharing of the coefficients ~H of h (line 8).

Given secret shares of the values of xi and coefficients of h, it is straightforward to compute secret
shares of the Pinocchio proof. Indeed, 〈Vmid〉1, . . . , 〈H〉1 are all computed as linear combinations
of elements in the evaluation key, so shares of these proof elements can be computed locally
(lines 9–16), and finally returned by the respective workers (lines 17–18).

Note that, compared to Pinocchio, our client needs to carry out slightly more work. Namely,
our client needs to produce secret shares of the inputs and recombine secret shares of the
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outputs; and it needs to recombine the Pinocchio proof. However, according to the micro-
benchmarks from [61], this overhead is small. For each input and output, Verify includes three
exponentiations, whereas Combine involves four additions and two multiplications; when using
[61]’s techniques, this adds at most a 3% overhead. Recombining the Pinocchio proof involves
15 exponentiations at around half the cost of a single pairing. Alternatively, it is possible to
let one of the workers perform the Pinocchio recombining step by using the distributed zero-
knowledge variant of Pinocchio (Section 3.2.3) and the techniques from Section 3.5. In this
case, the only overhead for the client is the secret-sharing of the inputs and zero-knowledge
randomness, and recombining the outputs.

Parameters for Efficient FFTs To obtain efficient FFTs, we use the approach of [13].

There, it is noted that the operation ~P = FFTS(~p) and its inverse can be efficiently implemented
if S = {ω, ω2, . . . , ωd = 1} is a set of powers of a primitive dth root of unity, where d is a power
of two. (We can always demand that QAPs have degree d = 2k for some k by adding dummy
equations.) Moreover, [13] presents a pair of groups G1,G2 of order q such that Fq has a
primitive 230th root of unity (and hence also primitive 2kth roots of unity for any k < 30) as
well as an efficiently computable pairing e : G1 × G2 → G3. Finally, [13] remarks that for
T = {ηω, ηω2, . . . , ηωd = η}, operations FFT−1

T and FFT−1
T can easily be reduced to FFTS and

FFT−1
S , respectively. In our implementation, we use exactly these suggested parameters.

3.4.3 Security of Trinocchio

Theorem 4. Let f be a function. Let n = 2θ + 1 be the number of workers used. Let d be
the degree of the QAP computing f used in the Trinocchio protocol. Assuming the d-PKE,
(4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

� Trinocchio correctly evaluates f in the KeyGen-hybrid model.

� Whenever at most θ workers are passively corrupted, Trinocchio securely evaluates f in
the KeyGen-hybrid model.

The proof of this theorem is easily derived as a special case of the proof for the multi-client
Trinocchio protocol later. Here, we present a short sketch.

Sketch. To prove correct function evaluation, we need to show that for every real-world adver-
sary A interacting with Trinocchio, there is an ideal-world simulator SA that interacts with the
trusted party for correct function evaluation such that the two executions give indistinguishable
results. The only interesting case is when the client is honest and some of the workers are not.
In this case, the simulator receives the input of the honest party, and needs to choose whether
to provide the output. To this end, the simulator simply simulates a run of the actual protocol
with A, until it has finally obtained function output x2 and the accompanying Trinocchio proof.
If the proof verifies, it tells the trusted party to provide the output to the client; otherwise,
it tells the trusted party not to. Finally, the simulator outputs whatever A outputs. Because
Trinocchio is secure, except with negligible probability a verifying proof implies that the real-
world output of the client (as given by the adversary) matches the ideal-world output of the
client (as computed by the trusted party); and by construction, the outputs of A and SA are
distributed identically. This proves correct function evaluation.
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For secure function evaluation, again the only interesting case is if the client is honest and
some of the workers are passively corrupted. In this case, because corruption is only passive,
correctness of the multiparty protocol used to compute f and correctness of the Pinocchio proof
system used to compute the proof together imply that real-world executions (like ideal-world
executions) result in the correct function result and a verifying proof. Hence, we only need to
worry about how SA can simulate the view of A on the Trinocchio protocol without knowing the
client’s input. However, note that the workers only use a multiparty computation to compute
f (which we assume can be simulated without knowing the inputs), after which they no longer
receive any messages. Hence simulating the multiparty computation for f and receiving any
messages that A sends is sufficient to simulate A. This proves secure function evaluation.

Privacy against Active Attacks We remark that actually, Trinocchio in some cases pro-
vides privacy against corrupted workers as well. Namely, suppose that the protocol used to
compute f does not leak any information to corrupted workers in the event of an active attack
(even though in this case it may not guarantee correctness). For instance, this is the case for
the protocol from [40]: the attacker can manipulate the shares that it sends, which makes the
computation return incorrect results; but since the attacker always learns only θ many shares of
any value, it does not learn any information. Because the attacker learns no additional informa-
tion from producing the Pinocchio proof, the overall protocol still leaks no information to the
adversary. (And security of Pinocchio ensures the client notices the attacker’s manipulation.)

This crucially relies on the workers not learning whether the client accepts the proof: if the
workers would learn whether the client obtained a validating proof, then, by manipulating proof
construction, they could learn whether a modified version of the tuple (x1, . . . , xk) is a solution
of the QAP used, so corrupted workers could learn one chosen bit of information about the
inputs (cf. [59]).

3.5 Handling Mutually Distrusting In- and Outputters

We now consider the scenario where there are multiple (possibly overlapping) input and result
parties. There are some significant changes between this scenario and the single-client sce-
nario. In particular, we need to extend Pinocchio to allow verification not based on the actual
input/output values (indeed, no party sees all of them) but on some kind of representation
that does not reveal them. Moreover, we need to use the zero-knowledge variant of Pinocchio
(Section 3.2.3), and we need to make sure that input parties choose their inputs independently
from each other.

3.5.1 Multi-Client Proofs and Keys

Our multi-client Trinocchio proofs are a generalisation of the zero-knowledge variant of Pinoc-
chio (Section 3.2.3) with modified evaluation and verification keys. Recall that in Pinocchio,
the proof terms 〈Vmid〉1, 〈αvVmid〉1, 〈Wmid〉2, 〈αwWmid〉1, 〈Ymid〉1, 〈αyYmid〉1, and 〈Z〉1 encode
circuit values xl+m+1, . . . , xk; in the zero-knowledge variant, these terms are randomised so that
they do not reveal any information about xl+m+1, . . . , xk. In the multi-client case, additionally,
the inputs of all input parties and the outputs of all result parties need to be encoded such
that no other party learns any information about them. Therefore, we extend the proof with
blocks of the above seven terms for each input and result party, which are constructed in the
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Algorithm 6 ProofBlock

1: function ProofBlock(BK; ~x; δv, δw, δy)
2: 〈V 〉1 ← 〈rvt〉1δv +

∑
i〈rvvi〉1xi; 〈V ′〉1 ← 〈rvαvt〉1δv +

∑
i〈rvαvvi〉1xi

3: 〈W 〉2 ← 〈rwt〉2δw +
∑

i〈rwwi〉2xi; 〈W ′〉1 ← 〈rwαwt〉1δw +
∑

i〈rwαwwi〉1xi
4: 〈Y 〉1 ← 〈ryt〉1δy +

∑
i〈ryyi〉1xi; 〈Y ′〉1 ← 〈ryαyt〉1δy +

∑
i〈ryαyyi〉1xi

5: 〈Z〉1 ← 〈rvβt〉1δv + 〈rwβt〉1δw + 〈ryβt〉1δy +
∑

i〈rvβvi + rwβwi + ryβyi〉1xj
6: return (〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)

Algorithm 7 CheckBlock

1: function CheckBlock(BV ; 〈V 〉1, 〈V ′〉1, 〈W 〉2, 〈W ′〉1, 〈Y 〉1, 〈Y ′〉1, 〈Z〉1)
2: if e(〈V 〉1, 〈αv〉2) = e(〈V ′〉1, 〈1〉2)
3: ∧e(〈αw〉1, 〈W 〉2) = e(〈W ′〉1, 〈1〉2)
4: ∧e(〈Y 〉1, 〈αy〉2) = e(〈Y ′〉1, 〈1〉2)
5: ∧e(〈Z〉1, 〈1〉2) = e(〈V 〉1 + 〈Y 〉1, 〈β〉2)e(〈β〉1, 〈W 〉2) then
6: return >
7: else
8: return ⊥

same way as the seven proof terms above. Although some result parties could share a block of
output values, for simplicity we assign each result party its own block in the protocol.

To produce a block containing values ~x, a party first samples three random field values δv, δw,
and δy and then executes ProofBlock, cf. Algorithm 6. The BK argument to this algorithm is the
block key ; the subset of the evaluation key terms specific to a single proof block. Because each
input party should only provide its own input values and should not affect the values contributed
by other parties, each proof block must be restricted to a subset of the wires. This is achieved
by modifying Pinocchio’s key generation such that, instead of a sampling a single value β, one
such value, βj, is sampled for each proof block j and the terms 〈rvβjvi + rwβjwi + ryβjyi〉1 are
only included for wires indices i belonging to block j. That is, the jth block key is

BKj = {〈rvvi〉1, 〈rvαvvi〉1, 〈rwwi〉2, 〈rwαwwi〉1, 〈ryyi〉1, 〈ryαyyi〉1,
〈rvβjvi + rwβjwi + ryβjyi〉1, 〈rvβjt〉1, 〈rwβjt〉1, 〈ryβjt〉1},

with i ranging over the indices of wires in the block. Note that ProofBlock only performs linear
operations on its ~x, δv, δw and δy inputs. Therefore this algorithm does not have to be modified
to compute on secret shares.

A Trinocchio proof in the multi-client setting now consists of one block ~Qi = (〈Vi〉1, . . . , 〈Zi〉1)

for each input and result party, one block ~Qmid = (〈Vmid〉1, . . . , 〈Zmid〉1) of internal wire values,
and Pinocchio’s 〈H〉1 element. Verification of such a proof consists of checking correctness of
each block, and checking correctness of 〈H〉1. The validity of a proof block can be verified using
CheckBlock, cf. Algorithm 7. Compared to the Pinocchio verification key, our verification key
contains “block verification keys” BVi (i.e., elements 〈βj〉1 and 〈βj〉2) for each block instead
of just 〈β〉1 and 〈β〉2. Apart from the relations inspected by CheckBlock, one other relation is
needed to verify a Pinocchio proof: the divisibility check of Equation (3.4) (Section 3.2.2). In
the protocol, the algorithm that verifies this relation will be called CheckDiv. We denote the
modified setup of the evaluation and verification keys by hybrid call MKeyGen.
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3.5.2 The Protocol

In this section we present our multi-client Trinocchio protocol in more detail. As before, we
assume that each input party provides only a single input and each result party receives only
a single output; that is, each block from Section 3.5.1 consists of only one wire. It should be
clear from Section 3.5.1 how this can be generalised.

3.5.2.1 Communication Model and Notation

We assume synchronous communication; pairwise secure channels between the input parties
and workers; between the workers themselves; and between the workers and result parties. To
ensure agreement between the parties about the inputs for the computation, we additionally
assume a bulletin board. Through this bulletin board, parties can publish messages which
can then be retrieved by any other party. Messages on the bulletin board are authenticated.
In our protocol, we denote a party posting a message m as Post(m). For convenience, we
don’t explicitly denote a party retrieving information from the bulletin board; instead, we take
Post(m) to mean that any party can now use the value for m.

3.5.2.2 Commitment Scheme

We use a commitment scheme, which allows a party to commit to a certain value, without
revealing that value to other parties, but, when at a later time this value is revealed, the other
parties can be certain that the revealed value is equal to the original committed to value. Each
party has its own public commitment key k and a commitment to a value v using randomness
r is denoted Commitk(v; r). Because, given explicit randomness, the commitment algorithm
is deterministic, the commitment can be opened by simply revealing (v, r). Then any party
can verify the commitment by simply recomputing it. To ensure input independence, the
commitment scheme must be non-malleable. Each input party will produce one commitment,
so each commitment key is used only once.

3.5.2.3 Overview of the Protocol

Our protocol is shown as Algorithm 8. The protocol starts with hybrid calls to obtain the
trusted commitment keys and Trinocchio evaluation and verification keys (lines 2–3). The
remainder of the protocol consists of the input phase (lines 4–16), in which the input parties
provide their inputs to the workers; the computation phase, in which the workers compute the
function and Pinocchio proof (lines 17–31); and the result phase, in which the result parties
obtain the output from the workers and verify its correctness (lines 32–41).
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3.5.2.4 Input Phase

In the input phase, each input party provides its input to the workers. Compared to the single-
client case, in which the input party simply provided secret shares of its inputs, we need to take
several additional steps. Namely, we need each input party to provide a block for its inputs
that other parties can use to verify the proof; and we need to guarantee input independence,
namely, that input parties cannot choose their inputs depending on those of others.

To achieve these goals, we proceed as follows. First, each input party computes a block for
its input (line 5). Having each input party post its block on the bulletin board would break
input independence (in effect, it binds the input parties who provide the blocks first). We
circumvent this by letting each input party post a commitment to its block first (line 6). After
all commitments have been posted, the input parties post the openings to the commitments,
i.e., the blocks and commitment randomness (line 7). (This guarantees input independence
because in the security proof, the inputs of the honest parties can still be changed after the
corrupted parties provide their inputs.) After this, the validity of the commitments (line 9) and
blocks (line 10) are checked; if any input party provided incorrect information, the computation
is aborted.

After the input blocks have been posted and checked, the inputs are provided to the workers
in the form of (2θ, n) shares (line 11). The shared information is both input [xi] and block
randomness [δv,i], [δw,i], [δy,i]: the workers need this latter information to compute the proof’s
〈H〉1 element. Note that we use (2θ, n) shares: because n = 2θ + 1, the shares of all workers
recombine to a unique value and we do not need to worry about input parties handing out
inconsistent shares. The workers check that the shares correspond to the broadcast block by
computing additive shares of the block, posting them, and checking if their Shamir recombina-
tion (denoted by Combine) matches the value on the bulletin board (lines 13–15). Finally, the
(2θ, n)-shares are converted into (θ, n)-shares (each worker (θ, n)-shares its share and applies
recombination a la [40]) used for the remainder of the computation (line 16).

3.5.2.5 Computation Phase

In the computation phase, the workers compute function f , and produce a Pinocchio proof that
this computation was performed correctly. The computation of f (line 17) and coefficients ~H ′

of the polynomial h = (v · w − y)/t (lines 18–21) are the same as in the single-client case. To
generate the proof block for the internal wires, the workers first generate shared random values
Jδv,midK, Jδw,midK, Jδy,midK (line 22): for instance, by letting each party share a random value or
using pseudo-random secret sharing. They then call ProofBlock to produce the block using the
shared wires and randomness (line 23). The blocks for the result parties are generated in the

same way (lines 24–26). The coefficients of the randomised quotient polynomial ~H are computed

from ~H ′ analogously to the zero-knowledge variant of Pinocchio (Appendix 3.2.3); note that
this requires computing overall randomness δv, δw, δy that is the sum of the randomness from
all blocks in the proof. This gives (2θ, n) shares [〈H〉1] of proof element 〈H〉1 (line 30)

Having computed shares of all proof elements, the workers now post these shares on the bulletin
board so that everybody can combine them to obtain the full proof. Note that the shares of
individual workers might statistically depend on information that we do not want to reveal such
as internal circuit wires. To avoid any problems because of this, the workers first re-randomise
their proof elements by adding a new random sharing of zero; for instance, obtained by letting
each worker share zero or using pseudo-random zero sharing (line 31).
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3.5.2.6 Result Phase

In the result phase, the result parties obtain their computation results, and verify them with
respect to the information on the bulletin board. First, the result parties obtain secret shares
of their output values, and the randomness used in their proof blocks (line 32). Then, they
combine the values from the bulletin board into a full multi-client Pinocchio proof (lines 34–36),
and verify this proof (lines 37–38). Finally, they recombine their output values (line 39), check
if the secret shares of their output values correspond to the posted proof block (line 40), and
output the computation result (line 41).

3.5.3 Security of the Trinocchio Protocol

Analogously to the single-client case, we obtain the following result:

Theorem 5. Let f be a function. Let n = 2θ + 1 be the number of workers used. Let d be
the degree of the QAP computing f used in the multi-client Trinocchio protocol. Assuming the
d-PKE, (4d+ 4)-PDH, and (8d+ 8)-SDH assumptions:

� Trinocchio correctly evaluates f in the (ComGen,MKeyGen)-hybrid model.

� Whenever at most θ workers are passively corrupted, Trinocchio securely evaluates f in
the (ComGen,MKeyGen)-hybrid model.

We stress that “at most θ workers are passively corrupted” includes both the case when the
adversary is passively corrupted, and corrupts at most θ workers (as well as arbitrarily many
input and result parties); and the case when the adversary is actively corrupted, and corrupts
no workers (but arbitrarily many input and result parties)

We give a proof sketch of this theorem in the paper [72]. The complete proof is given in the full
version of the paper [72]. To prove secure function evaluation, we obtain privacy by simulating
the multiparty computation of the proof with respect to the adversary without using honest
inputs. To prove correct function evaluation, we run the protocol together with the adversary:
if this gives a fake Pinocchio proof, then one of the underlying problems can be broken.

In the single-client case, we remarked that Trinocchio actually provides security against up to
θ actively corrupted workers. Namely, although θ actively corrupted workers may manipulate
the computation of the function and proof, they do not learn any information from this because
they do not see the resulting proof that the client gets. In our multi-client protocol, it is less
natural to assume that the workers cannot see the resulting proof; and in fact, in our protocol,
corrupted workers do see the full proof as it is posted on the bulletin board. It should be possible
to obtain some privacy guarantees against actively malicious workers (who do not collude with
any result parties) by letting the result parties provide proof contributions directly to the result
parties instead of posting them on the bulletin board. We leave an analysis for future work.
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Algorithm 8 Trinocchio: n-party verifiable computation

1: . Input parties I have xi, result parties R output (xl+1, . . . , xl+m) = f(x1, . . . , xl)
2: parties i ∈ I do (k1, . . . , kn)← ComGen()

3: parties i ∈ I ∪W ∪R do (EK = ({BKi}i, . . .), V K = ({BVi}i, . . .))← MKeyGen()

4: parties i ∈ I do . input phase
5: (δv,i, δw,i, δy,i) ∈R F3; ~Qi ← ProofBlock(BKi;xi; δv,i, δw,i, δy,i)

6: sample commitment randomness ρi; ci ← Commitki( ~Qi; ρi); Post(ci)

7: Post( ~Qi, ρi)
8: for all j ∈ I \ {i} do

9: if cj 6= Commitkj( ~Qj; ρj) then abort the protocol

10: if CheckBlock(BVj; ~Qj) = ⊥ then abort the protocol

11: create (2θ, n)-shares ([xi], [δv,i], [δw,i], [δy,i]) and distribute to the workers

12: parties W do
13: for all i ∈ I do
14: [ ~Qi]← ProofBlock(BKi; [xi]; [δv,i], [δw,i], [δy,i]); Post([ ~Qi])

15: if Combine([ ~Qi]) 6= ~Qi then abort the protocol

16: convert (2θ, n) shares ([xi], [δv,i], [δw,i], [δy,i]) to (θ, n) shares (JxiK, . . .)
17: compute (Jxl+1K, . . . , JxkK) using MPC . computation phase

18: J~vK← {(
∑

i vi(ωj) · JxiK}j; J~V K← FFT−1
S (J~vK); J~v′K← FFTT (J~V K)

19: J~wK← {(
∑

iwi(ωj) · JxiK}j; J ~W K← FFT−1
S (J~wK); J~w′K← FFTT (J ~W K)

20: J~yK← {(
∑

i yi(ωj) · JxiK}j; J~Y K← FFT−1
S (J~yK); J~y′K← FFTT (J~Y K)

21: [~h′]← {(J~v′jK · J~w′jK− J~y′jK)/t(Ωj)}j; [ ~H ′]← FFT−1
T ([~h′])

22: (Jδv,midK, Jδw,midK, Jδy,midK) ∈R F3

23: J ~QmidK← ProofBlock(BKmid; Jxl+m+1K, . . . , JxkK; Jδv,midK, Jδw,midK, Jδy,midK)
24: for all i ∈ R do
25: (Jδv,iK, Jδw,iK, Jδy,iK) ∈R F3

26: J ~QiK← ProofBlock(BKi; JxiK; Jδv,iK, Jδw,iK, Jδy,iK)
27: [δv]← [δv,mid] +

∑
i∈I∪R[δv,i]

28: [δw]← [δw,mid] +
∑

i∈I∪R[δw,i]
29: [δy]← [δy,mid] +

∑
i∈I∪R[δy,i]

30: [ ~H]← [ ~H ′] + JδvKJ ~W K + JδwKJ~V K + JδvKJδwK~T − JδyK; [〈H〉1]←
∑d

j=0〈sj〉1[ ~Hj]

31: Post(J ~QmidK + J0K); Post([〈H〉1] + [0]); for all i ∈ R do Post(J ~QiK + J0K)
32: for all i ∈ R do send (JxiK, Jδv,iK, Jδw,iK, Jδy,iK) to res. party i . result phase

33: parties i ∈ R do
34: for all j ∈ R do ~Qj ← Combine([ ~Qj])

35: ~Q← Combine(J ~QmidK) +
∑

j∈I∪R
~Qj

36: 〈H〉1 ← Combine([〈H〉1])

37: if CheckBlock(BVmid; ~Qmid) = ⊥ ∨ ∃j : CheckBlock(BVj; ~Qj) = ⊥ ∨
38: CheckDiv(V K; ~Q; 〈H〉1) = ⊥ then output ⊥ and abort protocol

39: (xi, δv,i, δw,i, δy,i)← Combine(JxiK, Jδv,iK, Jδw,iK, Jδy,iK)
40: if ~Qi 6= ProofBlock(BKi;xi; δv,i, δw,i, δy,i) then output ⊥ and abort protocol

41: output xi
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3.6 Performance

In this section, we show that our approach indeed adds privacy to verifiable computation with
little overhead. We demonstrate this in two case studies. First, we take the “MultiVar Poly”
application from [61], and show that using Trinocchio, this computation can be outsourced in
a private and correct way at essentially the same cost as letting three workers each perform
the Pinocchio computation. Second, we show that, using Trinocchio, the performance of “veri-
fication by validation” due to [70] can be considerably improved: in particular, we improve the
client’s performance by several orders of magnitude.

In our experiments, one client outsources the computation to three workers. In particular, we
use multiparty computation based on (1, 3) Shamir secret sharing. As discussed in Sections 3.4.3
and 3.5.3, this guarantees privacy against one passively corrupted worker (or, in the single-
client case against θ actively corrupted workers when the multiparty computation protocol
does not leak any information). We did not implement the multiple client scenario; this would
add small overhead for the workers, with verification effort growing linearly in he number of
input and result parties but remaining small and independent from the computation size. To
simulate a realistic outsourcing scenario, we distribute computations between three Amazon
EC2 “m3.medium” instances3 around the world: one in Oregon, United States; one in Ireland;
and one in Tokyo, Japan. Multiparty computation requires secure and private channels: these
are implemented using SSL.

3.6.1 Case Study: Multivariate Polynomial Evaluation

In [61], Pinocchio performance numbers are presented showing that, for some applications,
Pinocchio verification is faster than native execution. One of these applications, “Multi-
Var Poly”, is the evaluation of a constant multivariate polynomial on five inputs of degree
8 (“medium”) or 10 (“large”). In this case study, we use Trinocchio to add privacy to this
outsourcing scenario.

We have made an implementation4 of Trinocchio’s Compute algorithm (Algorithm 5) that is
split into two parts. The first part performs the evaluation of the function f (line 4), given as
an arithmetic circuit, using the secret sharing implementation of VIFF(We use the arithmetic
circuit produced by the Pinocchio compiler, hence f is exactly the same as in [61].) Note that,
because f is an arithmetic circuit, this step does not leak any information against actively
corrupted workers. Hence, in the single-client outsourcing scenario of Section 3.4, we achieve
privacy against one actively corrupted worker. The second part is a completely new imple-
mentation of the remainder of Trinocchio using [58]’s implementation of the discrete logarithm
groups and pairings from [13].

Table 3.1 shows the performance numbers of running this application in the cloud with Trinoc-
chio. Significantly, evaluating the function f using passively secure multiparty computation
(i.e., line 4 of Compute) is more than twenty times cheaper than computing the Pinocchio
proof (i.e., lines 5–16 of Comp). Moreover, we see that computing the Pinocchio proof in the
distributed setting takes around the same time (per party) as in the non-distributed setting.
Indeed, this is what we expect because the computation that takes place is exactly the same as
in the non-distributed setting, except that it happens to take place on shares rather than the

3Running Intel Xeon E5-2670 v2 Ivy Bridge with 4 GB SSD and 3.75 GiB RAM
4Implementation available at http://meilof.home.fmf.nl/
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# mult Pinoc. Dist f Dist π Trinoc. Verif.
MultiVar Poly, Medium 203428 2102 96 2092 2187 0.04
MultiVar Poly, Large 571046 6458 275 6427 6702 0.05

Table 3.1: Performance of multivariate polynomial evaluation with Trinocchio: number of
multiplications in f ; time for single-worker proof; time per party for computing f and proof,
and total; and verification time (all times in seconds)

actual values itself. Hence, according to these numbers, the cost of privacy is essentially that
the computation is outsourced to three different workers, that each have to perform the same
work as one worker in the non-private setting. Finally, as expected, verification time completely
vanishes compared to computation time.

Our performance numbers should be interpreted as estimates. Our Pinocchio performance is
around 8–9 times worse than in [61]; but on the other hand, we could not use their propri-
etary elliptic curve and pairing implementations; and we did not spend much time optimising
performance. Note that, as expected, our Pinocchio and Trinocchio implementations have ap-
proximately the same running time. If Trinocchio would be based on Pinocchio’s code base,
we would expect the same. Moreover, apart from combining the proofs from different workers,
the verification routines of Pinocchio and Trinocchio are exactly the same, so achieving faster
verification than native computation as in [61] should be possible with Trinocchio as well. We
also note that VIFF is not known for its speed, so replacing VIFF with a different multiparty
computation framework should considerably speed up the computation of f .

3.6.2 Speeding Up Verification by Validation

In [70], the idea is proposed to speed up verifiable outsourcing by exploiting the fact that, to see
if a solution to a computation is correct, it is often not necessary to consider the whole circuit.
Specifically, instead of proving that ~y = f(~x), workers prove that φ(~x,~a, ~y) holds for some
predicate φ and “certificate” ~a. [70] proposes to use ElGamal encryptions and zero-knowledge
proofs to prove φ(~x,~a, ~y). This gives feasible performance, although the overhead compared
to just computing f is still quite large. We now show that using Trinocchio both reduces the
worker effort and dwarfs the client effort.

Specifically, [70] presents a case study in linear programming. Given a matrix ~A ∈ Zm×n and

vectors ~b ∈ Zm, ~c ∈ Zn, linear programming asks to find vector ~x ∈ Zn and quotient q such
that q > 0; ~x ≥ 0; ~A · ~x ≤ q · ~b, and (~c · ~x)/q is minimal. (In multiparty computation, Z is
embedded into a sufficiently large field F.) To solve this problem, heavy iterative algorithms
such as the simplex algorithm are needed; but given the so-called “dual solution” ~p ∈ Zm it
is easy to verify that ~x is optimal by checking that q > 0; ~p · ~b = ~c · ~x; ~A · ~x ≤ q · ~b; ~x ≥ 0;
~A · ~p ≤ q · ~c; and ~p ≤ 0. This criterion can be formulated as a set of polynomial equations [70],
and, in fact, as a QAP, by formulating checks like q > 0 in terms of bit decompositions, e.g.,
q − 1 = a0 + a1 · 2 + a2 · 22 + . . . and a0 · (1− a0) = 1, a1 · (1− a1) = 0, and so on.

We have adapted the simplex LP solver from [70] to work over the field we need for our discrete
logarithm and pairing groups; and then used Trinocchio’s Compute to produce the proof that the
computed LP solution is optimal. Our performance numbers are shown in Table 3.2. As shown,
producing the Pinocchio proof is only a small percentage of the total distributed computation,
ranging from 5% to 13% of total computation time. (The percentage decreases with problem
size. Asymptotically, the time needed to evaluate f is O(m·n·(I+l)), with m×n the dimensions
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LP size blp #it Comp Cert Proof Total Ver
5x5 31 4 89 4 8 102 0.07
20x20 40 9 289 23 52 364 0.07
48x70 34 25 1080 61 172 1314 0.07
48x70 65 48 2702 119 268 3090 0.07
103x150 61 62 5415 308 713 6436 0.07
288x202 93 176 48781 1257 2479 52516 0.06

Table 3.2: Performance of verifiable linear programming by validation with Trinocchio:
bitlength of solution numbers, number of simplex iterations, time for computation, certificate
computation, proof, and total; and verification time (all times in seconds)

of the LP, I the number of iterations and l the bitlength needed during the computation; proof
time is O(lmn·log lmn).) Verification is very fast, and in particular much faster than evaluating
the simplex algorithm with VIFF’s local execution mechanism (which takes 78s on the biggest
LP).

Comparing our Trinocchio approach to the ElGamal-based proofs of [70], our proofs are not only
much faster to verify, but also faster to produce. For verification, [70] report times that are two-
thirds of proof time, where our verification time is almost constant (for our problem sizes, the
dominant factor is the computation of the constantly many pairings) and also asymptotically
much better, since it only depends linearly on the sum of the LP dimensions, and not at
all on the bitlength. Concerning proof production, our measured times are comparable (even
slightly better), but the circumstances are not. Namely, while [70]’s experiments use machines
comparable to ours, they measure local communication whereas we measure communication in
the cloud. Since [70]’s proof production requires significant communication, their running time
in the cloud should be higher than reported in [70]. (Although we could not verify this latter
claim, we did find that running [70]’s LP solver in the cloud is around four times slower than
in [70], which is probably for the same reason.) On the other hand, [70]’s proof production has
slightly better asymptotics: theirs has O(lnm) running time compared to our O(lnm · log lmn).

3.7 Discussion and Conclusion

In this chapter, we have presented Trinocchio, a system that adds privacy to the Pinocchio
verifiable computation scheme essentially at the cost of replicating the Pinocchio proof produc-
tion algorithm at three (or more) servers. Trinocchio has the same correctness and security
guarantees as Pinocchio; distributing the computation between 2θ + 1 workers gives privacy if
at most θ of them are corrupted. We have shown in a case study that the overhead is indeed
small.

As far as we are aware, our work is the first to deliver efficient verifiable computation (i.e.,
with cryptographic guarantees of correctness and practical verification times independent of
the computation size) with privacy guarantees. Although privacy is only guaranteed if not too
many of the workers are corrupt, the use of verifiable computation ensures that the outcome
of the protocol cannot be manipulated by the workers. This allows us to hedge against an
adversary being more powerful than anticipated in a real world scenario.

Existing verifiable computation constructions in the single-worker setting [38, 44, 35] use very
expensive cryptography, while multiple-worker efforts to provide privacy [4] do not guarantee
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correctness if all workers are corrupted. In contrast, existing works from the area of multiparty
computation [9, 71, 70] deliver privacy and correctness guarantees, but have much less efficient
verification.

A major limitation of Pinocchio-based approaches is that they assume trusted set-up of the
(function-dependent) evaluation and verification keys. In the single-client setting, the client
could perform this set-up itself, but in the multiple-client setting, it is less clear who should
do this. In particular, whoever has generated the evaluation and verification keys can use the
values used during key generation as a trapdoor to generate proofs of false statements. Even
though key generation can likely be distributed using the same techniques we use to distribute
proof production, it remains the case that all generating parties together know this trapdoor.
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Part II

Verifiable Computation From
Hardware Assumptions
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Chapter 4

Formalizing Hardware Assumptions:
Attested Computation

4.1 Overview

PRACTICE proposes several application scenarios, in which sensitive data is routinely ma-
nipulated, typically requiring strong security guarantees against tampering and information
leakage. However, satisfying these guarantees while considering platforms that might have
vulnerabilities, or that are outright not trustworthy, is a major challenge.

Novel capabilities of modern trusted hardware allow for a promising starting point: remote
attestation capabilities. These computational platforms are equipped with technology that
can guarantee to a remote user various degrees of integrity and isolation to software running
within its premises. For example, the Trusted Platform Module (TPM) can provide certified
measurements of the state of a platform, and can be used to guarantee integrity of BIOS and
boot code right before its execution. More recent technological advancements have expanded
the scope and guarantees of trusted hardware, offering the ability to run applications in “clean-
slate” isolated execution environments (IEE). These environments are equipped to produce
cryptographically authenticated reports to attest their executions.

Another major challenge that arises from this approach is to provide security guarantees that
go beyond heuristic arguments. In this context, this document presents solutions considering
the methodology of “provable security”. The approach provides well-established definitional
paradigms for all basic primitives and some of the more used protocols. However, the success
of taking this approach to new and more complex scenarios fundamentally hinges on one’s
ability to tackle with scalability problems, as models and proofs tend to get unwieldy. It may
be tempting to assume that, for the analysis of such protocols, designing security models is a
simple matter of overlaying/merging the trust model induced by the use of such hardware over
well-established security abstractions. Unfortunately, this is not the case.

Two important issues show that neither existent models nor existent techniques are immediately
suitable for the analysis of IEE-based protocols. The first in the concept of a party which is a
key notion in specifying and reasoning about the security of distributed systems. Traditionally,
one considers security where there is a PKI and at least some of the parties have associated
public keys, and in that sense parties and their cryptographic material are essentially the same.
However, in this context users are not expected to maintain long-term keys, which makes long
term cryptographic material inadequate as a technical anchor for a party’s participation in such
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a protocol. The second issue is composability. In standard scenarios that involve composing a
key-exchange protocol with another functionality, in which the only information passed from the
key exchange is the encryption key, then one can design and analyze the two parts separately.
However, reliance on the IEE breaks the independence assumption that allows for composability
results: the code run by the IEE needs to be loaded at once, or else no isolation guarantees are
given by the trusted hardware.

This chapter is dedicated to presenting the state-of-the-art technological advancements with re-
spect to hardware providing IEE-capabilities, and to propose novel models and provably secure
protocols capable of producing feasible implementations that rely on these trusted solutions.
As such, we begin by describing the technology taken as inspiration: Intel’s Software Guard
Extensions, and its related work. We then provide a high-level abstraction of IEEs, and present
the cryptographic primitive of attested computation, the formalization of raw guarantees pro-
vided by IEEs with cryptographic functionalities. This abstraction is then used in the following
chapters as the basis for the design and security analysis of protocols for secure computation
outsourcing and function evaluation. The models and foundations detailed in this chapter are
based on those presented in [7], which is a direct result of work developed in the context of
Task 13.2 of PRACTICE project.

4.2 Software guard extensions

Intel’s Software Guard Extensions (SGX) is a novel instruction set architecture [25] that aims
to solve the secure remote computation problem by leveraging trusted hardware in the remote
machine. SGX relies on attestation, which proves to a user that it is communicating to a specific
piece of software running within secure containers under specified isolation conditions, named
enclaves.

An SGX-enabled processor is equipped to protect the integrity and confidentiality of the com-
putation inside the enclave, by isolating its code and data from the outside environment. This
includes the operating system and hypervisor, as well as any hardware devices attached to the
system bus.

The proof itself is a cryptographic signature that certifies the hash of the enclave contents
(namely the code and memory). This setting does not prevent the remote computer to run any
specific software within enclaves, but instead allows for the user to reject any result produced
by an enclave whose contents do not match the expected value.

Enclaves

In an SGX-enabled hardware, a subset of memory is reserved as Processor Reserved Memory
(PRM). The CPU is responsible to protect this memory structure from all external (non-enclave)
memory access. The PRM stores the enclave page cache, storing enclave-related information
such as code and data. The system software is in charge of assigning these enclave pages to
enclaves, and the CPU will make sure that each enclave page corresponds to exactly one enclave.
SGX provides a set of special CPU instructions allowing for the management of enclaves, and
we now provide a simple description of the ones used for basic enclave operations.

Enclave creation begins with ECREATE, establishing the initial environment within the pro-
tected range of addresses, and allocating an associated data structure for the enclave on the
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Figure 4.1: Process for remote attestation

PRM. This transits into an initially valid enclave construction. As the enclave is built, the
instruction EADD allows the allocation of additional memory pages to the enclave. At each
page, EEXTEND is used to measure allocated space. If all added pages have been measured,
then the enclave is ready for initialization with EINIT. According to the information within the
enclave, this instruction establishes fixed valid entry points for the enclave.

When the enclave is successfully initialized, it enters a locked state, preventing changes on
enclave memory pages. From this point onward, the user may enter the enclave under program
control with EENTER, specifying a valid address as entry point. Within the program mode, the
enclave is restricted from performing any instruction listed on a pre-established set of illegal
commands, resulting in an error. From there, it is possible to obtain cryptographic keys with
EGETKEY and generate reports for other enclaves with EREPORT. These reports can be used
for enclaves to authenticate messages among other enclaves within the same platform.

The enclave is terminated via EEXIT. If something makes the enclave halt (either an expected or
unexpected occurrence), the Asynchronous Enclave Exit is triggered. This saves the enclave’s
state using cryptographic techniques, allowing to reenter the enclave using ERESUME. From
the moment an enclave is locked, it is possible to execute management commands, such as
evictions blocks or loads.

In order to provide inter-platform enclave attestation, SGX-enabled hardware also includes
an Enhanced Privacy ID scheme [21] that is used by a special enclave called quoting enclave
for signing enclave attestations. EPID is a group signature scheme allowing a platform to
construct signatures without uniquely identifying the actual platform that has produced it.
Only the quoting enclave has access to this EPID key, which is bound to the version of the
underlying firmware. The mechanism for remote attestation is proposed in [5], can be depicted
in Figure 4.1 (from the same paper) and is described as follows:

1. The remote machine establishes communication with an SGX-enabled platform and issues
a challenge to validate the machine as running the necessary components inside an enclave,
including a nonce for liveness purposes.

2. The application sends to the enclave the identity of the quoting enclave and the remote
challenge.
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3. The enclave generates a report (using the described instruction EREPORT) comprising
the enclave contents and the challenge given to it, and returns it to the application.

4. The application simply forwards the received data structure to the special quoting enclave.

5. The quoting enclave verifies the authenticity of the received report (using EGETKEY to
retrieve the associated key) and signs it with its unique EPID key. This produces what
is called a quote, which is returned to the application.

6. The application forwards the quote to the remote machine.

7. The challenger uses a EPID public key to validate the signature included in the received
quote. It can now verify the integrity of the signed data and check the response for the
challenge proposed in (1).

The work developed during Task 13.2 PRACTICE is particularly focused on formalizing and
proving security guarantees that can be provided by schemes such as this quoting mechanism,
that allows for enclaves to prove to external users that they are running according to a specific
code and contents. To the best of our knowledge, a modular security analysis of these hardware-
based mechanisms has yet to be performed, so this work provides the first efforts towards
precisely specifying the idealized models that allow for the implementation of provably secure
protocols relying on trusted hardware for remote attestation, such as SGX.

Related work

Some work that looks at provable security for realistic protocols using trusted hardware-based
protocol has been developed around approaches using the Trusted Platform Module [19, 74, 20,
37, 36]. However, the functionality and efficiency of protocol offered by TPM makes them more
suitable for ensuring integrity of programs right before execution, rather than the run-time
guarantees that SGX provides.

Trusted Execution Technology (TXT) [46] is another approach by Intel, using the TPM’s soft-
ware attestation model and auxiliary tamper-resistant chip, but reducing the software inside
the secure container to a virtual machine hosted by the CPU’s hardware virtualization fea-
tures. An initialization authenticated code module (SINIT ACM) allows for performing system
resets, and enables for software to have exclusive control over computational resources while
it is active. However, contrary to SGX, TXT does not implement DRAM encryption, and is
vulnerable to physical DRAM tampering (as is the case with similar TPM-based designs).

ARM’s TrustZone [3] is a collection of hardware modules employed to partition all system
resources between a secure world, hosting secure memory and containers, and a normal world,
hosting the standard software stack. TrustZone’s CPU core is equipped with two page table base
registers, providing separate address translation units for the secure and normal worlds, and
the addresses include and additional secure bit to establish if the contents belong to the normal
or the secure world. Secure containers must also implement a monitor to perform context
switches between the two worlds and to handle hardware exceptions (forcing the system to
return to the normal world). Similarly to SGX, processes executing in the secure world have
unrestricted access to the normal world, so some level of processing between the two is possible.
TrustZone’s documentation does not specify any mechanism for software attestation, however
it describes how to achieve a secure boot by employing a cryptographic hash included in the
on-chip polysilicon fuses.
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Alternatively, the IBM 4765 secure coprocessor [79] encapsulates an entire computer system,
including CPU, caches, DRAM and IO controller within a tamper-resistant environment. In
particular, the secure coprocessor destroys the secret stores as soon as it detects a tampering
attempt, via an array of sensors. Similarly to SGX, this system securely stores its attesta-
tion key in battery-backed memory accessible only to the secure coprocessor, responsible for
measuring and loading system software, as well as provide software attestation services for ap-
plications loaded within. This hardware has shown to provide good security properties, however
these tamper-resistant enclosures tend to be very expensive compared to the expected cost of
computer systems [6], which deters practical deployment of solutions in these environments.

4.3 Enclave abstraction

As a first step towards formalizing the security properties enabled by technologies such as
SGX, we propose an abstract description of enclaves or, more generally, isolated execution
environments. At the high-level, an IEE can be seen as an idealised random access machine
running some fixed program P , whose behaviour can only be influenced via a well-specified
interface that permits passing inputs to the program, and receiving its outputs. The I/O
behaviour of a process running in an IEE is determined by the program it is running, the
semantics of the language in which the program is written, and the inputs it receives. This
means, in particular, that there is strict isolation between processes running in different IEEs
(and any other program running on the machine). Furthermore, the only information that is
revealed about a program running within an IEE is contained in its input-output behaviour
(which in most hardware systems is simply shared memory between the protected code and the
untrusted software outside).

We emphasize that our notion of a machine is intended to be inclusive of any hardware platform
that supports some form of isolated execution, rather than focusing on the particular SGX
implementation. For this reason, the syntax of this abstraction is minimalistic, so that it
can be restricted/extended to capture the specific guarantees awarded by different concrete
hardware architectures, such as the ones suggested in 4.2. As an example, our “vanilla” machine
supports an arbitrary number of IEEs, where programs can be loaded only once, and where
multiple input/output interactions are allowed with the protected code. This is a close match
to the SGX/TrustZone functionalities. However, for something like TPM, one could consider
a restricted machine where a limited number of IEEs exist, with constrained input/output
capabilities, and running specific code (e.g., to provide key storage). Similarly, we consider IEE
environments where the underlying hardware is assumed to only keep benevolent state, i.e.,
state that cannot be used to introduce destructive correlations between multiple interactions
with an IEE. Again, this closely matches what happens in SGX/Trustzone, but different types
of state keeping could be allowed for scenarios where such correlations are not a problem or
where they must be dealt with explicitly.

Programs. Implicit throughout the formalization will be a programming language L in which
programs are written. We assume that this language is used by all computational platforms,
but we admit IEE-specific system calls giving access to different cryptographic functionalities.
These are referred as the security module interface. An additional system call rand is also
assumed to be present in all platforms, giving access to fresh random coins sampled uniformly
at random. Language L is assumed to be deterministic modulo the operation of system calls. As
mentioned above, it is important for our results that system calls cannot be used by a program
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to store additional implicit state that would escape our control. To this end, we impose that
the results of system calls within an IEE can depend only on: i. an initially shared state that
is defined when a program is loaded (e.g., the cryptographic parameters of the machine, and
the code of the program); ii. the input explicitly passed on that particular call; and iii. fresh
random coins. As a consequence of this, we may assume that system calls placed by different
parts of a program are identically distributed, assuming that the same input is provided.

A program P must be written as a transition function, mapping bit-strings to bit-strings. Such
functions take a current state st and an input i, and they will produce a new output o and
an updated state. We will refer to this as an activation and express it as o← P [ st ](i). Unless
otherwise stated, st will be assumed to be initially empty. We impose that every output
produced by a program includes a Boolean flag finished that indicates whether the transition
function will accept further input. The transition function may return arbitrary output until
it produces an output where finished = true, at which point it can return no further output or
change its state. We extend our notation as o ← P [ st ; r](i) to account for the randomness
obtained via the rand system call as extra input r; and as (o1, . . . , on)← P [ st ; r](i1, . . . , in) to
represent a sequence of activations. We write TraceP [ st ;r](i1, . . . , in) for the corresponding I/O
trace (i1, o1, . . . , in, on).

Program composition. Given two programs P and Q, and a projection function between
the internal states of the two programs φ, we will refer to the sequential composition of the two
programs as Composeφ〈P,Q〉. This is defined as a transition function R that has two execution
stages, which are signaled in its output via an additional stage bit. In the first stage, every input
to R will activate program P . This will proceed until P ’s last output indicates it has finished
(inclusively). The next activation will trigger the start of the second stage, at which point R
initialises the state of Q using φ( st P ) before activating it for the first time. Additionally we
require that a constant indicating the current stage (termination being counted as a third stage)
is appended to any output of a composition. When dealing with such a composed program, we
will denote by ATraceR[ st ;r](i1, . . . , in) the prefix of the trace that corresponds to the execution
of P . Intuitively, this denotes the attested trace where only the initial part of the program must
be protected via attestation.

Machines. A machineM is an abstract computational device that captures the resources of-
fered by a real world computer or group of computers, whose hardware security functionalities
are initialised by a specific manufacturer before being deployed, possibly in different end-users.
For example, a machine may represent a single computer produced by a manufacturer, con-
figured with a secret signing key for a public key signature scheme, and whose public key is
authenticated via some public key infrastructure, possibly managed by the manufacturer itself.
Similarly, a machine may represent a group of computers, each configured with secret signing
keys associated with a group signature scheme; again, the public parameters for the group
would then be authenticated by some appropriate infrastructure. The provided abstraction
is restricted to the simplest case, where standard public key signatures are used, however all
results can be easily extended to more complex group management schemes.

We will model machines via a simple external interface, which we see as both the functionality
that higher-level cryptographic schemes can rely on when using the machine, and the adversarial
interface that will be the basis of our attack models. Loosely speaking, this interface can be
thought of as the ideal functionality that captures what is offered by SGX. The interface is as
follows:
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� Init(1λ) is the global initialisation procedure which, on input the security parameter,
outputs the global parameters prms. This algorithm represents the machine’s hardware
initialisation procedure, which is out of the user’s and the adversary’s control. Intuitively,
it initialises the internal security module, the internal state of the remote machine and
returns any We emphasize that the global parameters of machines are the only pieces of
information that are assumed to be authenticated using external mechanisms (such as a
PKI) in the entire paper.

� Load(P ) is the IEE initialisation procedure. On input a program/transition function P ,
the machine produces a fresh handle hdl, creates a new IEE with handle hdl, loads P into
the new IEE and returns hdl. The machine interface does not provide direct access to
either the internal state of an IEE nor to its randomness input. This means that the only
information that is leaked about internal state and randomness input is that revealed
(indirectly) via the outputs of the program.

� Run(hdl, i) is the process activation procedure. On input a handle hdl and an input i, it
will activate process running in isolated execution environment of handle hdl with i as
the next input. When the program/transition function produces the next output o, this
is returned to the caller.

We define the I/O trace TraceM(hdl) of a process hdl running in some machine M as the
tuple (i1, o1, . . . , in, on) that includes the entire sequence of n inputs/outputs resulting from all
invocations of the Run procedure on hdl; ProgramM(hdl) is the code (program) running inside
the process with handle hdl; CoinsM(hdl) represents the coins given to the program by the rand
system call; and StateM(hdl) is the internal state of the program. Finally, we will denote by
AM the interaction of some algorithm with a machine M, i.e., having access to the Load and
Run oracles defined above.

Observe that we use hdl as a convenient identifier for the secure environment executing process
P ; in some incarnation the handle could be defined as a tuple containing the identity of the
machine, some identifier for the secure environment and, say, the hash of the program P . More
detailed formalisms are possible. We may consider, for example, different entry/exit points
related to P , which is a feature of SGX enclaves. We may also explicitly refine P as a program
and some initial associated data.

4.4 Attested computation

We now formalise a cryptographic primitive that builds upon the presented abstraction, and
aims to address the remote execution, i.e., outsourcing, of programs as illustrated in Figure 4.2.
In this setting, a user running software in a trusted local machine wishes to use an untrusted
network to access a pool of remote machines with IEE facilities. The remote machines will
be running general-purpose operating systems and other untrusted software. The goal of the
user is to run a specific program P within an IEE in one of the remote machines, and to
obtain assurance that, not only the program is indeed executing there, but also that it is
displaying a particular I/O behaviour. We call this attested computation, and introduce it as
the cryptographic primitive that formalises the simplest cryptographic application of trusted
hardware systems offering IEE functionalities.

Syntax. An Attested Computation (AC) scheme is defined by the following algorithms:
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Figure 4.2: Attested Computation scenario.

� Compile(prms, P, φ,Q) is the program compilation algorithm. On input global parameters
for some machine MR, and programs P and Q, whose composition under projection
function φ will be outsourced, it will output program R∗, together with an initial (possibly
empty) state st for the verification algorithm. This algorithm is run locally. R∗ is the
code to be run as an isolated process in the remote machine. Intuitively, P is the initial
part of the remote code that requires attestation guarantees, whereas Q is any subsequent
code that may be remotely executed (generally leveraging the security guarantees that
have been bootstrapped using the initial attested execution).

� Attest(prms, hdl, i) is the attestation algorithm. On input global parameters for MR, a
process handle hdl and an input i, it will use the interface ofMR to obtain attested output
o∗. This algorithm is run remotely, but in an unprotected environment: it is responsible for
interacting with the isolated process running R∗, providing it with inputs and recovering
the (possibly attested) outputs that should be returned to the local machine.

� Verify(prms, i, o∗, st ) is the (stateful) output verification algorithm. On input global
parameters forMR, an input i, a (possibly attested) output o∗ and some state st , it will
produce an output value o and an updated state, or the failure symbol ⊥. This failure
symbol is encoded so as to be distinguishable from a valid output of a program, resulting
from a successful verification. This algorithm is run locally on claimed outputs from the
Attest algorithm.

In Figure 4.2, the local attested computation software block corresponds to Compile (one initial
usage per program) and Verify (one usage per incoming attested output), whereas the remote
attested computation software block corresponds to Attest (one usage per remote program acti-
vation, i.e. per I/O transition). The above syntax can be naturally extended to accommodate
the simultaneous compilation of multiple input programs and/or the possibility that Compile
may generate multiple output programs. This would allow us to capture, e.g., map/reduce
applications such as those described in [73].

Correctness. Intuitively, an AC scheme is correct if, for any given programs P and Q and
assuming an honest execution of all components in the scheme, both locally and remotely, the
local user is able to accurately reconstruct a view of the I/O sequence that took place in the
remote environment. Furthermore, this I/O sequence must be consistent with the semantics of
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Composeφ〈P ;Q〉. In other words, suppose the compiled program is run under handle hdl∗ in
remote machine MR, and the local user uses Verify to reconstruct the remote I/O behaviour
(i1, o1, . . . , in, on). Then, if we define R := Composeφ〈P ;Q〉, we must have

TraceR[ st ;CoinsMR
(hdl∗)](i1, . . . , in) = (i1, on, . . . , in, on)

The following definition formalizes the notion of a local user correctly remotely executing program
P using attested computation.

Definition 10 (Correctness). An Attested Computation scheme AC is correct if, for all λ, and
all adversaries A, the experiment in Figure 4.3 (left) always returns true.

The adversary in this correctness experiment definition is choosing inputs, hoping to find a
sequence that causes the attestation protocol to behave inconsistently with respect to the
semantics of P (when these are made deterministic by hardwiring the same random coins used
remotely). We use this approach to defining correctness because it makes explicit what is an
honest execution of an attested computation scheme, when compared to the security experiment
introduced next.

Structural preservation. Since we are dealing with composed programs, we extend the
correctness requirements on attested computation schemes to preserve the structure of the input
program (P, φ,Q), and to modify only the part of the code that will be attested. Formally, we
impose that, given any program P , there exists a (unique) compiled program P ∗, such that, for
any mapping function φ and any programQ, we have that Composeφ〈P ∗;Q〉 = Compile(P, φ,Q) .

Security. Security of an attested computation scheme imposes that an adversary with abso-
lute control of the remote machine cannot convince the local user that some arbitrary remote
execution of a program P has occurred, when it has not (nothing is said about the subsequent
remote execution of program Q). Essentially this considers the possibility of active adver-
saries managing the computation machine, which is a scenario considered by many application
scenarios in PRACTICE (Aeroengine Fleet Management, Platform for Auctions, Platform for
Benchmarking, Joint Statistical Analysis Between State Entities, Privacy Preserving Personal
Genome Analyses and Studies, Platform for Surveys on Sensitive Data, Location Sharing with
Nearby Contacts, Privacy Preserving Satellite Collision Detection, Mobile Data Sharing). For-
mally, we allow the adversary to freely interact with the remote machine, whilst providing a
sequence of (potentially forged) attested outputs. The adversary wins if the local user recon-
structs an execution trace without aborting (i.e., all attested outputs must be accepted by the
verification algorithm) and one of two conditions occur: i. the execution trace that is validated
by Verify is inconsistent with the semantics of P (in which case an adversary would be able to
convince the local user of an I/O sequence that could not possibly have occurred!); or ii. there
does not exist a remote process hdl∗ exhibiting a consistent execution trace (in which case, the
adversary would be able to convince the local user that a process running P was executing in
the remote machine, when it was not).

Since the adversary is free to interact with the remote machine as it pleases, we can not hope
to prevent it from appending arbitrary inputs to the trace of any remote process, while refusing
to deliver all of the resulting attested outputs to the local user. This justifies the winning
condition in our security game referring to a prefix of the trace in the remote machine, rather
than imposing trace equality. Indeed, the definition’s essence is to impose that the locally
recovered trace and the remote trace share a common prefix (v), which exactly corresponds to
the part of the source program’s behaviour that should be protected by attestation.
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Game CorrAC,A(1λ):

prms←$MR.Init(1λ)
(P, φ,Q, n,StateA)←$ A1(prms)
(R∗, st V )← Compile(prms, P, φ,Q)
hdl∗ ←MR.Load(R∗)
For k ∈ [1..n]:

(ik, StateA)←$ A2(o∗1, . . . , o
∗
k−1, StateA)

o∗k ← AttestMR (prms, hdl∗, ik)
(oR,k, st V )← Verify(prms, ik, o

∗
k, st V )

If oR,k =⊥:
Return false

Define R := Composeφ〈P ;Q〉
T ← TraceR[ st ;CoinsMR

(hdl∗)](i1, . . . , in)

T ′ ← (i1, oR,1, . . . , in, oR,n)
Return T = T ′

Game AttAC,A(1λ):

prms←$MR.Init(1λ)
(P, φ,Q, n,StateA)←$ A1(prms)
(R∗, st V )← Compile(prms, P, φ,Q)
For k ∈ [1..n]:

(ik, o
∗
k, StateA)←$ AMR

2 (StateA)
(oR,k, st V )← Verify(prms, ik, o

∗
k, st V )

If oR,k =⊥ Return false
T ′ ← (i1, oR,1, . . . , in, oR,n)
Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
T ← ATraceR[ st ;CoinsMR

(hdl∗)](i1, . . . , in)

If T v T ′ ∧ T v Translate(prms,ATraceMR
(hdl∗)):

Return false
Return true

Figure 4.3: Games defining the correctness (left) and security (right) of an AC scheme.

Formally, we need to account for the fact that the actual I/O sequence of the remote program
includes more information than that of R, e.g., to allow for the cryptographic enforcement of se-
curity guarantees. Our definition is parametrised by a Translate algorithm that permits formal-
ising this notion of semantic consistency. Another way to see Translate(prms,ATraceMR

(hdl∗))
is as a trace translation procedure associated with a given AC scheme, which maps remote
traces into traces at the source level.

Definition 11 (Security). An attested computation scheme is secure if there exists an efficient
deterministic algorithm Translate s.t., for all ppt adversaries A, the probability that experiment
in Figure 4.3 (right) returns true is negligible.

We note that the adversary loses the game as long as there exists at least one remote process that
matches the locally reconstructed trace. This should be interpreted as the guarantee that IEE
resources are indeed being allocated in a specific remote machine to run at least one instance of
the remote program (note that if the program is deterministic, many instances could exist with
exactly the same I/O behaviour, which is not seen as a legitimate attack). Furthermore, our
definition essentially imposes that the compiled program uses essentially the same randomness
as the source program (except of course for randomness that the security module internally uses
to provide its cryptographic functionality), as otherwise it will may easy for the adversary to
make the (idealized) local trace diverge from the remote. This is a consequence of our modeling
approach, but in no way does it limit the applicability of the primitive we are proposing: it
just makes it explicit that the transformation that is performed on the code for attestation will
typically consist of an instrumentation of the code by applying cryptographic processing to the
inputs and outputs it receives.

Minimum leakage. From the discussion above, we gather that an AC scheme should guaran-
tee that the I/O behaviour of the program in the remote machine includes at least the informa-
tion required to reconstruct an hypothetical local execution of the source program. However, it
is important to establish an additional restriction on what AC compilation actually does to a
source program, to ensure that we are able to take advantage of this primitive to achieve more
ambitious goals, namely to perform attestation of the remote execution of cryptographic code.

The following definition imposes that nothing from the internal state of the source programs
(in addition to what is public, i.e. the code and I/O sequence) is leaked in the trace of the
compiled program when it is remotely executed.
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Game Leak-RealAC,A(1λ):

PrgList← [ ]
prms←$MR.Init(1λ)
b←$ AOracles(prms)
Return b

Oracle Compile(P, φ,Q):

(R, st V )← Compile(prms, P, φ,Q)
PrgList← R : PrgList
Return R

Oracle Load(R):

Return MR.Load(R)

Oracle Run(hdl, i):

Return MR.Run(hdl, i)

Game Leak-IdealAC,A,S(1λ):

PrgList← [ ]
List← [ ]
hdl← 0
(prms, st S)←$ S1(1λ)
b←$ AOracles(prms)
Return b

Oracle Compile(P, φ,Q):

(R, st V )← Compile(prms, P, φ,Q)
PrgList← (P, φ,Q,R) : PrgList
Return R

Oracle Load(R):

hdl← hdl + 1
List[hdl]← (R, ε)
Return hdl

Oracle Run(hdl, i):

(R, st )← List[hdl]
If (P, φ,Q,R) ∈ PrgList:

R∗ ← Composeφ〈P,Q〉
o∗←$ R∗[ st ](i)
(o, st S)←$ S2(hdl, P, φ,Q,R, i, o∗, st S)

Else:
(o, st , st S)←$ S3(hdl, R, i, st , st S)

List[hdl]← (R, st )
Return o

Figure 4.4: Games defining minimum leakage of an AC scheme.

Definition 12 (Minimal leakage). Attested Computation scheme AC ensures security with min-
imal leakage if it is secure according to Definition 11 and there exists a ppt simulator S that,
for every adversary A, the following distributions are identical:

{ Leak-RealAC,A(1λ) } ≈ { Leak-IdealAC,A,S(1λ) }

where games Leak-RealAC,A and Leak-IdealAC,A,S are shown in Figure 4.4.

Notice that we allow the simulator to replace the global parameters of the machine with some
value prms for which it can keep some trapdoor information. Intuitively this means that one can
construct a perfect simulation of the remote trace by simply appending cryptographic material
to the local trace. This property is important when claiming that the security of a cryptographic
primitive is preserved when it is run within an attested computation scheme (one can simply
reduce the advantage of an adversary attacking the attested trace, to the security of the original
scheme using the minimum leakage simulator).

Attested computation using SGX

The remote attestation protocol we will consider is inspired in the SGX architecture described
in Section 4.2. The main feature of this system is that the remote machine is equipped with a
security module that manages both short-term and long-term cryptographic keys, with which it
is capable of producing MACs that enable authenticated communication between various IEEs
and digital signatures that can be publicly verified by anyone holding the (long-term) public
key for that machine (or group of machines). We first formalise the operation of (a simplified
version of) this security module.

Security module. The security module relies on a signature scheme Σ = (Gen, Sign,Vrfy)
and a MAC scheme Π = (Gen,Mac,Ver), and it operates as follows:

� When the host machine is initialised, the security module generates a key pair (pk, sk)
using Σ.Gen and a symmetric key key using Π.Gen. It also creates a special process running
code S∗ (see below for a description of S∗) in an IEE with handle 0. The security module
then securely stores the key material for future use, and outputs the public key. In this
case we will have that the output of M.Init will be prms = pk.
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� The operation of IEE with handle 0 will be different from all other IEEs in the machine.
Program S∗ will permanently reside in this IEE, and it will be the only one with direct
access to both sk and key.

� The code of S∗ is dedicated to transforming messages authenticated with key into mes-
sages signed with sk. On each activation, it expects an input (m, t). It obtains key
from the security module and verifies the tag using Π.Ver(key, t,m). If the previous op-
eration was successful, it obtains sk from the security module, signs the message using
σ←$ Σ.Sign(sk,m) and writes σ to the output. Otherwise, it writes ⊥ in the output.

� The security module exposes a single system call mac(m) to code running in all other
IEEs. On such a request from a process running program P , the security module returns
a MAC tag t computed using key over both the code of P and the input message (m).

We note that the operation of the security module allows any process to produce an authenti-
cated message that can be validated by the special process running S∗ as coming from within
another IEE in the same machine.
We will assume that the message authentication code scheme Π and the signature scheme Σ
satisfy the standard notions of correctness and existential unforgeability, and that the machine’s
public key is authenticated by some external PKI.

Attested Computation scheme. We now define an AC scheme that relies on a remote
machine supporting a security module with the above functionality. The operation of the
various algorithms is intuitive, except for the fact that basic replay protection using a sequence
number does not suffice to bind a remote process to a full trace, since the adversary could
then run multiple copies of the same process and mix and match outputs from various traces.
Instead, the remote process must commit to its entire trace whenever an attested output is
produced. Details follow:

� Compile(prms, P, φ,Q) will generate a new program R∗ = Composeφ〈P ∗, Q〉 and output it
along with the initial state of the verification algorithm (R∗, [ ], 1), where 1 is an indicator
of the stage in which remote program R∗ is supposed to be executing. Program P ∗ is
instrumented as follows: it keeps a list ios of all the I/O pairs it has previously received
and computed, i.e, its own trace; on each activation with input i, P ∗ first computes
o←$ P [ st P ](i) and updates the list by adding a new (i, o) pair; it then requests from the
security module a MAC of the updated ios. Due to the operation of the security module,
this will correspond to a tag t on the tuple (R∗, ios); it finally outputs (o, t, R∗, ios). We
note that we include (R∗, ios) explicitly in the outputs of R∗ for clarity of presentation
only. This value would be kept in an insecure environment by a stateful Attest program.

� Attest(prms, hdl, i) invokesMR.Run(hdl, i) using the handle and input value it has received.
When the process produces an output o, Attest parses it into (o′, t, R∗, ios). It may happen
that parsing fails, e.g., if Q is already executing, in which case Attest simply produces
o as its own output. Otherwise, it uses MR.Run(0, (R∗, ios, t)) to convert the tag into a
signature σ on the same message. If this conversion fails, then Attest produces the original
output o as its own output. Otherwise, it outputs (o′, σ).

� Verify(prms, i, o∗, (R∗, ios, stage)) returns o∗ if stage = 2. Otherwise, it first parses o∗ into
(o, σ), appends (i, o) to ios, and verifies the digital signature σ using prms and (R∗, ios)).
If parsing or verification fails, Verify outputs ⊥. If not, then Verify will check if output o
indicates that program P ∗ has finished. If so, it will update stage to value 2. In any case,
it terminates outputting o.
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This scheme captures the general behaviour of SGX enclaves, and the inter-platform attestation
mechanism in particular. The special process of code S∗ of handle 0 can be seen as the quoting
enclave. Computations are attested by having IEE producing MAC tags with code and I/O
trace (reports constructed by SGX enclaves, including the challenge input provided), which are
directed towards the special process responsible for validating and signing with the key to which
only this particular IEE has access. In particular, this can also be an EPID key, such as the
one employed in the mechanism presented in 4.2. The local party can now run Verify to check
if the produced output matches the expected execution. A more in-depth discussion regarding
the correctness and security proofs for this AC scheme can be found in [7].
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Chapter 5

Secure Outsourced Computation From
Attested Computation

5.1 Overview

We define here a way to securely execute code on a remote platform using IEE backed attested
computation as defined in Section 4.4. We aim at providing the same guarantees in terms of
integrity and confidentiality as the guarantees that a user would have by running the code on
a local trusted machine. In particular, we propose a compilation mechanism that ensures that
only the legitimate user of a program executing remotely can submit inputs to it. Additionally
we ensure that the I/O trace of the underlying program stays private.

Purely cryptographic solutions to this problem have been proposed using fully homomorphic
encryption [41], but they are far from practical. The solution we present here has a very low
overhead with respect to the delegated computation and can therefore potentially be used to
delegate computationally heavy tasks.

Such primitives for delegating code execution are particularly important in the context of
cloud computing. Indeed, local users delegating computationally heavy and potentially critical
task to a remote machine have a strong need for both integrity and privacy. Typically in
a scenario where an aircraft manufacturer for example wants to run heavy simulations while
taking advantage of the flexible could infrastructure, strong guarantees are a prerequisite. The
input and output data are immensely valuable trade secrets. Integrity is equally important as
a false result of the simulation could cost human lives in the test flights.

In this Chapter, we first propose a bootstrapping procedure that combines a passively secure
key exchange with an attested computation scheme, towards enabling the deployment of im-
plementations for secure outsourced computation. The models and foundations detailed in this
chapter are based on those presented in [7], which is a direct result of work developed in the
context of Task 13.2 of PRACTICE project.
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5.2 Key exchange for attested computation

An intermediate step for constructing high-level applications that rely on attested computation
is the establishment of a secure communications channel with a process running a particular
program inside an IEE in the remote machine. After such a channel has been established,
standard cryptographic techniques can be used to ensure (in combination with the isolation
provided by IEEs) the integrity and confidentiality of subsequent computations. We finalize
this chapter by presenting how attested computation, in combination with a specific flavour
of a key exchange protocol, can be seen as a bootstrapping procedure for deploying secure
outsourced computation solutions.

We first formalize the precise requirements for a key exchange protocol that can be used in
this setting (we call this authenticated key exchange for attested computation) and show how a
simple transformation can be used to construct such protocols from any passively secure key
exchange protocol. Later on we present a utility theorem that precisely describes what it means
to use attested computation and a suitable key exchange protocol to establish a secure channel
with an arbitrary remote program.

Syntax. A Key Exchange for Attested Computation (AttKE) protocol is defined by the fol-
lowing pair of algorithms.

� Setup(1λ, id) is the remote program generation algorithm, which is run on the local ma-
chine to initialise a fresh instance of the AttKE protocol under party identifier id. On
input the security parameter and id, it will output the code for a program RemKE and the
initial state st L of the LocKE algorithm. This algorithm is run locally.

� RemKE (which is generated dynamically by Setup) is a program that will be run as a part
of an IEE process in the remote machine, and it will keep the entire remote state of the
key exchange protocol in that protected environment.

� LocKE( st L,m) is the algorithm that runs the local end of the AttKE protocol, interacting
with RemKE. On input its current state and an incoming message m, it will output an
updated state and an outgoing message.

When analysing the security of such a protocol we will impose that the LocKE algorithm and
all RemKE programs that may be produced by Setup keep in their state the same information
that was imposed on general key exchange algorithms. We will refer to the instances of local
key exchange executions as LocsKE, for s ∈ N. The local identity will be implicit in our notation
since, in the following discussion we will concentrate our attention on the case where a single
local identity id is considered. We do this for the sake of rigour and clarity of presentation: by
looking at this simplified case we can present our security models in game-based form, whilst
taming the complexity of the resulting games. The extension of these results to the more
general case where several local identities are considered is straightforward. On the remote
side, the identity of the remote process will actually be generated on the fly by the combined
actions of the Setup algorithm and possibly the protocol execution itself, as it may depend for
example on the code of the remote program. For this reason we will enumerate over remote
instances as Remi,j

KE for i, j ∈ N, and observe that the value of variable oid in this case will be
set during the execution of the program itself, rather than passed explicit as an input to one of
the algorithms. Correctness. An AttKE is correct if, after a complete (honest) run between

two participants, one local and one remote, and where the remote program is always the one to
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Game CorrAttKE(1λ):

( st L,RemKE)←$ Setup(1λ, id)
st R ← ε

m←$ RemKE[ st R](ε)
t← true
While m 6= ε:

If t: ( st L,m)←$ LocKE( st L,m)
Else: m←$ RemKE[ st R](m)
t← ¬t

Return st L.δ = st R.δ = accept ∧ st L.key = st R.key ∧ st L.sid = st R.sid∧
st L.pid = st R.oid ∧ st L.oid = st R.pid ∧ st L.oid = id

Figure 5.1: Game defining the correctness of an AttKE scheme.

initiate the communication, both reach the accept state, both derive the same key and session
identifier and have matching partner identities. More formally, a protocol P = {Setup, LocKE}
is correct if, for any arbitrary identity id, the experiment in Figure 5.1 always returns true.
We note that our definition of correctness imposes that remote programs always operate as
initiators and local machines as the responders in the key exchange.

Execution Environment. The specific flavour of key exchange that we will be considering
is clarified by the execution environment in Figure 5.2. This follows the standard modelling
of active attackers, e.g. [54], when one excludes the possibility of corruption (which we do
only for the sake of simplicity). There are, however, two modifications that attend to the
fact that AttKE remote programs are designed to be executed under attested computation
guarantees. On one hand, the adversary is given the power to create as many remote AttKE
programs as it may need, by using the NewLocal oracle, revealing the entire code of the remote
AttKE program (and implicitly all of its initial internal state, which is assumed to be empty)
to the adversary. This captures the fact that remote AttKE programs will be loaded into IEE
execution environments in an otherwise untrusted remote machine, and it implies that remote
AttKE programs cannot keep any long term secret information. Intuitively, this limitation will
be compensated by the attested computation protocol. On the other hand, the adversary is
able to freely interact with remote processes, but it is constrained in its interaction with the
local machine. Indeed, the SendLocal oracle filters which messages the adversary can deliver to
the local machine by checking that these are consistent with at least one remote process that
the adversary is interacting with. This captures the fact that AttKE is designed to interact
over a partially authenticated channel from the remote machine to the local machine, which
will be provided by an attested computation protocol.

Partnering. We will consider the natural extension of the partnering properties introduced
for passive key exchange to the AttKE setting. In addition to the syntactic modifications that
result from referring to LocsKE and Remi,j

KE, we further restrict validity so that partnering is only
valid when it occurs between local and remote instances, in which the latter is the initiator.
To this end, we will use the following predicate on two instances LocsKE and Remi,j

KE holding

st s
L = ( st s, δs, ρs, sids, pids, oids, keys) and st i,j

R = ( st i,j, δi,j, ρi,j, sidi,j, pidi,j, oidi,j, keyi,j),
respectively:

P(LocsKE,Rem
i,j
KE) =

{
true if sids = sidi,j ∧ δs, δi,j ∈ {derived, accept}
false otherwise.

The definition of partner is the obvious one, whereas invalid partners now includes an extra
possibility.
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Game AttAttKE,A(1λ):

InsList← [ ]; fake← [ ]
i← 0
b←$ {0, 1}
b′←$ AO(1λ, id)
Return b = b′

Oracle NewLoc():

i← i+ 1; T iL ← []
(Remi

KE, st iL)←$ Setup(1λ, id)
InsList[i]← 0
Return Remi

KE

Oracle TestLoc(i):

If st iL.δ 6= accept return ⊥
If b = 0 return st iL.key
Return fake( st iL.key)

Oracle SendLoc(m, i):

If @j, (m : T iL) v T i,jR return ⊥
(m′, st iL)←$ LociKE( st iL,m)
T iL ← m′ : m : T iL
If st iL.δ ∈ {accept, derived}:

If ( st iL.key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← ( st iL.key, key∗) : fake

Return (m′, st iL.sid, st iL.δ, st iL.pid)

Oracle RevealLoc(i):

Return st iL.key

Oracle RevealRem(i, j):

Return st i,jR .key

Oracle NewRem(i):

InsList[i]← InsList[i] + 1
j ← InsList[i]

T i,jR ← [ ]; st i,jR ← ε
Return ε

Oracle TestRem(i, j):

If st i,jR .δ 6= accept return ⊥
If b = 0 return st i,jR .key

Return fake( st i,jR .key)

Oracle SendRem(m, i, j):

// No restriction

m′←$ RemKE[ st i,jR ](m)

T i,jR ← m′ : m : T i,jR
If st i,jR .δ ∈ {accept, derived}:

If ( st i,jR .key, key∗) /∈ fake:
key∗←$ {0, 1}λ
fake← ( st i,jR .key, key∗) : fake

Return (m′, st i,jR .sid, st i,jR .δ, st i,jR .pid)

Figure 5.2: Execution environment for AttKEs.

Definition 13 (Partner). Two instances LocsKE and Remi,j
KE are partnered if

P(LocsKE,Remi,j
KE) = true .

Definition 14 (Valid Partners). A protocol AttKE ensures valid partners if the bad event notval
does not occur, where notval is defined as one of the following events occurring:

∃LocsKE,Remi,j
KE s.t. P(LocsKE,Remi,j

KE) = true ∧ ( pids 6= oidi,j ∨ oids 6= pidi,j ∨
keys 6= keyi,j ∨ ρs 6= responder ∨ ρi,j 6= initiator )

∃LocrKE, LocsKE s.t. r 6= s ∧ P(LocrKE, LocsKE) = true

∃Remi,j
KE,Remk,l

KE s.t. (i, j) 6= (k, l) ∧ P(Remi,j
KE,Remk,l

KE)

For completeness, we present also the adapted definitions of confirmed and unique partners.

Definition 15 (Confirmed Partners). A protocol AttKE ensures confirmed partners if the bad
event notconf does not occur, where notconf is defined as at least one of the following two events
occurring:

∃LocsKE s.t. δs = accept ∧ ∀Remi,j
KE, P(LocsKE,Remi,j

KE) = false

∃Remi,j
KE s.t. δi,j = accept ∧ ∀ LocsKE, P(LocsKE,Remi,j

KE) = false.

Definition 16 (Unique Partners). A protocol AttKE ensures unique partners if the bad event
notuni does not occur, where notuni is defined as at least one of the following two events occur-
ring:

∃LocsKE, Remi,j
KE,Remi′,j′

KE s.t.

(i, j) 6= (i′, j′) ∧ P(LocsKE,Remi,j
KE) = true ∧ P(LocsKE,Remi′,j′

KE ) = true

∃Remi,j
KE, LocsKE, Locs

′

KE s.t.

s 6= s′ ∧ P(LocsKE,Remi,j
KE) = true ∧ P(Locs

′

KE,Remi,j
KE) = true .
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We will consider that an adversary violates entity authentication if he can get a session to
accept, but there is no unique and confirmed valid session in its intended partner.More formally,
we wish to verify that none of the bad events notval, notconf, notuni occurs. In the attested
computation scenario, it is common to use one-sided authentication where only the local party
receives authentication guarantee.

Security. Again, the set of TestLoc and TestRem queries must be restricted in order to exclude
trivial attacks. An adversary is legitimate if it respects the following freshness criteria:

� For all TestLoc(i) queries, the following holds:

1. RevealLoc(i) was not queried; and

2. for all Remj,k
KE s.t. P(Remj,k

KE, LocsKE) = true, RevealRem(j, k) was not queried.

� For all TestRem(i, j) queries, the following holds:

1. RevealRem(i, j) was not queried; and

2. for all LockKE s.t. P(LockKE,Remi,j
KE) = true, RevealLoc(i) was not queried.

We only consider legitimate adversaries, and say that the winning event guess occurs if b = b′ at
the end of the experiment. We define AttKE security by requiring both mutual authentication
of parties and and key secrecy.

Definition 17 (AttKE security). An AttKE protocol is secure if, for any ppt adversary in
Figure 5.2, and for any local party identifier string id:

1. the adversary violates entity authentication with negligible probability Pr[ notval ∨ notconf ∨
notuni ]; and

2. its key secrecy advantage 2 · Pr[ guess ]− 1 is negligible.

General construction

We now present a construction of an AttKE scheme from any passively secure key exchange
protocol, relying additionally on a existentially unforgeable signature scheme. The intuition here
is that the attested computation protocol guarantees correct remote execution of a program,
but does not ensure uniqueness, i.e., it does not exclude that potentially many replicas of the
same key exchange protocol instance could be running in the remote machine. By binding
a fresh signature verification key with the identifier for the remote party associated with the
key exchange protocol and generating a fresh nonce at the start of every execution, we can
remotely execute the key exchange code whilst ensuring one-to-one authentication at the process
level. This transformation can be seen as a weaker version of the well-known passive-to-active
compilation process by Katz et al. [54], since our target security model is not fully active. We
now present the details.

Consider a passively-secure authenticated key exchange protocol Π and a signature scheme
Σ = (Gen, Sign,Vrfy). Our construction splits the execution of Π between the local machine and
a remote isolated execution environment: the responder will run locally and the initiator will
run remotely within a program RemKE.1 The code of the remote program will have hardwired

1Setting the remote machine as the initiator of the protocol is the most common scenario. We considered it
for simplicity; the converse can be treated analogously.
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Program RemKE〈Π, pk〉:
Upon activation with input m and state st :

If st = ε:
δ ←⊥; if m 6= ε then δ ← reject
t← []; r←$ {0, 1}k; oid← pk || r; m′ ← ε

Else:
Parse (m′, σ)← m
If Σ.Vrfy(pk, σ,m′ : t) =⊥ then δ ← reject

(m∗, st )←$ Π(m′, oid, initiator, st )
m← (m∗, r); t← m : m′ : t
If δ = reject return ε
Return m

Algorithm Setup(1λ, id):

(pk, sk)←$ Σ.Gen(1k)
R∗ := RemKE〈Π, pk〉
t← [ ]
st KE ← ε
st L ← (id, st KE, sk, t)

Return ( st L, R
∗)

Algorithm LocKE( st L,m):

(id, st KE, sk, t)← st L
Parse (m∗, r)← m
(m′, st KE)←$ Π(m∗, id, responder, st KE)
t← m′ : m : t
σ ← Σ.Sign(sk, t)
st L ← (id, st KE, sk, t)

Return ((m′, σ), st L)

Figure 5.3: Details of the AttKE construction.

into it a unique verification key for the signature scheme. The first activation of RemKE initialises
an internal state and computes a nonce, together with the first message in the key exchange
protocol. The party identifier string of the remote process will then be defined to comprise the
verification key and the nonce. The local part of the protocol signs the full communication
trace so far. Subsequent activations of remote program RemKE will simply respond according to
the key exchange protocol description, rejecting all inputs that fail signature verification. The
details of our construction are shown in Figure 5.3.

� Setup first generates a fresh key pair for the signature scheme and constructs program
RemKE, parametrised by algorithm Π and verification key pk, as described in Figure 5.3
(top). In this program state variables δ, ρ, key, sid and pid are all shared with Π (this
is implicit in the figure). The initial value of st L will store id, along with the initially
empty state for the key exchange st KE, the signing key for the signature scheme and
an initially empty trace t log.

� LocKE takes ( st L,m) runs Π(m, id, responder, st KE) to compute the next message o, pro-
duces signature σ of the entire updated protocol trace, and returns the updated state
st L and message (o, σ).

The following theorem establishes the correctness and security of the generic construction, and
the associated full proof can be found in [7].

Theorem 6. Given a correct passively secure key exchange protocol Π and an existentially
unforgeable signature scheme Σ, the generic construction above yields a correct and secure
AttKE protocol.

Key exchange utility

As a final result towards the construction of a bootstrapping procedure for a full-fledged authen-
ticated and private remote attested computation scheme, we will now present a utility theorem
that describes precisely the guarantees one obtains when combining an attested computation
protocol with an AttKE. Intuitively, this theorem states that attested computation guarantees
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that the authentication and secrecy assurance offered by AttKE are retained when we use it to
establish session keys with remote IEEs, in the presence of fully active adversaries that control
the remote machine, and when the key exchange is composed with arbitrary programs.

Figure 5.4 shows an idealised game where an adversary must distinguish between two remote
machines where an AttKE scheme is executed in combination with an AC scheme. Machine
MR is any standard remote machine that is supported by the attested computation protocol,
whereas M′

R represents a modification of MR where one can tweak the operation of RemKE

programs. The differences of M′
R with respect to MR are concentrated on the Run interface,

which now operates as follows:

� It takes as additional parameters a list fake of pairs of keys and Boolean flag tweak
that, when activated, identifies a process that is running an instance of RemKE composed
with some program Q. This flag triggers the following modifications with respect to the
operations of MR.

� When it detects that RemKE has transitioned into derived or accept state, it will check if
the derived key exists in list fake. If not, it generates a new random key∗, and (key, key∗)
is added to the list.

� When it detects that program Q is set to start executing, rather than using the key as an
input to φ, it uses fake(key) instead.

The environment presented to the adversary models a standard attested computation interac-
tion, where it is given total control over the remote machine using oracles Load and Run (these
oracles will either give access to MR or to M′

R, depending on a secret bit b generated in the
beginning of the game). The adversary is also able to obtain challenge remote programs using
a NewSession(Q) oracle that uses the attested computation scheme to compile RemKE composed
with arbitrary program Q of its choice under a mapping function φkey that reveals the relevant
parts of the key exchange state (namely the secret key key, the party identifiers oid and pid, the
state δ and the session identifier sid). We observe that such arbitrary programs can leak all of
the information revealed by φkey to the attacker. If the adversary chooses to Load a challenge
program, and if M′

R is being used in the game, then it will be tweaked as described above.
Whenever NewSession(Q) is called, the environment creates a new local session i that the ad-
versary can interact with using a Send(i,m) oracle. The Send oracle uses the Verify algorithm of
the attested computation scheme to validate attested outputs and, if they are accepted, feeds
them to the LocKE instance (and also ensures that list fake is updated). Finally, the adversary
can explicitly choose to be tested (as opposed to the implicit testing it may trigger using arbi-
trary programs Q) by calling Test on a local instance. This oracle will either return the true
key, if b = 0, or the associated random key that is kept in the fake list. As before, we define
the winning event guess to occur when b = b′ in the end of the game.

The proof of the following theorem can also be found in [7].

Theorem 7 (AttKE utility). If AttKE is correct and secure and the AC protocol is correct,
secure and ensures minimum leakage, then for all ppt adversaries in the utility experiment:

1. the probability that the adversary violates AttKE two-sided entity authentication is negligible;
and

2. the key secrecy advantage 2 · Pr[ guess ]− 1 is negligible.
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Game AttAttKE,A(1λ):

prms0←$MR.Init(1λ)
prms1←$M′R.Init(1λ)
PrgList← [ ]
fake← [ ]
i← 0
b←$ {0, 1}
b′←$ AO(prmsb, id)
Return b = b′

Oracle Load(R∗):

hdl0 ←MR.Load(R∗)
hdl1 ←M′R.Load(R∗)
Return hdlb

Oracle Run(hdl, in):

o0←$MR.Run(hdl, in)
tweak← false
If ProgramM′

R
(hdl) ∈ PrgList then flag← true

(o1, fake)←$M′R.Run(hdl, in, tweak, fake)
Return ob

Oracle NewSession(Q):

i← i+ 1
(Remi

KE, st iKE)←$ Setup(1λ, id)
(R∗i , st iL)←$ AC.Compile(prmsb,Remi

KE, φkey, Q)
inilast ← ε
PrgList← R∗i : PrgList
Return R∗i

Oracle Send(m′, i):

(m, st iL)←$ AC.Verify(prmsb, in
i
last,m

′, st iL)
If m =⊥ then return ⊥
(m∗, st iKE)←$ LociKE( st iKE,m)
inilast ← m∗

If st iKE.δ ∈ {derived, accept} ∧ st iKE.key /∈ fake:
key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):

If st iKE.δ 6= accept return ⊥
If b = 0 then return st iKE.key
Return fake( st iKE.key)

Figure 5.4: Game defining the utility of an AttKE scheme when used in the context of attested
computation.

5.3 Hardware-based secure outsourced computation

In this section we build on the results in previous sections to design and analyze a protocol
for secure outsourced computation. Informally, we require two properties: i) that only the
legitimate local user can pass inputs to the outsourced program and ii) that the I/O of the
remote program is secret from any observer (even an actively malicious one).

We first give syntax for the protocols that solve this problem, then propose formal definitions
for the properties that we outlined above, and conclude with a generic construction that com-
bines a key-exchange for attestation, a scheme for attested computation and an authenticated
encryption scheme.

We propose in this a security definition for each one of these properties. We also show that it
is easy to satisfy these definitions by building on top of an AttKE and an AC scheme. The main
intuition here is using an AttKE over the AC protocol to established a shared authenticated
encryption key between the (compiled) remote instance of the program and the local machine.
It is then enough to use this shared key to build a secure channel between the remote and the
local machine.

Syntax. A Secure Outsourced Computation scheme (SOC) for a remote machineMR is defined
by the following algorithms:

� Compile(prms, P, id) is the program compilation algorithm. On input public parameters
prms, a program P and a party identifier id, it outputs a compiled program P ∗, to-
gether with an initial state stl for the local side algorithms. We assume that initially
stl.accept =⊥. Note that unlike the AC compilation algorithm, this algorithm only takes
one program as input, as this scheme is intended for providing guarantees for the whole
trace and not only for an initial segment.
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� BootStrap(prms, o, stl) is the client side initialization algorithm. On input public parame-
ters prms, o (presumably the last message from the remote machine) and local state stl,
it returns the next message i to be delivered to the remote machine in the bootstrapping
step step, together with the updated local state. We assume BootStrap sets an accept flag
to true when the initialization process successfully terminates.

� Verify(prms, o∗, stl) is the verification algorithm. It fulfills the same function as the AC
verification algorithm. Note that, as all the inputs are provided by the local machine, we
do not need to feed it the last input as it can be stored in the state. It is expected to
return ⊥ if stl.accept 6= true.

� Encode(prms, i, stl) is the encoding algorithm. On input the public parameters, local state
and the next intended input for P , it returns the next input i∗ for P ∗ together with the
updated local state. It is expected to return ⊥ if stl.accept 6= true.

� Attest(prms, hdl, i) is, as in an AC scheme, the (untrusted) attestation algorithm.

A party A with identifier id who wants to outsource program P to the remote machine first
compiles P with his id, thus obtaining P ∗ and some secret data stl. He then loads P ∗ on the
remote machine using some untrusted protocol. As it is, the program P ∗ is not ready to receive
inputs intended for P : an initial bootstrapping phase (until BootStrap sets the accept flag) is
necessary to establish some shared secrets between the IEE in which P ∗ is executed and A.
Then when A wants to send an input to the remote execution, he encodes it using Encode,
sends it (using Attest) and verifies the output provided by Attest using Verify.

In this section, for simplicity reasons, we assume that the program P is deterministic. However,
as for an AC scheme it would be easy to extend all the definitions to a non-deterministic
program.

Input Integrity. While security of attested computation aims at ensuring that a trace was
honestly produced on the remote side, it does nothing to restrict the provenance of the inputs
received.

We provide a stronger notion named input integrity which, intuitively, ensures that if a program
is compiled by a party with identifier id, then only that party may use the remote compiled
program. We ensure this property by making sure that the local and remote views coincide (up
to the last message exchanged, which may not have yet been delivered). The following formula
Ψ which relates two input/output traces captures this intuition.

Ψ(T, T ′) := T = T ′ ∨ ∃o.
(
T = o :: T ′) ∃i.

(
T ′ = i :: T )

The formalization that we provide in Figure 5.5 is as follows. The adversary chooses a program
P that is compiled with an honest party’s id yielding P ∗ (which is given to the adversary). The
adversary is given access to two oracles. A bootstrapping oracle that simply executes BootStrap
honestly; and a send oracle that verifies the last (presumed) output of the remote program and
encodes the next input (which is provided by the adversary), while keeping track of the local
view of the trace. The goal of the adversary is then create a mismatch between the local and
remote view of the trace.

Practically, we let the adversary in our game use a local agent as oracle. This local agent
initializes the remote process (using BootStrap) then checks the last output of the remote
machine and prepares the next input.
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Game IntSOC,A(1λ):

prms←$MR.Init(1λ)
(P, stA)←$ A1(prms)
(P ∗, stl)←$ Compile(prms, P, id)
tr← []

Run AO,MR
2 (stA, P

∗)
If @=1hdl such that

ProgramMR
(hdl) = P ∗ ∧

Translate(prms,TraceMR(hdl)) 6= []
Return false

hdl← Program−1
MR

(P ∗)

T ← Translate(prms,TraceMR(hdl))
T ′ ← tr
Return ¬Ψ(T, T ′)

Oracle Send(o∗, i):

o, stl ← Verify(prms, o∗, stl)
If o =⊥ Return ⊥
i∗, stl ← Encode(prms, i, stl)
tr← i : o : tr
Return o, i∗

Oracle BootStrap(o):

If stl.accept
Return ⊥

i, stl ← BootStrap(prms, o, stl)
Return i

Figure 5.5: Input integrity of a SOC scheme

Definition 18 (Input Integrity). We say that a SOC scheme satisfies input integrity if there
exists a polynomial time algorithm Translate such that for all ppt A the experiment described in
Figure 5.5 returns true with probability negligible in the security parameter.

Input privacy. We define the privacy of I/O with an indistinguishability game. One impor-
tant point here is that we chose to restrict the class of programs we consider to length-uniform
(written lu) programs. A program is length uniform if the length of its outputs depends only
on the length of its inputs. Intuitively, this is because the encryption scheme is allowed to leak
the length of the messages, which in turn would leak information about the inputs for a non lu
program.
The formalization described in Figure 5.6 is as follows. We start by choosing a bit b that will
determine whether the adversary will be talking with the left send oracle or the right send
oracle (described later). As for input integrity, the adversary then chooses a program P . We
compile it for an honest party’s identifier and give the resulting P ∗ to the adversary. The
adversary is also given access to the bootstrapping oracle. In addition, he is given access to a
left or right send oracle. This oracle, on a request with the last candidate output of the remote
machine and two inputs i0 and i1, verifies the last candidate output and, depending on the bit
b, encodes either i0 or i1 and returns the result. The goal of the adversary is to guess the bit b
with non-negligible bias from 1/2.

Game PrivSOC,A(1λ):

b←$ {0, 1}
prms←$MR.Init(1λ)
(P, stA)←$ A1(prms)
If ¬ lu(P ) Return b′←$ {0, 1}
(P ∗, stl)←$ Compile(prms, P, id)
b′ ← A2(stA, P

∗)O,MR

Return b = b′

Oracle Sendb(o
∗, i0, i1):

o, stl ← Verify(prms, o∗, stl)
If |m0| 6= |m1| Return ⊥
i∗, stl ← Encode(prms, ib, stl)
Return i∗

Oracle BootStrap(o):

If stl.accept
Return ⊥ // (1 init max)

i, stl ← BootStrap(prms, o, stl)
Return i

Figure 5.6: Input privacy of a SOC scheme

Definition 19. We say that a SOC scheme satisfies input privacy if, for all ppt A, the exper-
iment in Figure 5.6 returns true with probability 1/2 up to a negligible function.

This definition ensures that there exist no two traces (with messages of the same length) played
by an honest party over a SOC protocol that are distinguishable for an (active) adversary. This
means that no adversary can gain information on the inputs sent out by a local machine using
a SOC scheme, besides the length of the messages exchanged, achieving our goal of hiding the
honest party’s inputs.
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Definition 20. We say that a SOC scheme is secure if it satisfies both input privacy and input
integrity.

An implementation of a secure SOC scheme. Having defined what security we expect
from a SOC scheme, we now define a scheme that satisfies these requirements. We base our
construction on an AttKE, and an AC scheme. The main idea is using the AttKE to establish a
key between the party agent and the IEE, and then communicate with the IEE over the secure
channel established with this key.

Formally, let (Compile,Attest,Verify) be an AC scheme, (Setup, LocKE) be an AttKE and (E,D,K)
be an authenticated encryption scheme. Figure 5.7 defines a SOC scheme. The most important
part is the compilation part, which uses the AC scheme compilation to compile the composi-
tion of the RemKE program generated by Setup together with program P running over a secure
channel (denoted by C(P )). The initial local state is the union of the state provided by the AC
compilation and the AttKE setup. The program C(P ) simply decrypts the message it receives
checks that the sequence number of the message matches its view the passes the decrypted
message to P . It then retrieves the output of P , appends the corresponding next sequence
number and outputs it. This mechanism ensures that all messages received (resp. sent out)
by P ∗ after the bootstrapping phase have the form E(i#m, k) where i is the position of the
message in the trace, m is the message intended to (resp. produced by) P , and k is the key
established by the AttKE.

On the local side, the bootstrapping mechanism simply consists of running the local KE over the
AC protocol as already described in the utility definition. Once the key has been established,
the local state keeps track of the local view of the sequence number. Verifying an output
consists in decrypting it and checking that the sequence number against the local view of it.
Encoding an input, is just appending the correct sequence number and encrypting it with the
shared key.

Program Compilesec(prms, P, id)

RemKE, stKE ← Setup(1λ, id)
P ∗, stAC ← Compile(prms,RemKE, φkey, C(P ))
stl ← stKE ] stAC

Return P ∗, stl

Program C(P )[st](m)

st.count← st.count + 1
(initialised at 0)

c← D(m, st.key)
If c =⊥ Return ⊥
i#m′ ← c
If i 6= st.count Return ⊥
st.count← st.count + 1
o← P [st](m′)
o∗ ← E(st.count#o, st.key)
Return o∗

Program Encode(prms, i, stl)

stl.c← stl.c+ 1
Return E(i#stl.c, stl.key), stl

Program Verifysec(prms, o∗, stl)

stl.c← stL.c+ 1
m← D(o∗, stl.key)
If m =⊥ Return ⊥
i#o← m
If i 6= stl.c Return ⊥
Return o, stl

Program BootStrap(prms, o, stl)

m← Verify(prms, stlinlast, o, stl)
If m =⊥ Return ⊥
stl, i← LocKE(stl,m)
stl.inlast ← i
Return i

Figure 5.7: SOC algorithms

Theorem 8. If (Compile,Attest,Verify) is a correct and secure AC scheme, {Setup, LocKE,RemKE}
is a secure AttKE and (E,D,KG) is an secure authenticated encryption scheme, then the SOC
presented in Figure 5.7 is secure.
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The complete proof can be found in the full version of the paper, we provide here a sketch of
proof, following the game hopping paradigm. We first do a game hop that consists in replacing
the key established by P ∗ and the party using the AttKE by a “magically” shared fresh key.
The utility property of the AttKE provides us with the fact that we can replace the key shared
by the remote machine and the local agent by a freshly generated key. We are left with showing
that this key is shared with an IEE which is indeed running P ∗ and not Compile(RemKE, φkey, Q)
for some other Q, this is provided by the security of the AC scheme.

We then prove input integrity by remarking that injecting new messages in the trace would
contradict the unforgeability of the authenticated encryption scheme. The sequence number
ensures that the messages are delivered in the right order and that replays are impossible.

We remark that the input integrity property ensures that we know that the only meaningful
action the adversary can take is to forward messages between the remote and local machines.
Taking advantage of that fact we can reduce the input privacy game to the IND-CPA property
of the authenticated encryption.

5.4 Discussion

The Secure Outsource Computation protocol we present here is highly independent of the
particular architecture considered, therefore providing a generic compiler for such a scheme
would be relatively easy. Additionally, besides enabling IEE, it require practically no effort on
the side of the cloud provider. On the client side only a relatively simple protocol has to take
place.

We also note that besides the simple key exchange taking place at the begining of the compu-
tation, the only thing added to the run of the program consists in (highly efficient) symmetric
encryptions and tagging messages with sequence numbers. Hence the overhead with respect to
running the “naked” program is very low, both in terms of communications and computations.
This make our scheme a good candidate for delegating heavy computations to the cloud.

The main caveat of this protocol is its fundamentaly single user nature. Only one client may
have access to the remote program. Distributing the key to several clients would not solve
this problem as everyone has to know the sequence number. In the next Chapter we explore a
way to build primitives with multiple user, namely secure function evaluation, that allow for a
one-off evaluation of a computational task on multiple users.
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Chapter 6

Secure Function Evaluation from
Attested Computation

6.1 Overview

Consider the scenario in which Alice and Bob are two millionaires with respective fortunes A
and B. They want to settle over who is richer (i.e. A > B?), but none of them want to reveal
any additional information about their wealth. This task is typically known as the millionaires’
problem [78], and is a specific instance of a more general scenario in which a larger number
of players wish to collectively compute a function f on secret inputs, without disclosing any
additional information. This computational problem for general functions is known as secure
function evaluation, or secure multiparty computation.

The first proposed solutions for these problems were provided by Yao [78] for the two party
case, and by Damg̊ard et al. [45] for the multiparty case. Initially this was not considered to be
feasible for practical implementation, since these early approaches failed to attain the efficiency
requirements for typical usage. However, state-of-the-art research is constantly exploring new
ways to increase its feasibility, improving efficiency [49, 50] and usability [42, 48, 67]. This
growth in performance is substantiated by the fact that modern SFE implementations are
already being employed for solving real-world problems, such as computing Denmark’s sugar-
beet double auction [16], or predicting satellite collisions [53].

However, asides from solving very specific problems, SFE is still considered to be insufficient for
achieving generic feasible real-world deployments. Part of the problem stems from the type of
adversary power considered. Semi-honest adversaries correctly follow the specified protocol, yet
may attempt to learn additional information by analysing the transcript of messages received
during the execution; Malicious adversaries may behave arbitrarily and are not bound in any
way to follow the instructions of the specified protocol. Frameworks for MPC computations
such as FairPlayMP [11] and Sharemind [15] have produced interesting practical results (in
particular, the previous satellite collision detection example was achieved using Sharemind),
but assume a semi-honest adversary, which is often insufficient for many real use cases (see
security definition of Section 4.4 for application scenarios of PRACTICE in which this is the
case). Passively secure protocols can be compiled into actively secure ones by employing zero-
knowledge proofs-of-knowledge and verifiable secret sharing schemes, following a construction
known as the GMW protocol compiler [57], however these techniques are usually considered
inefficient for practical use. Alternative approaches such as SPDZ [31] achieve security against
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active adversaries without a large computation overhead, but instead rely on a (possibly heavy)
pre-processing stage.1

Chapter 5 proposes a mechanism that allows for a local client to securely outsource computation
towards a machine that is potentially under (active) adversarial control. This is anchored on
the remote machine being equipped with a trusted hardware that enables the usage of isolated
execution environments, as described in Chapter 4. This Chapter is dedicated to extending the
notions of single user outsourced computation to multiple user outsourced computation, i.e.
hardware-based secure function evaluation. In this regard, we consider two approaches. The
first one consists of a direct employment of the mechanisms for attested computation used for
secure computation outsourcing, but now considering multiple input participants. The second
introduces a variant for labeled attested computation, which can then be used for constructing
a functionally similar SFE protocol, but requiring a reduced amount of exchanged data.

6.2 Ideal function evaluation from SGX

We want to securely execute a functionality F defined by algorithms {F, Lin, Lout}, where F
is a function to be evaluated. More precisely (o1, . . . , on) ← F(i1, . . . , in) is a function with
n inputs and n outputs, one for each party; Lin(i, k) defines the public leakage that can be
revealed by a protocol from a given input i by party k; and Lout(o1, . . . , on) defines the public
leakage associated with the outputs of F.

Execution model. We assume the existence of a machineM allowing for the usage of isolated
execution environments. Following the description in Section 4.3, this machine is first initialized
via the Init algorithm, which defines public parameters that one assumes can be independently
authenticated by all parties. The machine M is assumed to be adversarially controlled, but it
does include isolated execution environments in which programs can be loaded (via the Load
mechanism) and then interactively fed with new inputs (via the Run mechanism) to obtain
attested outputs. All the code that is run in M but outside these execution environments is
considered to be adversarially controlled. This adversary controls the interaction with M and
the goal is to guarantee that a set of parties can use the IEE capabilities of M securely (bar
the possibility thatM refuses to allow the protocol to proceed, which would amount to a DoS
attack).

Syntax. A protocol π for functionality F with n inputs and n outputs, is a six-tuple composed
of five algorithms and an integer π = {Setup, Init,Process,Output,Remote}, as follows:

� Setup – This is the party set-up algorithm. Given the security parameter, the public
parameters prms for machine M, the party’s identifier in I and the party’s participant
number in the protocol i (i.e., a number in the range [1..n]), it returns the party’s initial
state (incluing its secret key material) and its public information.

� Init – This is the party protocol initialization algorithm. Given the party’s initial state
st , the public information of all participants Pub and its private input in, it updates and

returns the party’s state.

1The provided adversarial definitions and secure computation solutions have already been evaluated in detail
for WP12 [18] and WP11 [63], respectively.
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Game Corrπ,R,A,M(1λ, I):

n← Length(I)
prms←$M.Init(1λ)
For i ∈ [1..n]:

(sti, pubi)←$ Setup(1λ, prms, I[i], i)
Pub← (pub1, . . . , pubn)
(in1, . . . , inn)←$ A(1λ, prms,Pub)
For i ∈ [1..n]:

sti←$ Init(sti,Pub, ini)
stR ← ε; t← true
m′ ← ε
For r ∈ [1..R]:

If t: (stR, i,m)←$ RemoteM(stR, prms,Pub,m′)
Else: (sti,m′)←$ Process(sti,m)
t← ¬t

For i ∈ [1..n]:
outi←$ Output(sti)

(out′1, . . . , out′n)← F(in1, . . . , inn)
Return (out1, . . . , outn) = (out′1, . . . , out′n)

Figure 6.1: Game defining the correctness of our protocol.

� Process – This is the party activation algorithm. Given its internal state st and an input
messagem, it executes the protocol, updates the internal state and returns output message
m′.

� Output – This is the party output retrieval algorithm. Given its interal state st, it simply
returns the computed output o.

� Remote – This is the untrusted code that will be run in M and which will ensure the
correctness of the protocol. It states the correct procedure to initialize the necessary
IEE in the remote machine, as well as the management of messages exchanged between
parties and that IEE. It receives oracle access toM, public parameters prms, its state stR
(initialized as ε), the program to compile Pub and an input m′, and returns an updated
state stR and the output message m.

Correctness. The following definition formalizes the notion of n users correctly running a
function evaluation protocol π for F.

Definition 21. We say π is an R-round correct function evaluation protocol for F if, for all
λ, for all I and all adversaries A, the experiment in Figure 6.1 always returns true.

Discussion. First, the public parameters are set by initializing the machineM.Init and running
the setup for all n parties Setup. Afterwards, the adversary is given these public parameters,
and gets to choose all inputs for the protocol. Then, the protocol is initialized using Init on all
n parties, and it is run until it reaches its termination, at which point its outputs are retrieved
via Output. The adversary wins the game if it can force the game to produce a set of outputs
that wouldn’t be obtained by simply running the functionality F with the given inputs.

Security. Our security definition is as follows, and it refers to the games in Figure 6.2.

Definition 22. We say π is an R-round secure function evaluation protocol for F if, for any
adversary A = {A0,A1}, there exists a simulator S = {S0,S1,S2,S3,S4,S5,S6} such that the
following definition of advantage is a negligible function in the security parameter.

|Pr[Realπ,R,A,M(1λ)⇒ b = 1]− Pr[IdealF ,R,A,S(1λ)⇒ b = 1] |
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Game Realπ,R,A,M(1λ, I):

n← Length(I)
prms←$M.Init(1λ)
( st A, k)←$ A0(1λ, prms)
For i ∈ [1..k]:

( st i, pubi)←$ Setup(1λ, prms, I[i], i)
For i ∈ [k + 1..n]:

( st i, pubi)←$ Setup(1λ, prms, I[i], i)
Pub← (pub1, . . . , pubn)
b←$ AO1 ( st A,Pub, st k+1, . . . , st n)

Oracle Load(P ):

Return M.Load(P )

Oracle Run(hdl,m):

Return M.Run(hdl,m)

Oracle SetInput(in, i):

If i 6∈ [1..k] Return ⊥
st i←$ Init( st i,Pub, in)

Oracle Send(i,m):

If i 6∈ [1..k] Return ⊥
( st i,m

′)←$ Process( st i,m)
Return m′

Oracle GetOutput(i):

If i 6∈ [1..k] Return ⊥
Return Output( st i)

Game IdealF,R,A,S(1λ, I):

n← Length(I)
( st , prms)←$ S0(1λ)
( st A, k, pubk+1, . . . , pubn)←$ A0(1λ, prms)
For i ∈ [1..k]:

( st , pubi)←$ S1(1λ, st , I[i], i)
For i ∈ [k + 1..n]:

( st i, pubi)←$ Setup(1λ, prms, I[i], i)
Pub← (pub1, . . . , pubn)
b←$ AO1 ( st A,Pub, st k+1, . . . , st n)

Oracle Load(P ):

Return S2( st ,Pub, P )

Oracle Run(hdl,m):

Return SFun
3 ( st ,Pub, hdl,m)

Oracle SetInput(in, i):

If i 6∈ [1..k] Return ⊥
l← Lin(in, i)
st ←$ S4( st , l, i)

Oracle Send(i,m):

Return SFun
5 ( st ,Pub, i,m)

Oracle GetOutput(i):

If i 6∈ [1..k] Return ⊥
c←$ S6( st , i)
Return (outi ∗ c)

Oracle Fun(ink+1, . . . , inn):

out1, . . . , outn←$ F(in1, . . . , inn)
lout ← Lout(in1, . . . , inn, out1, . . . , outn)
Return (outk+1, . . . , outn, lout)

Figure 6.2: Game defining the behavior of Real and Ideal worlds. Fun can only be run once.

Discussion. We take the ideal versus real world approach. Our definition is a simplification
of UC definitions such as [23] in which we assume active adversaries, static corruptions and a
fixed number of participants n.

Real world considers a machine M = {Init, Load,Run} following the description in Section 4.3.
It starts by setting the parameters using M.Init and letting the adversary select how many
parties it wants to corrupt, allowing it to set the associated public parameters. Afterwards,
the remaining honest parties are initialized via the Setup procedure. Finally, the adversary is
to interact with the system via oracles SetInput, GetOutput, Load, Run and Send. SetInput and
GetOutput are used to set the inputs and read outputs of the honest parties, Load and Run allow
interaction with the machineM, and Send enables the adversary to deliver messages to honest
parties. When the interaction is complete, the adversary will attempt to guess the world it is
executing in, by outputting a bit b.

In the ideal world, a simulator will mimic the behavior of the parties and the machine. First
the simulator sets the machine’s parameters and the adversary sets the public parameters of
the parties it wants to corrupt. Afterwards, the simulator initializes the parameters of the
remaining honest parties. Finally, the adversary is to interact with the system via oracles
SetInput, GetOutput and the simulator. SetInput and GetOutput are used to set inputs and get
outputs without providing the simulator with more information than what is allowed by Lin,
while the simulator must emulate the behavior of Load, Run and Send for the honest parties. To
do so, the simulator can run the idealized functionality via Fun, providing inputs from corrupt
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parties and getting the associated outputs and honest input leakage. Similar to the real world,
the adversary will finish the interaction by outputting a bit b regarding its guess.

As building blocs for our protocol, we introduce ParComp and Box, described in Figure 6.3.
ParComp can be used to perform parallel execution of several instances of key exchange for at-
tested computation (see Section 5.2). This program construction takes n programs Rem1

KE, . . . ,Remn
KE

and produces a program that is built to expect every input to consist in an array of n inputs:
it parses the received input, runs every instance Remi

KE with the i-th input and constructs an
output array with the outputs of the executions. Box is used to enable input/output security
for some desired functionality. This program construction takes some generic function F and
an encryption scheme Λ and produces a program that is built to decrypt every input using Λ
and some key within its internal state st.key, as well as encrypt every output using the same
scheme and key.

Program ParComp〈Rem1
KE, . . . ,Remn

KE〉(m, st):

If st = ε:
For i ∈ [1..n]: st[i]← ε

For i ∈ [1..n]:
oi←$ Remi

KE(m[i], st[i])
out← o1, . . . , on
Return out

Program Box〈F,Λ〉(m1, . . . ,mn, st):

For i ∈ [1..n]:
inpi ← Λ.Dec(st.key,mi)

(out1, . . . , outn)← F(inp1, . . . , inpn)
For i ∈ [1..n]:

oi ← Λ.Enc(st.key, outi)
Return (o1, . . . , on)

Figure 6.3: Details for running n parallel key exchange protocols (left), and for coding input-
s/outputs of an arbitrary functionality (right).

One-to-many utility

We now present a one-to-many utility theorem to precisely describe the guarantees obtained
by combining an attested computation protocol with several instances of attested key exchange
running in parallel. This theorem validates that, if the authentication and secrecy assurances
offered by AttKE are retained when we use it to establish keys with a remote IEE, then this is
also the case for multiple clients establishing keys with a remote IEE. This setting considers k
honest participants, and the presence of a fully active adversary, in control of the machine and
the remaining n− k participants.

Figure 6.4 shows an idealized experiment similar to the approach taken for the AttKE Utility
theorem. The adversary is challenged to distinguish between two remote machines, where
several AttKE schemes are being combined and executed with an AC scheme. Machine MR

represents the standard remote machine supported by the AC protocol, while machineM′
R is a

modification ofMR in which the operation of the first k (honest) RemKE programs is tweaked.
The differences between these machines are mostly concentrated on the Run interface. Run
takes, as additional parameters, a list of key pairs fake, a Boolean flag tweak and the number of
honest participants k. The activation of this flag identifies an IEE running the selected parallel
execution of RemKE composed with program Q, and triggers the following modifications with
respect to the operations in MR:

� When it detects that any of the first k executions of RemKE has transitioned into the
derived or accept state, it records the derived key and checks if it exists in the provided
list fake. If that is not the case, it generates a new random key∗ and adds (key, key∗) to
the list.
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Game AttAttKE,A(1λ, I, k, φkey,F):

prms0←$MR.Init(1λ)
prms1←$M′R.Init(1λ)
PrgList← [ ]
fake← [ ]
i← 0
b←$ {0, 1}
b′←$ AO(prmsb)
Return b = b′

Oracle Load(R∗):

hdl0 ←MR.Load(R∗)
hdl1 ←M′R.Load(R∗)
Return hdlb

Oracle Run(hdl, in):

o0←$MR.Run(hdl, in)
tweak← false
If ProgramM′

R
(hdl) ∈ PrgList then tweak← true

(o1, fake)←$M′R.Run(hdl, in, tweak, fake, k)
Return ob

Oracle NewSession():

i← i+ 1
For j ∈ [1..n]:

(stijKE,Remj
KE)←$ Setup(1λ, I[j])

inijlast ← ε
RemComp := ParComp〈Rem1

KE, . . . ,Remn
KE〉

Q := Box〈F,Λ〉
For j ∈ [1..n]:

(R∗i , stijL )←$ AC.Compile(prmsb,RemComp, φkey, Q)
PrgList← R∗i : PrgList

Return (R∗i , st
i(k+1)
KE , . . . , stinKE)

Oracle Send(m′, i, j):

(ins, outs∗)← m′

(outs, stijL )← AC.Verify(prms, ins,m′, stijL )
If outs =⊥ Return ⊥
If inijlast 6= ins[j] Return ⊥
(m∗, stijKE)←$ LocKE(stijKE, outs[j])

inijlast ← m∗

If stijKE.δ ∈ {derived, accept} ∧ stijKE.key /∈ fake:
key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):

Keys← [ ]
For j ∈ [1..k]:

If stijKE.δ 6= accept return ⊥
If b = 0 then Keys← stijKE.key : Keys

Else Keys← fake(stijKE.key) : Keys
Return Keys

Figure 6.4: Game defining the one-to-many utility of a AttKE scheme when used in the context
of attested computation.

� When it detects that program Q is executing for the first time, rather than using all keys
as input to φkey, it replaces the first k as the respective fake(key) (from k + 1 to n, the
behavior is similar to MR).

The provided environment models the adversary power according to standard attested compu-
tation interactions, where it is given access to the oracles Load and Run, matching to MR or
M′

R, depending on the sampled secret bit b. The adversary can also initialize challenge pro-
grams by running NewSession(), which initializes all n executions, composes the n KE programs
and composes them with program Q, having the set of exchanged keys mapped to its initial
state via φkey. Note that, additionally to the adversary having access to the machine, here we
extend its power to control n−k participants, by having NewSession provide the internal states
of corrupt parties k + 1, . . . , n. Upon calling NewSession, the environment creates new session
i, with which the adversary can interact with in behalf of participant j by using Send(m′, i, j).
The Send oracle mimics the behavior of a local participant by using the Verify algorithm of the
AC scheme to validate if the output was correctly attested, and if the j-th input (the input
provided by the local participant) is consistent with what was provided. If both of these con-
ditions are met, the result is fed to the LocKE instance. Finally, the adversary can challenge an
explicit session i to test, by calling Test(i). This oracle will return either the honest participant
(the initial k) set of true keys, if b = 0, or the associated random keys kept in the fake list. We
define the winning event guess to occur when b = b′ in the end of the game.

Theorem 9 (One-to-many AttKE utility). If the AttKE is correct and secure, and the AC
protocol is correct, secure and ensures minimal leakage, then for all ppt adversaries in the utility
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experiment: the probability that the adversary violates the AttKE two-sided entity authentication
is negligible; and the key secrecy advantage 2 · Pr[guess]− 1 is negligible.

Protocol

We now present a construction of a protocol that relies on attested computation (given the
one-to-many utility theorem) to bootstrap secure multiparty computation. The main property
of this construction is that messages are bundled between all local clients and the remote IEE
executing the protocol. In particular,

� All n local participants receive the same message for every computation round, containing
the n responses. Every participant is aware of its position within the protocol, and uses
that information to extract its corresponding message.

� The remote untrusted code is responsible for collecting every individual message. As it
receives all n inputs, it concatenates them and feeds it to the IEE executing the protocol.

Note that, since the remote code handling the inputs is considered untrusted, the set of algo-
rithms running locally must ensure that the adversary is unable to tamper with the execution
trace).

Generic construction. Our protocol is composed of five algorithms, following the syntax in
Section 6.2: {Setup, Init,Process,Output,Remote}. These algorithms are expressed in Figure 6.5
and will now be described in brief.

Setup(1λ, prms, id, pos) starts participant of identifier id and position pos in the protocol, by
generating its key exchange program RemKE and initializing its state st. The local state
is now ready to execute Init (stage← 1).

Init(st,Pub, in) composes the set of key exchange programs in Pub, prepares the code F to be
securely evaluated, and compiles it to R∗. The internal state st is then updated with the
computed verification sate stV and with the provided input for the computation in. The
local state is now ready to execute Process (stage← 2).

Process(m, st) , while the key exchange is executing (stage = 2), verifies the attestation for the
input received and if the included input of its position matches the last input provided
(inlast), generates the next response for the key exchange and updates its state. After
completing the key exchange (stage = 3), Process extracts input in from its state, encrypts
it with the exchanged key key to produce an encrypted output. Finally, after sending its
input (stage = 4), Process expects an output encrypted using the same shared key key,
decrypting it and storing the result in out. From this point onwards, Process will not
execute (stage = 5).

Output(st) will simply return the value stored in variable out. This means that, before Process
reaching its completion, the output will be ⊥, otherwise it will be the result of securely
evaluating F.
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Remote(stR, prms,Pub,m) begins by composing and compiling the code, similarly to what is
performed in Init, and loading the result intoM. Remote also keeps track of the messages
produced by M and received from all local participants in in[pos], as well as the next
message to produce p. p defines the position of the participant that will receive the next
message, so the behavior highly depends on the value of p:

� p = 1 means that a message must be provided for the first participant. This triggers
Remote to collect the input received into in[n] (if the next participant is the first,
then this is either the first message of the protocol, or the received message came
from the last participant, i.e. n), run the IEE via AC.Attest for the collected inputs
in (ε for the first execution) and update the record of the last inputs provided lin.
The received output will be stored in out, the internal state stR is updated and the
message out is returned alongside the last input given to the IEE (lin), signaled to
be delivered to participant p.

� p ∈ [2, . . . , n] stores the received input in in[p−1] (if the next response goes to p, then
the received message was from p − 1), updates its state and returns the previously
computed (out, lin) flagged for participant p.

Contrary to the secure outsourced computation protocol proposed in Chapter 5, the local users
don’t have access to all inputs, and therefore cannot verify its trace in the same way. However,
they do not need to verify the full trace. Indeed, every participant is interested in ensuring two
properties regarding the computation: i) that the composed program within the IEE produced
the provided I/O (AC.Verify), and ii) that the provided I/O matches the participant output
in its previous execution (inlast). As such, the fact that the untrusted code is responsible for
providing the reference inputs is not problematic, as inaccurate data will result in either failing
the AC check (if the I/O was not produced by the IEE) or failing the last input check (if the
IEE was run with a tampered participant input). The adversary can, in fact, trick honest
participant i by running the IEE with fake inputs from other participants, but doing this does
not break the key exchange security. This is demonstrated by the one-to-many utility theorem
in Section 6.2.

6.3 Secure Multi-agent Attested Computation (SMAC)

Observe that the previously described protocol relies on exchanging messages with length de-
pending on the number of participants in the protocol. The reason for this is that the verification
mechanism requires the full execution trace, which encompasses inputs from all participants.

Here we describe a variant of attested computation named secure multi-agent attested computa-
tion (SMAC), intended to provide guarantees to each agent with respect to the part of the trace
corresponding to its label. The intuition here is that each participant does not need guarantees
over the legitimacy of the entire trace, but rather of the part of the trace with respect to the
inputs he (in particular) has provided. In this context, the user is not interested in validating
the key exchange between the IEE and other users, and by not having to do so, we reduce the
amount of data exchanged by the resulting protocol.

Syntax. A labelled reactive program takes as input a state st, a label l intended to represent
the sender of the received message, and a message i. It outputs an updated state, and an
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Algorithm Setup(1λ, prms, id, pos):

(stL,RemKE)← SetupKE(1λ, id)
stV ← ε; inlast ← ε; in← ε; out← ε
stage← 1
st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return (st,RemKE)

Algorithm Process(m, st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
(id, stKE, sk, t)← stL
If stage = 2:

(ins, outs∗)← m
(outs′, stV )← AC.Verify(prms, ins,m, stV )
If outs′ =⊥ Return ⊥
(ins, outs)← outs′

If inlast 6= ins[pos] Return ⊥
(o, stL)←$ LocKE(stL, outs[pos])
inlast ← o
If (stKE.δ) ∈ {derived, accept}

stage← 3
Else If stage = 3:

o←$ Λ.Enc(stKE.key, in)
stage← 4

Else If stage = 4:
(ins, outs) = m
out←$ Λ.Dec(stKE.key, outs)
stage← 5
o← ε

Else:
Return ⊥

st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return (st, o)

Algorithm Output(st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
Return out

Algorithm Init(st,Pub, in):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
If (stage 6= 1):

Return ⊥
(Rem1

KE, . . . ,Remn
KE)← Pub

RemComp := ParComp〈Rem1
KE, . . . ,Remn

KE〉
Q := Box〈F,Λ〉
(R∗, stV )← AC.Compile(prms,RemComp, φkey, Q)
stage← 2
st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return st

Algorithm RemoteM(stR, prms,Pub,m):

n← Length(Pub)
If stR = ε:

(Rem1
KE, . . . ,Remn

KE)← Pub
RemComp := ParComp〈Rem1

KE, . . . ,Remn
KE〉

Q := Box〈F,Λ〉
(R∗, stV )← AC.Compile(prms,RemComp, φkey, Q)
hdl←M.Load(R∗)
For i ∈ [1..n]:

in[i]← ε
p = 1

Else:
(hdl, in, lin, out, p)← stR

If p = 1:
in[n]← m
out←$ AC.AttestM(prms, hdl, in)
lin← in

Else in[p− 1]← m
If (p = n) p′ = 1
Else p′ ← p+ 1
stR ← (hdl, in, lin, out, p′)
Return (stR, p, (lin, out))

Figure 6.5: Algorithms defining the protocol.

output message o. We assume that the program always answers to its sender (a possibly empty
message if no answer is needed).

P [st](l, i)→ st′, o

In all the following we will assume that input and output messages are clearly identified. Given
a label l, we write TracelP [st;r]((i1, l1), . . . , (in, ln)) for the subset of the I/O trace of P with
random coins r, initial state st, on inputs (i1, l1), . . . , (in, ln) that is labeled with l. The syntax
of a SMAC scheme is rather similar to the one of AC provided in Section 4.4, and is as follows.

� Compile(prms, P, φ,Q, L) where L is the set of label for which attestation is expected.
Returns the outsourced program R∗ together with the initial state of the verification
algorithms stl for every label l ∈ L.

� Attest(prms, hdl, i, l) behaves as previously described.

� Verify[stl](prms, i, o∗) is the verification algorithm, which given the last input labeled l
and the attested answer o∗ to that input checks that the output is valid and produces the
(decoded) output o.

Security. For security, intuitively we need to ensure that
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� there is a procedure that extracts the trace from an IEE running R∗ and translates it
properly into the corresponding trace of R, and

� ensure that every verified labeled interaction is contained in the extraction of such a trace.

More precisely, we let the adversary choose a program and compile it into R∗. We then let the
adversary interact with the remote machine, and then choose a label l. His goal is to produce
a trace that passes the verification tests for l but is not included in a trace of a IEE running
R∗. This is formalised in Figure 6.6.

Game AttSMAC,A(1λ):

prms←$MR.Init(1λ)
(P, φ,Q,L, n, stA)←$ A1(prms)
(R∗, ( st l)l∈L)← Compile(prms, P, φ,Q, L)
For k ∈ [1..n]:

(ik, lk, o
∗
k, stA)←$ AMR

2 (stA)
(oR,k, stl)← Verify[stl](prms, ik, o

∗
k)

If oR,k =⊥ Then Vl ← false
l← A3(stA)
If l 6∈ L Return false
If Vl = false Return false
Tl ← (ij , oR,j)j≤n

lj=l

Define R := Composeφ〈P ;Q〉
For hdl∗ s.t. ProgramMR

(hdl∗) = R∗:
((i′1, l

′
1), o′1, . . . , (i

′
m, l
′
m), o′m)← Translate(ATraceMR

(hdl∗))
If there exists r ≤ m such that T ′′ = ATraceP [ st ;CoinsMR

(hdl∗)]((i
′
1, l
′
1), . . . , (i′r, l

′
r)) and Tl v T ′′|l :

Return false
Return true

Figure 6.6: Security game of SMAC

Definition 23 (SMAC security). We say that a SMAC scheme is secure if there exists an algo-
rithm Extract such that the experiment in Figure 6.6 returns true with only negligible probability.

We define correctness of a SMAC scheme as expected. Minimal leakage is defined as for an AC
scheme (ignoring the labels).

A SMAC scheme. The intuition behind the scheme is to do attestation independently for
every label. The reasoning is also very similar to the proposed instantiation of the attested
computation scheme.

� Compile(prms, P, φ,Q, L) generates a new program R∗ = Composeφ(P ∗, Q) and outputs it
together with the initial state of the verifier for each label (l, R∗, [], 1). Program P ∗ keeps
a list iosl of I/O for each label in l ∈ L. On request (i, l), P ∗

– checks l ∈ L, if not returns P [st](i, l)

– computes o = P [st](i, l), adds (i, o) to iosl, requests a MAC of (l, iosl) from the
security module getting a tag t on (R∗, (l, iosl)) and return (o, t, R∗, iosl).

� Attest transmits the query to the IEE and then transforms the tag (if any) into a signature
and returns it together with the output of P .

� Verify[stl](prms, i, o∗) returns o∗ if stage = 2. Otherwise parses o∗ = (o, σ), appends (i, o)
to the local iosl list and checks that σ is indeed a valid signature of (R∗, (l, iosl)).
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Theorem 10. The SMAC protocol presented above is a secure SMAC protocol ensuring minimal
leakage as long as the signature and mac scheme are unforgeable.

Proof sketch. This proof is similar to the proof of security of an AC scheme. The proof of
minimal leakage is exactly the same, ignoring the labels.

For security, we first use unforgeability of the MAC scheme to ensure that every signed message
was a properly tagged message. We then use unforgeability of the signature to ensure that
every message accepted by the verification algorithm was indeed produced by an IEE running
the relevant program. The result then follows directly from the checks performed on iosl.

Protocol

As building blocs for our protocol, we introduce ParComp and Box, described in Figure 6.7.
ParComp can be used to perform parallel execution of several instances of key exchange for
attested computation [8]. Box is used to enable input/output security for some desired func-
tionality. This program construction takes some generic function F and an encryption scheme
Λ and produces a program that is built to decrypt every input using Λ and some key within its
internal state, as well as encrypt every output using the same scheme and key. Note that we
treat all the inputs at once as the output of the function can only be computed when all of the
inputs have been received. The task of buffering the inputs is left to the untrusted I/O part of
the remote machine.

Program ParComp〈Pl1 , l1 . . . , Pln , ln〉[st](i, l)

If ∃j ≤ n.l = lj :
Return Pl[st.l](i) Else: Return ⊥

Program Box〈F,Λ, l1, . . . , ln〉[st](m, l):

If l 6∈ {l1, . . . , ln}: Return ⊥
If st.L = {l1, . . . , ln}: Return st.outi
If l ∈ st.L: Return none
st.L← st.L ∪ {l}
st.inpl ← Λ.D(st.l.key,m)
If st.L 6= {l1, . . . , ln}: Return ok
(out1, . . . , outn)← F(inp1, . . . , inpn)
For i ∈ [1..n]:

st.outli ← Λ.E(st.li.key, outi)
Return ok

Figure 6.7: Labelled parallel composition (labels are assumed pairwise different)

Labelled Utility. We define utility almost as in the AC case, except that the key exchange
can be composed in parallel with anything else. The proof follows the same lines. This security
experiment intuitively states that the adversary can not distinguish between the derived key
and a random value after a key exchange has been performed between an honest party and a
remote machine running the key exchange in parallel with other programs in an IEE.

In the experiment in Figure 6.8 the adversary has to distinguish between an ideal machine and a
real world machine where and AttKE is run in parallel with other programs in the first phase of
a SMAC-compiled protocol. The machine Mr represents the remote machine expected by the
SMAC protocol and the machineM′

r is a modification of machineMr in which the key derived
by the key-exchanges is magically replaced by a fresh key. In order to maintain consistency
between the tested keys and the keys used in M′

r, M′
r.Run takes two additional parameters, a

list fake of pairs of keys and a flag tweak and a label l. If the flag is activated, the following
modifications in the behaviour of Mr occur in M∗

r:
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� When it detects the execution of the key exchange RemKE labeled l in the initial parallel
composition has reached the derived or accept state, it record the derived key. If there is
no association (key, ) in fake it generates a fresh key key∗ and appends (key, key∗) to fake.

� When it detects the first execution of the non-attested part of the program, Q it performs
st.l.key← fake(key) before applying φkey.

The oracles provided to the adversary provide access to the remote machine. Additionally
the adversary can create new sessions of the key exchange using the NewSession oracle, where
the remote key exchange is composed in parallel (with label l0) with programs P1, . . . , Pn, and
compiled for SMAC followed with Q. It can also make the local part of the key exchange
progress using the Send oracle, provided that the message passes the SMAC verification step
for the relevant label. Finally the adversary can challenge a session by executing the Test oracle,
which return either the real key of a fake key according to b (provided that the key exchange
has reached a derived or accept state).

Game AttAttKE,A(1λ, id):

prms0←$MR.Init(1λ)
prms1←$M′R.Init(1λ)
PrgList← [ ]
fake← [ ]
i← 0
b←$ {0, 1}
b′←$ AO(prmsb)
Return b = b′

Oracle Load(R∗):

hdl0 ←MR.Load(R∗)
hdl1 ←M′R.Load(R∗)
Return hdlb

Oracle Run(hdl, in):

o0←$MR.Run(hdl, in)
tweak← false
If ProgramM′

R
(hdl), l ∈ PrgList then tweak← true

(o1, fake)←$M′R.Run(hdl, in, tweak, l, fake)
Return ob

Oracle NewSession(P1, l1, φ1, . . . , Pn, ln, φn, l0, Q, L):

If ∃i, j.i 6= j.li = lj : Return ⊥
If l 6∈ L: Return ⊥
i← i+ 1
(stiKE,Remi

KE)←$ Setup(1λ, id)
inilast ← ε
RemComp := ParComp〈Remi

KE, l0, P1, l1, . . . , Pn, ln〉
φ := φl0key|φ

l1
1 | . . . |φ

ln
n

(R∗i , stl0 , . . . , stln )←$ SMAC.Compile(prmsb,RemComp, φ,Q)
stiL ← stil0
PrgList← R∗i : PrgList
Return R∗i

Oracle Send(m′, i):

(i, o∗)← m′ m← SMAC.Verify[stiL](prms, inlast,m
′)

If m =⊥: Return ⊥
If inilast 6= i Return ⊥
(m∗, stiKE)←$ LocKE(stiKE,m)
inilast ← m∗

If stiKE.δ ∈ {derived, accept} ∧ stiKE.key /∈ fake:
key∗←$ {0, 1}λ
fake← (key, key∗) : fake

Return m∗

Oracle Test(i):

If stiKE.δ 6= accept: Return ⊥
If b = 0: Return stiKE.key
Else: Return fake(stiKE.key)

Figure 6.8: Labelled utility

Theorem 11 (Distributed AttKE utility). If the AttKE is correct and secure, and the SMAC
protocol is correct, secure and ensures minimal leakage, then for all ppt adversaries in the
labelled utility experiment: the probability that the adversary violates the AttKE two-sided entity
authentication is negligible; and the key secrecy advantage 2 · Pr[guess]− 1 is negligible.

Protocol description.

We describe here a secure SFE protocol based on a SMAC protocol and an AttKE. Note that
this description is entirely generic in the SMAC and AttKE protocols, and its security relies
only on the security of both these protocols.
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Intuitively, each party starts by executing an attested key exchange with the an IEE, deriving
guarantees from it from the labelled utility theorem. Then each party transmits its input and
receives its output on a secure channel established using this key.

The protocol defined in Figure 6.9 behaves as follows:

� Setup(1λ, prms, id, pos) sets up an AttKE, publishes the remote part and remembers the
local verifying state.

� Init(st,Pub, in) compiles using SMAC the parallel composition of the remote key exchange
of each participant (with label its position), followed by the functionality running over
secure channel established using the derived keys.

� Remote simply executes the compiled code on a remote machine together with the un-
trusted part of attestation: SMAC.Attest.

� Process(m, st) executes the local key exchange, and once the key exchange has derived the
key send its input and receives its output from the remote machine on the secure channel
obtained from the key.

� Output(st) simply returns the output received from the remote machine.

Algorithm Setup(1λ, prms, id, pos):

(stL,RemKE)← SetupKE(1λ, id)
stV ← ε; inlast ← ε; in← ε; out← ε
stage← 1
st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return (st,RemKE)

Algorithm Process(m, st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
(id, stKE, sk, t)← stL
If stage = 2:

(ins, outs∗)← m
(outs′, stV )← SMAC.Verify(prms, ins,m, stV )
If outs′ =⊥ Return ⊥
(ins, outs)← outs′

If inlast 6= ins[pos] Return ⊥
(o, stL)←$ LocKE(stL, outs[pos])
inlast ← o
If (stKE.δ) ∈ {derived, accept}

stage← 3
Else If stage = 3:

o←$ Λ.E(stKE.key, in)
stage← 4

Else If stage = 4 and m 6= none:
(ins, outs) = m
out←$ Λ.D(stKE.key, outs)
stage← 5
o← ε

Else:
Return ⊥

st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return (st, (pos, o))

Algorithm Init(st,Pub, in):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
If (stage 6= 1):

Return ⊥
(Rem1

KE, . . . ,Remn
KE)← Pub

RemComp := ParComp〈Rem1
KE, 1, . . . ,Remn

KE, n〉
Q := Box〈F,Λ, 1, . . . , n〉
(R∗, stV )← SMAC.Compile(prms,RemComp, φkey, Q, J1, nK)
stage← 2
st← (prms, stL, id, pos, stV , inlast, in, out, stage)
Return st

Algorithm RemoteM(stR, prms,Pub,m):

n← Length(Pub)
If stR = ε:

(Rem1
KE, . . . ,Remn

KE)← Pub
RemComp := ParComp〈Rem1

KE, 1, . . . ,Remn
KE, n〉

Q := Box〈F,Λ, 1, . . . , n〉
(R∗, stV )← SMAC.Compile(prms,RemComp, φkey, Q, J1, nK)
hdl←M.Load(R∗)
stR ← hdl

out←$ SMAC.AttestM(prms, hdl, in)
Return (stR, out)

Algorithm Output(st):

(prms, stL, id, pos, stV , inlast, in, out, stage)← st
Return out

Figure 6.9: Algorithms defining the protocol.

In this protocol, each participant obtains the guarantee that its input is secretly transmitted
from the labelled utility theorem and the structure of the Box construction. The participant
does not have to check properties of the rest of the trace as the key exchanges performed by
other honest participants are also checked. The SMAC guarantees then ensure that the input
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is processed according to the expected functionality. This protocol is much more lightweight in
terms of communication than the one presented in Section 6.2, as the communication for each
participant is constant (instead of linear) in the number of participants. The computational
overhead is also very small, due to the efficiency of AttKE.
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Chapter 7

Formal Specification and Verification

7.1 Overview

In line with the goals of this workpackage, we have considered automatic verification of the type
of protocols that we have developed. Automated verification of security protocols has been a
widely successful field, yielding tools like ProVerif [14] and Sapic [55]. These tools consider
protocols specified at a high abstraction language (e.g. as applied pi-calculus processes) [1, 64]
and for which the attacker capabilities are represented as deduction rules. It turns out that
while both of these tools have been widely successful in proving a wide range of protocols,
their underlying specification language is not expressive enough to model IEEs. Important
aspects like location (i.e. a means to specify where protocols are executed) and statefulness
(needed to model the state maintained by IEEs between invocations) are not part of the basic
syntax. We propose ways to mitigate this problem. Specifically, in this chapter we describe
an extension of the Sapic calculus that encompasses what is needed to model IEEs, and then
build a semantics-preserving encoding of this extension into the base calculus. We demonstrate
the usefulness of our extensions through several experimental results obtained using our tool,
namely an semi-automated proof of security of our AC scheme, the utility property and our
Secure Outsourced Computation scheme.

The state of the art

A major aspect regarding computation in IEEs is their inherently stateful nature. The main
tool able to handle stateful extensions of the applied pi-calculus is Sapic[55], which does not
provide a decision procedure, but is rather a largely automatic proof assistant. It has been
successfully used for proving various protocols based on the TPM hardware module [56]. The
following work is based on this tool.

The key capability of an IEE is its capability of reporting on its execution. The main challenge
here is, therefore, introducing a dependency between the code executed in an IEE and the
semantics of this reporting function. Indeed it is a non-trivial problem to model a module that
can produce a signed hash of the code. We solve this problem by introducing locations.
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Adding Locations

Attaching locations to processes is an efficient way to identify different processes and specify
the fact that they are running in different places, or IEEs. Intuitively, the location of a process
is a public value that represents the hash of the code running at this location. Provided that
we enforce that there is a one to one mapping from processes to locations, we have the part
of the IEE that act as a black-box and have a public identity. One location correspond to one
IEE and one process, and all this can be publicly known.

A location is not any more just a place where a process can run, it is now a place where only a
specific process can run. The location identifier can then abstract the hash of the process used
in the real world. Then, we can naturally use this location to report on messages computed
by the remote process running in an IEE. We define our calculus such that only particular
processes can report on messages with a trusted location. In this model, under the assumptions
that every process attached to a trusted location has its code publicly known, when a verifier
checks the signature he obtains both the knowledge that it was computed inside the IEE X by
the program Y.

A process should not be able to produce a report that does not correspond to its location, so
we must not give direct access to the reporting scheme. We want a process to be able to simply
call a function with a term, and this function will act as a black box and produce a report on
the term according to the location of the caller. This is actually close to what happens in an
IEE in the real world where a process would report a message via a function call to the TM.

Figure 7.1 shows what we would like to be able to do in an informal setting. We again have two
processes, a local verifier V and a remote process P . We consider that the name ’Provider’ is
known as a trusted public location and that the verifier knows what is the code of the remote
process. We also give a function report(x) to the remote process running in an IEE that will
magically produce a report on x according to the location of the remote process.

P :
l e t x = repor t (m) in

out ( x )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

V :
in ( c ) ;

i f chkreport ( c ) = ’ Provider ’ then
Ok

e l s e Fa i l

Figure 7.1: Informal example with locations

This example quite close to what we want. We now have a simple way for a process to prove
its identity to a verifier. The difficult part is to actually define the semantic of this black box
reporting function. We want locations to be public, as it is intuitively the case in the real
world. Then, if locations are public, we cannot use a classical signature scheme as it would not
make any sense to sign something with a public key. Our first intuition was to use secret-keys
paired with the locations, but if this could actually be the case at low-level, we wanted to
propose a top-level language easy to use and understand as the previous example. Moreover, as

PRACTICE D13.2 Page 81 of 110



Efficient Verifiability and Precise Specification of Secure Computation Functionalities

several implementations of IEEs exist, we needed to stay general and not stick to one low-level
modelisation.

Then, our semantic needs to define a set of “trusted locations” that denote the set of program
we know and trust. It is also be necessary to define carefully the rules for the attacker, since
he needs to be able to report anything he wants from an untrusted location, but he should be
unable to produce reports corresponding to trusted locations.

Finally, locations may not necessarily be fixed. As we said, what we call location are not
just locations, but also characterize the code running at this location. The problem is that
characterizing the code of a location may requires some parameters because the code itself
could depend on said parameters. The idea would be for a user to be able to create an IEE
that will only communicate with him. We show a basic example where we just pass a session
identifier to the remote process in order to be able to distinguish the different runs.

Provider ( s i d ) :
in ( s i d ) ;
l e t x = repor t (m) in

out ( x )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

V e r i f i e r :
new s i d ; out ( s i d ) ;
in ( c ) ;
i f chkreport ( c ) = ’ Provider ( s i d ) ’ then

Ok
e l s e Fa i l

Figure 7.2: Informal example with variable locations

7.2 Formal definition of Slapic

We move on to the definition of our calculus: Slapic, a stateful and localized applied pi-calculus.
This is an extension of Sapic that handles locations and reporting, in such a way that we can
define a translation from Slapic to Sapicb and use the automated reasoning capabilities of
Sapic. Many classical definitions regarding pi-calculus, such as terms, substitutions or facts,
are ommitted here.

Locations

We first define locations in order to be able to attach locations to protocols. We will simply use
the syntax P@lP to specify that P runs at location lP . We allow locations to be bound to any
process or sub-process, the idea being that a location set to one process will be inherited by
all its sub-processes, unless they have another location specifically attached. In the following
example, P has location lP but Q has location lT .

(new t; out(t); (P@lP |Q))@lT

This could model the process at locations T that ask for the start of the process P.
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Finally, we need to make a distinction between the set of locations that we assume to be secure,
and the set of locations that is insecure and that the attacker could use. Intuitively, trusted
locations correspond to code we know. To keep flexibility and allow the user to define its own
set of trusted (or attested) locations, we will define the set of trusted, or known locations with
a predicate. Then, the predicate can simply be used to capture a static set of locations like
X is trusted ⇔ X =′ loc′ or it can capture a more complex behavior such as X is trusted ⇔
∃zX = (′loc′, z)).

Definition 24. Let L ⊂ T be the set of attested locations terms that will be attached to processes
such that for a specified predicate HLoc:

x ∈ L ⇔ HLoc(x)

Our definitions is made to be able to handle ordered location , as shown in figure 7.3. Here,
we would specify HLoc(l)⇔′ loc′ is prefix of l. Then, every location starting with loc would
be trusted, and thus be considered honest. As an example, in Figure 7.3, we show how this
mechanism could be used to model a program that reports on exactly one predefined output
of a program with a verifier that gets the parameter from an outside source and checks the
validity of the output.

P( i ) =
l e t x = repor t ( prog ( i ) ) in

out ( x )@( ’ loc ’ + i )

V =
in ( i ) ;
in ( x ) ;
i f chkreport (x , ’ loc ’+ i ) then

Ok
e l s e Fa i l

Figure 7.3: Reporting of the one output of prog

Syntax

We define here the syntax of our calculus Slapic. We start from the syntax of the Sapic calculus,
and add an operator that allows a process to report on a message according to its location. The
syntax with the new rule and the location is shown in figure 7.4, with the additions highlighted
in red. M and N shows the constructions of terms, and P and Q describe the localized processes.

Our two additions from Sapic are P@lP that allows to specify the location of a process and
let x = report(y) in P that allow report y with the location of the action.

Furthermore, we assume there is a function chkreport(x, l) that represents checking that message
x has been reported at location l.

We consider that processes are constructed such that if a process has an unspecified location,
it will inherit the on of its parent. If there is no parent with a location, we use the default
location ’lX ’ for process X.

PRACTICE D13.2 Page 83 of 110



Efficient Verifiability and Precise Specification of Secure Computation Functionalities

〈M,N〉 ::= x, y, z ∈ V
| (M) basic term
| p ∈ PN public name
| n ∈ FN fresh name
| f(M1, · · · ,Mn) ( where f ∈ Σn) function application

〈P,Q〉 ::=
0 null process
| (P ) plain process
| P |Q parallelisation
| !P replication
| νn; P binding of a fresh name
| out(M,N); P output of N on channel M
| in(M,N); P input
| if M = N then P else Q conditionnal
| event F ; P event
| insert M,N ; P set value of state M to N
| delete M ; P delete state M
| lookup M as v in P else Q read the state
| lock M ; P lock a state
| unlock M ; P unlock a state
| [L] –[A]→ [R]; P (L,R,A ∈ F∗) a MSR rule
| (P )@M localised process
| let x = report(y) in P reporting according to location

Figure 7.4: Syntax with locations

Operational semantic

The operational semantic rewrites report(y) into report(lP , y) (we’re overloading the report
symbol to represent both a function and an action) with lP being the location of the process
containing the report action. Then, with a chkreport function, a verifier should be able to
verify the origin of a term. First, we need to define the context in which processes are run, then
define an equationnal theory with a reporting scheme. Then, we define the attacker’s power
carefully so that it cannot produce a report with a trusted location but can still manipulate all
the inputs and outputs. Finally, we define the operational semantic that rewrites the report
action.

To give an intuition of how we expect our semantic to behave, let us consider the example of
Figure 7.5. This process should run as follows:

� P runs report

� x takes the value report(l,’hello’)

� v receives x=report(l,’hello’)

� chkreport(report(l,’hello’),l) succeeds

� v return Ok

PRACTICE D13.2 Page 84 of 110



Efficient Verifiability and Precise Specification of Secure Computation Functionalities

l e t p=
(

l e t x = repor t ( ’ h e l l o ’ ) in
out ( x )

) @l

l e t v =
in ( x ) ;
i f chkreport (x , l ) != f a i l then

event Ok
e l s e

event Fa i l

(p | v )

Figure 7.5: Reporting of an output

Of course, the attacker could pass for exemple report(’myloc’,’hello) to the verifier, who would
then raise the event Fail.

A more complex example is in Figure 7.6. Now v starts by creating a fresh value and send
it to P who then makes the signing at the location (’loc’+i). Then, x would have the value
sign(’loc’+i,’hello’) and v will return Ok only for a message coming from this instance of p.
Here, p and v now run in parallel with an unbounded number of session. This means for
example that an attacker can launch an instance of P with an i of its choice.

Context. In order to specify the operational semantic, we must first formally define the
context in which the processes are ran because it is slightly different than in Sapic. Basically,
the context contains variables populated by the processes at runtime. The context must contain
for example a list of defined bound name, there is a also in the context a dictionary mapping a
state to its value. Formally, we simply reuse the definition of Sapic, but with localized processes,
i.e processes built on our new syntax.

Definition 25. A localized configuration process is a 6-tuple (E ,S,SMS,P , σ,Lk), defined as
a configuration process verifying :

� E ⊆ FN is the set of fresh names generated by the processes.

� S :M→M is the set of states.

� SMS ∈ G# is the set of facts introduced by the syntax rule.

� P is a multi-set of localized process, where every set correspond to a process running in
parallel in regard to the others.

� σ is the closed substitution that represent the knowledge exposed to the attacker.

� Lk ⊆M is the set of current locks on states.
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l e t p=
in ( i ) ;
(

l e t x = repor t ( ’ h e l l o ’ ) in
out ( x )

)@( ’ loc ’+ i )

l e t v =
new i ; out ( i ) ; in ( x ) ;
i f chkreport (x , ’ loc ’+ i ) != f a i l then

event Ok
e l s e

event Fa i l

! ( p | v )

Figure 7.6: Reporting of an output

The part differing from classical pi-calculus is the fact that we store the processes in a multi-
set, following the choice of Sapic. Intuitively, this multiset represents the collection of processes
running in parallel.

Equationnal theory. We now define the equationnal theory in figure 7.7 with a reporting
scheme that allows someone to obtain the content of a report if it is reported with a known
location. We use the classic definitions of an equationnal theory as a subterm convergent term
rewriting system, where every equation is a a rule mapping a term to one of its subterm and =
is the symmetric, reflexive and transitive closure of → .

ΣH = {true, false, pair, fst, snd, report, chkreport}
fst(pair(x, y)) = x

snd(pair(x, y)) = y
chkreport(x, report(x, y)) = y

Figure 7.7: EH definition

Attacker capabilities. The attacker controls all the communication between the processes
and can manipulate terms. To define how he can manipulate them, we define attacker deduc-
tions rules. They are slightly different from Sapic in order to give the attacker the power to
report on terms with unattested locations without letting him report with attested locations.
The predicate Hloc that defines the set of trusted locations is therefore needed inside the at-
tacker deduction rules and is then a parameter of the attacker capabilities. We show the rules
in figure 7.8, showing the restriction on the DAppl and the Report rule.

For example, let us consider the case where HLoc(l) ↔ l =′ loc′, the attacker can then obtain
the term report(′cloc′,′ hello′) :

′cloc′ ∈ PN ′cloc′ /∈ ∅
Name

∅.∅ `′ cloc′ ′cloc′ 6=′ loc′

′hello′ ∈ PN ′hello′ /∈ ∅
Name

∅.∅ `′ hello′
Report

∅.∅ ` report(′cloc′,′ hello′)
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a ∈ FN ∪ PN a /∈ ñ
Name

νñ.σ ` a
νñ.σ ` t t =E t

′

DEq
νñ.σ ` t′

x ∈ D(σ)
DFrame

νñ.σ ` xσ

νñ.σ ` t1 · · · νñ.σ ` tn f ∈ Σk/{report}
DAppl

νñ.σ ` f(t1, · · · , tn)

νñ.σ ` loc ¬HLoc(loc) νñ.σ ` y
Report

νñ.σ ` report(loc, y)

Figure 7.8: attacker deductions rules

However, we can see that as ’loc’ = ’loc’, the attacker can not apply the Report rule for ’loc’.
Also, he cannot use DAppl with f = report.

∅.∅ 6` report(′loc′,′ hello′)

Of course, if a process has an action out(report(′loc′,′ hello′)), then for example {report(′loc′,′hello′)/x} ∈
σ and the attacker can deduce the reported term :

x ∈ D(σ)
DFrame

∅.σ ` x{report(′loc′,′hello′)/x} = report(′loc′,′ hello′)

We have the expected behaviour, a term reported with a trusted location can only be obtained
if it was produced by a process executing at this location and the attacker can report on terms,
but only with untrusted locations.

Semantic. Finally, we can define the operational semantic in Figure 7.9. We extend extend the
Sapic semantics with the reporting operation shown at the end. Note that Sapic is embedded
in our new semantic, hence our calculus is strictly more expressive.

The configuration processes can be difficult to read at first, but focusing on the multiset of
processes, it is reasonably simple simple. If we have P |Q inside a set, the action Par will simply
spawn two processes in the multiset, P and Q. A replication will allow to spawn a new process
in a separated set while keeping the replication available. The derivation bellow is a basic
example, where we only write the needed part of the context for clarity.

{(P |!Q)} →Par {P, !Q} →Rep {P, !Q,Q}

The four rules concerning the communications are A-out,P-out,A-in and P-in. The A is for
attacker and the P is for process, the intuition being that A-out correspond to an output made
by the attacker and A-in to an input given by the attacker, while P-out is an output made
by a process and P-in an input received from another process. A-out can only be made if the
attacker can deduce the term he is producing. P-out must be made on a channel known by the
attacker and will add to the output term to the attacker knowledge. However, two processes
can communicate on a possibly hidden channel with P-in. For filtering inputs, we allow pattern
matching, meaning that we only accept inputs of the specified form N. We have :

{(in(′chan′, x)); out(′chan′, x)} K(′chan′,′hello′)−−−−−−−−−→A−in {out(′chan′,′ hello′)}
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Classical Operations :

End (E,S,SMS ,P ∪# {0}, σ,Lk) → (E,S,SMS ,P, σ,Lk)
Par (E,S,SMS ,P ∪# {(P |Q)}, σ,Lk) → (E,S,SMS ,P ∪# {P,Q},R, I′, σ,Lk)
Rep (E,S,SMS ,P ∪# {!P}, σ,Lk) → (E,S,SMS ,P ∪# {!P} ∪# {P}, I, σ,Lk)

New (E,S,SMS ,P ∪# {(νa; P )}, σ,Lk) → (E ∪ {a′},S,SMS ,P ∪# {(P
{
a′/a

}
)}, σ,Lk)

with a′ fresh

A− out (E,S,SMS ,P, σ,Lk)
K(M)−−−−→ (E,S,SMS ,P, σ,Lk)

if νE.σ `M

P − out (E,S,SMS ,P ∪# {(out(M,N); P )}, σ,Lk)
K(M)−−−−→ (E,S,SMS ,P ∪# {P}, σ ∪

{
N/x

}
,Lk)

if x is fresh and νE.σ `M

A− in (E,S,SMS ,P ∪# {(in(M,N); P )}, σ,Lk)
K(〈M,Nτ〉)−−−−−−−−→ (E,S,SMS ,P ∪# {Pτ}, σ,Lk)

if ∃τ.τ is grounding for N
and νE.σ `M, νE.σ ` Nτ

P − in (E,S,SMS ,P ∪# {(out(M,N);P ), (in(M ′, N ′);Q)}, σ,Lk) → (E,S,SMS ,P ∪# {P,Qτ}, σ,Lk)
if M =E M ′, ∃τ.N =E N ′τ
and τ grounding for N ′

If (E,S,SMS ,P ∪# {(if M = N then P else Q)}, σ,Lk) → (E,S,SMS ,P ∪# {P}, σ,Lk)
if M =E N

Else (E,S,SMS ,P ∪# {(if M = N then P else Q)}, σ,Lk) → (E,S,SMS ,P ∪# {Q}, σ,Lk)
if M 6=E N

Evt (E,S,SMS ,P ∪# {(event(F );P )}, σ,Lk)
F−→ (E,S,SMS ,P ∪# {P}, σ,Lk)

States operations :

Ins (E,S,SMS ,P ∪# {(insert M,N ; P )}, σ,Lk) → (E,S[M 7→ N ],SMS ,P ∪# {P}, σ,Lk)
Del (E,S,SMS ,P ∪# {(delete M ;P )}, σ,Lk) → (E,S[M 7→ ⊥],SMS ,P ∪# {P}, σ,Lk)
Rd (E,S,SMS ,P ∪# {(lookup M as x in P else Q)}, σ,Lk) → (E,S,SMS ,P ∪# {P

{
V /x

}
}, σ,Lk)

if S(N) =E V is defined and N =E M
Rdelse (E,S,SMS ,P ∪# {(lookup M as x in P else Q)}, σ,Lk) → (E,S,SMS ,P ∪# {Q}, σ,Lk)

if S(N) is undefined for all N =E M
Lck (E,S,SMS ,P ∪# {(lock M ;P )}, σ,Lk) → (E,S,SMS ,P ∪# {Pid}, σ,Lk ∪ {M})

if M /∈E Lk
Ulck (E,S,SMS ,P ∪# {(unlock M ;P )}, σ,Lk) → (E,S,SMS ,P ∪# {P}, σ,Lk \ {M ′ | M ′ =E M})

Fact (E,S,SMS ,P ∪# {(l–[a]→r; P )}, σ,Lk)
a′−→ (E,S,SMS \ #lfacts(l′) ∪# r′,P ∪# {Pτ}, σ,Lk)

and τ grounding l–[a]→ r, l′–[a′]→r′ =E (l–[a]→ r)τ
lfacts(l′) ⊆# SMS , pfacts(l′) ⊆ SMS

Reporting operation :

Sign (E,S,SMS ,P ∪# {(let x = report(y) in P )@locP}, σ,Lk) → (E,S,SMS ,P ∪# {P{report(locP,y)/x}}, σ,Lk)

Figure 7.9: Operational semantic
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If and Else works as expected, the reduction depending on whether the condition is valid or
not.

To keep the semantic readable, we did not specify the propagation of the locations but it is
encapsulated into every rules and it behave naturally. Par and Rep keeps the locations stables:

{(P@′A′|(!Q@′B′))} →Par {P@′A′, (!Q@′B′)} →Rep {P@′A′, (!Q@′B′), Q@′B′}

Any sequential rules make the sub-process inherit the locations :

{((in(′chan′, x)); out(′chan′, x))@′A′} K(′chan′,′hello′)−−−−−−−−−→A−in {out(′chan′,′ hello′)@′A′}

If there is a new location specified, it overwrites the older one:

{((in(′chan′, x)); out(′chan′, x)@′B′)@′A′} K(′chan′,′hello′)−−−−−−−−−→A−in {out(′chan′,′ hello′)@′B′}

{(P@′A′|Q@′B′)@′C ′} →Par {P@′A′, Q@′B′}

Finally, a rule applying a substitution to a process, for example A-in with Pτ also applies the
substitution to the location:

{(in(′chan′, x); out(′chan′, x))@(′A′ + x)} K(′chan′,′hello′)−−−−−−−−−→A−in {out(′chan′,′ hello′)@′Ahello′}

The last rule is the our new report operation. When we encounter (let x = report(y) in P )@lP ,
we rewrite it to P{report(lP ,y)/x}, meaning we replace in P every occurence of x by the message
y reported at the location of the process process, here lP . Intuitively, this correspond to a
function call to a TM, an SGX for example.

{let x = report(′hello′) in out(′chan′, x)@′loc′}, σ
→Report {out(report(′loc′,′ hello′))@′loc′}, σ
K(report(′loc′,′hello′))−−−−−−−−−−−−−→P−out {}, σ ∪ {report(′loc′,′hello′)/x}

We make sure that only a process located at ′loc′ can produce terms of the form report(′loc′, x).
Reported terms can not be computed directly in the processes as we would loose the intuitive
meaning of the function call to a TM, but instead only report according to the current location.

In this semantic, the attacker cannot produce terms reported with a trusted locations, the
process at the trusted location is unalterable and can obtain through a black-box a term reported
with its location, and is the only one who can do so. A verifier can easily check the location of
a reported terms as locations are public. We now propose a first case study in order to argue
the usability and the interest of this model.

Example: defining AC

We use slapic to model an attested computation protocol similar to the one shown in Chapter 4.
The basic idea is that every computation will be reported by the IEE, thus allowing the user
to verify the computations.

A provider P who, with a given primitive prog() that models the program that someone wants
to run remotely, receives inputs and then computes and reports on the corresponding reuslts.
In parallel there is a verifier V who, given the a series of inputs and outputs of the provider
will be able to check that they have actually been produced by the provider. We model here a
program whose outputs can depend on all previous inputs, hence prog will take 2 arguments,
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HLoc( l ) <=> l = lP

l e t p@lP=
[ StoreP ( o ip ) ] −−> [ ] ; in ( ip ) ;
l e t x = repor t ( oip , ip , prog ( ip , o ip ) ) in

out ( prog ( ip , o ip ) , x ) ;
[ ] −−> [ StoreP ( ip , o ip ) ]

l e t v =
[ StoreV ( o ip ) ] −−> [ ] ; in ( ip ) ; in ( o , i o s ) ;
i f ( oip , ip , o ) = chkreport ( lP , s i g n e d i o s ) then

[ ] −−> [ StoreV ( ip , o ip ) ] )
e l s e event Fa i l ;

l e t s ta r tpv =
[ ] −−> [ StoreP ( i n i t ) ] ; [ ] −−> [ StoreV ( i n i t ) ]

new i n i t ;
( ( ! s t a r tpv ) | | ( ! p ) | | ( ! v ) )

Figure 7.10: Attested computation implementation

the last input received and the list of all the previous inputs. Therefore, both the provider and
the verifier will need to keep in their state the list of all inputs.
As we want the protocol accept an arbitrary number of inputs, we use a token to implement
the iteration of a process. The idea is that thanks to the rule Fact, we can from nothing create
a token at the initialization step. Indeed, Fact allows us to interact directly with the multiset
rewriting rules and let us create new facts or use them as hypothesis. So, at the initialization,
we create a new fact Token(state). Then P will at the start of its execution delete this fact,
thus obtaining the knowledge state. At the end of its run P recreates the fact Token(state),
where state is the previous state enriched with the new input received by P. Then, if we allow
an infinite number of P to run in parallel, as there is only one token, we know there is only
one running at a time. Moreover, every new running iteration acquire the knowledge of the
previous one thanks to the state.
The resulting protocol modeled using Slapic is described in figure 7.10. We first define P, V
and finally the main protocol that does the initialization of the tokens and runs the previous
one.

Property. Now that we have the model, we need to express its desired property. Intuitively,
the attested computation property states that if V accepts a sequence of input and outputs
then this sequence is included the one of P. Indeed, it means that if V successfully accepts an
input, it was computed by P. We construct V so that once an input is checked it raises an event
containing this input, meanwhile P raises an event for any output it produces. We want to
ensure that for any event raised by V, there is a matching previous event on P side.
If this holds for any trace and the attacker choosing all the inputs of the processes, we have the
symbolic equivalent of the attested computation property defined in Chapter 4.
We remark that here, we do not always have unicity, several IEEs at location lP could have made
the computations. However, we will know that at least one IEE made all the computations
corresponding to the outputs verified by V.

Definition 26. An AC protocol is a protocol is defined by two iterating processes V and P.
P sequentially accepts an input, produces an output, raising just before the output the event
Poutput(ios) where ios is the list of all previous inputs and outputs of P. V sequentially accepts
two inputs and either terminates, never replicating again or raises the event Voutput(ios) where
ios is the list made of all the inputs received by V.
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We define the attested computation property as a trace property, based on the fact that we
want every Voutput to be preceded by a Poutput. Intuitively it boils down to the fact that
when V verifies a couple made of the input received by P and of the output made by V, there
was a P that did receive previously this input and made this output.

Definition 27. An AC protocol provides attested computation if for any trace t:

∀ t1 t2 ios, t = t1.V output(ios).t2 ⇒ Poutput(ios) ∈ t1

Encoding in Sapic

We want to encode protocols defined in Slapic into Sapic in order to take advantage of the
Sapic tool. We need the encoded protocols to conserve their properties and behave the same
way. However Sapix has a different syntax, different attacker deductions rules and a different
semantic. Thus, we will need to find a way to encode the locations and the reporting scheme
in Sapic.

Processes. The first step is that is encoding some operations of the semantic. So, while the
operational semantic of Slapic uses (let x = report(y) in P ) a substitution for x, we define a
rewriting on the processes that deletes this operation and rewrites in the rest of the process
every occurrence of x by report(locP, y). Intuitively, the reporting actions made at runtime in
Slapic are executed before the run in Sapic by the rewriting. We can then run the process in a
pi-calculus where the Report operation does not exist.

Definition 28. The rewriting function rw is defined as:

rw((let x = report(y) in P )@lP ) = rw(P{report(lP ,y)/x)})
rw(a;P ) = a; rw(P )

rw(if M = N then P else Q) = (if M = N then rw(P ) else rw(Q))
rw(P‖Q) = rw(P )‖rw(Q)
rw(!P ) =!rw(P )

We provide an example of the application of the rewriting to a simple provider process P in
figure 7.11.

in ( i ) ;
l e t x= repor t ( prog ( i ) ) in
out ( x )@lP

in ( i ) ;
out ( r epo r t ( lP , prog ( i ) ) )

Figure 7.11: Original and rewritten process

As we are going to run the translated process within the set of deduction rules of Sapic, an
attacker could easily forge any report(locP, y). Therefore, we need an other way to report terms
according to locations in an unforgeable way.

To block the attacker from creating forged report, we first create a secret key unknown from
the attacker called skloc. Then, when in Slapic we had a term reported with a location, we
will have in Sapic a location and term signed with skloc. If the process P@lp signed ’hello’, we
perform the following rewriting.

report(lp,
′ hello′)→ sign(lp,

′ hello′, skloc)
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Then, as the attacker does not know skloc, he may not forge sign(lp,
′ hello′, skloc). Intuitively,

we replace a limitation of the attacker that was in the deduction rules by a limitation due
to a secret key. This is inspired from actual implementation of IEEs. Technically, we ensure
that skloc is secret from the attacker by using a fresh name, and we control exactly where it is
used. Of course, if we modify the report function, we need to rewrite accordingly a chkreport
function.

In order to do this rewriting, we simply define a rewriting system that rewrite every report and
chkreport in Slapic to a sign and chksign with the appropriate key.

Definition 29. Let us consider a rewriting on terms from EH to EG defined with :

report(x, y)→ sign(x, y, skloc)

chkreport(x, y)→ chksign(x, pk(skloc), y)

Then, define for any term ρ(T ) the normal form of T as usual.

We naturally extend ρ to sets of terms,substitutions, processes and configuration by replacing
every terms that they contain by its normal form.

What is missing from this translation is the ability, for the attacker, to report with untrusted
locations. Indeed as skloc is secret, the attacker cannot sign anything with it, however we need
to emulate the Report attacker rule. In order to do so, we create an helper process which
upon receiving a location and a term, signs the pair if the location is not in the set of attested
locations, for example locP. The helper process can easily be described with :

Hlp = in(H, (x, y)); if (x /∈ L) then out(H, sign(x, y, skloc))

We easily see that this mimics the Report attacker deduction rule of Slapic :

νñ.σ ` loc loc /∈ L νñ.σ ` y
Report

νñ.σ ` report(loc, y)

Indeed, with the Report rule, the attacker can obtain report(loc, y) if he can deduce loc and y
and if loc is not an attested location. The helper can be called by the attacker with inputs x
and y if the attacker can deduce them, and the helper outputs the signed message only if x is
not an attested location. In the following example, the attacker signs a term with its custom
location ’myloc’ :

Hlp
K(H,(′myloc′,′hello′))−−−−−−−−−−−−→A−in→If

K(sign(′myloc′,′hello′,skloc))−−−−−−−−−−−−−−−−→P−out

Finally, we can define the translation of a configuration process in Slapic to one is Sapic. We
must remember to add skloc to the set of bounded terms, and we also, apply rw and ρ to the
processes, and also apply ρ to the set of substitutions and states in order to be able to translate
any configuration.

Definition 30. Considering a localized configuration process M= (E ,S,SMS,P , σ,L), we define
its translation into M̃ = (EM̃ ,SM̃ ,SMS

M̃
,PM̃ , σM̃ ,LM̃).

Finally : M̃ = (EM ∪ skloc, ρ(S),SMS, ρ(rw(P))∪#!Hlp, ρ(σ),L)

with Hlp = in(H, (x, y)); if (x /∈ L) then out(H, sign(x, y, skloc)), H ∈ FN/(EM ∪ skloc)
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Traces. With the previous translation, Slapic protocols can be encoded into Sapic. However,
the trace properties in Slapic do not immediately have a meaning in Sapic. The first basic
example is that if the property uses the report function, we need to transform it into the
sign function with skloc. The second problem is that in Slapic, a trace could us the Report
attacker rule to create a signed term while in Slapic the attacker would use the helper. This
create differences between the traces of Sapic and Slapic because when running the helper the
attacker adds to the trace inputs and outputs made on the helper channel :

Hlp
K(H,(l,′hello′))−−−−−−−−−→A−in→If

K(sign(l,′hello′,skloc))−−−−−−−−−−−−−→P−out

Those K() events added to the traces should not influence the validity of the properties we are
checking so we first need to take them off the trace before checking the validity of a property.
Basically, we delete from the trace of a Slapic process every communication made on the channel
H, which is the channel only used by the helper.

Definition 31. For all trace τ of a configuration process M we define the projected trace without
the action of the helper,

π(τ) = τ/{K(H)} ∪ {K(H,N)| N ∈ TΣG}

Now that we have a translation of traces, we need to translate trace properties in order to check
them. Intuitively, as we are just rewriting terms in a way that preserves equality, we just have
to change the domain of the property and check it is true on the translated trace. However,
this only works in one direction. Indeed, if any terms produced in Slapic as a translation in
Sapic, there can be term in Sapic that does not come from a translation, an example is any
sign(x, y, z) where z 6= skloc. The attacker can produce those terms in Sapic just with a DAppl
but those terms do not have any preimage by the translation.

This is not a major hurdle as we can define the set of terms that have no preimage by ρ, terms
that we will consider as not well-formed. Those terms are not relevant when we consider the
validity of an attack, because a well formed term does not actually exist in Slapic, so we can
say that a property of Slapic is falsified in Sapic only by attacks where every terms are well
formed.

We then define the property of well formedness of terms:

Definition 32.
WF (T )⇔ T ∈ Im(ρ)

We naturally extend this definition to traces where every terms are well-formed.

Intuitively, a well formed trace is a trace of Sapic that can be obtained by translating a Slapic
process.

Then, when we consider a property φ in Slapic the only pertinent attacks in Sapic on this
property are the well-formed one. So, a not well-formed attack should not falsify a property.
Also, if T is well-formed, we can naturally consider ρ−1 of the trace. This lead us to this
definition of the translation on properties:

Definition 33. For every property φ and every trace T of Slapic:

φ̃(T )⇔ ¬WF (T ) ∨ φ(π(ρ−1(T )))

In the end, a translated property is true for every trace not well-formed, which means that only
well formed attack invalidate the property.
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Correctness

Now, we need to prove that our translation is correct. The goal is to show that if there is
an attack in Slapic, there is an attack on the translation in Sapic. To do so, we will need to
show that the attacker has the same deduction power in both world. If the attacker can obtain
exactly the same terms in both the original and the translated process, an attack on the original
should happen in the translated. We will then construct the Sapic trace from the Slapic trace,
showing that every action can be executed in both settings.

Our translation works on several levels and on both processes and terms. Processes depends on
terms, either when doing an ”If M=N Then P Else Q” where we test M =EH N or when doing
an action like In(M,N) with the attacker input N’ where we need the existence of a substitution
τ such that N =EH N ′τ . So if we want our translated processes to run the same way as the
original, the first thing to do is to be sure that we maintain the equality of terms between our
translations.

We recall that in our case an equationnal theory is a subterm convergent term rewriting system,
where every equation is a a rule mapping a term to one of its subterm and = is the symmetric,
reflexive and transitive closure of→. Moreover, as it is convergent, we have that (M =EH N)⇔
(!∃U, M →∗ U and N →∗ U). So, we are first going to prove that our translation conserve the
rewriting to normal form and then obtain the equality.

Lemma 1.
∀M,N ∈ TΣH ,M →∗EH N ⇔ ρ(M)→∗EG ρ(N)

Sketch of proof: The basic idea is to consider the case in which the reduction is of length one.
If we have a T of the the form T = checksign(x, sign(x, y)), then T →EH y. We have then that

ρ(T ) = checksign(ρ(x), pk(skloc), sign(ρ(x), ρ(y), skloc))

and we obtain ρ(T ) →EG ρ(y). This works for the others rules of EH so the lemma works for
one reduction.

Then, as ρ preserve the sub-terms of a term, we can prove the result by induction on the length
of the reduction and use the previous consideration to obtain the induction step.

�

Now we obtain our desired property, the stability of the equality :

Corollary 1.
∀M,N ∈ TΣH ,M =EH N ⇔ ρ(M) =EG ρ(N)

Proof. With the previous lemma and the convergence of both equationnal theory, the result is
instantaneous.

The next step is to prove the stability with respect to the substitution, so that for example on
an input in Sapic, the equality with the application of the substitution is conserved in Slapic.

Lemma 2.
∀N,N ′ ∈ TΣG ,∃σM =EH Nσ ⇔ ρ(M) =EG ρ(N)ρ(σ)

PRACTICE D13.2 Page 94 of 110



Efficient Verifiability and Precise Specification of Secure Computation Functionalities

Sketch of proof: With the corollary 1, the equality in EH is equivalent to the equality in EG
for the translated terms. Then, we just have to prove that the application of ρ and σ can be
done in any order :

ρ(N)ρ(σ) = ρ(Nσ)

�

We now know that the equality between terms is stable with the translation, so we can take
a further look at the processes. We want to show that a trace of a process in Slapic has
some matching trace in Sapic. When we look at the operational semantic, we see that for the
processes to run in a similar fashion before and after the translation, we need the attacker to be
able to deduce the same set of terms. This is intuitively a very important thing, if the attacker
can instantly deduce something in the Slapic processes, he must be able to do it in Sapic. This
was the reason for implementing the helper. However, when in Slapic we can just do Report,
in Sapic we need to run the helper and we might even need to run it several time. By running
the helper, we obtain processes that are almost exactly the original, but that has a greater
expressiveness than the original. Based on this difference, we are going to define a pre-order on
the processes to be able to consider all the processes in which we ran the helper, but that all
started from the same process.

For example, let us consider M such that (in abridged notation) M = {P , !Hlp}, σ. Then, from
M, the attacker could run the helper with either a name l1 and ’hello’, or a different name l2
and ’hello’. We would obtain M1 and M2 :

M1 = {P , !Hlp}, σ ∪ {sign(l1,′hello′,skloc)/x}

M2 = {P , !Hlp}, σ ∪ {sign(l2,′hello′,skloc)/x}

Intuitively, M1 and M2 are not actually more expressive than M. However, they are in a sense
greater than M, and we can characterize the set of configuration that came from M considering
all the greater configurations.

Definition 34. Let � be the pre-order such that for all configurations M and M’, M �M ′ if:

� σM ⊂ σM ′

� ∀{y/x} ∈ σM ′/σM , νEM ′ .σM ′/{y/x} ` y

� ∀{y/x} ∈ σM ′/σM , ∃z, loc, loc /∈ Loc, y = sign(loc, z, skloc)

Considering again the previous example we have :

M �M1 and M �M2

max(M1,M2) = {P , !Hlp}, σ ∪ {sign(l2,′hello′,skloc)/x} ∪ {sign(l1,′hello′,skloc)/x}

Then, with this pre-order, all the configuration reachable from M by using only the helper can
be obtained just by considering all the configurations greater than M.

Definition 35. C(M) is the set of upper bounds of M with respect to �.
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If M is a translated process, C(M) is the set of all the configuration we can reach only by
running the helper.

We can then prove the first lemma which states that the translation is as expressive as the
original (modulo ρ) .

Lemma 3. For all M localized configuration processes :

νEM .σM ` T ⇔ ∃N ∈ C(M̃), νEN .σN ` ρ(T )

Sketch of proof: In both senses, the idea is to rewrite the proof, on one side deleting the
SIGNloc and using the helper and DFrame on the other side, or deleting the DFrames on one
side to use SIGNlocs on the other.

For the direct sense, we show that from the proof of a term T we can construct a proof of ρ(T ).
We do it by induction on the height of the proof and showing that the last rule application can
be also obtain in Slapic. For most rules application, we can almost apply them instantly. The
main problem is Report that does not exist in Sapic. We have then to run the helper to add
the signed term to the frame and then we can use DFrame to replace the Report.

For the indirect way, it is more complex. As in the previous case, we add σM ⊂ sigmaN .
Before, it was useful because every Dframe application was instantly true but in this sense it
means that many DFrames must be replaced by a Report. And worst, a DFrame could need to
use several time the SIGNloc rule if the attacker signed a signature.

Finally, we first need to do an induction on the size of σN/σM to prove that any terms obtained
through the helper and a DFrame can be obtained with Reports. Then, inside the induction
step, as we can replace every DFrame, we can prove the result thanks to an induction on the
height of the proof.

�

We now show that in the Slapic universe any element of the equivalence class can be obtained
with a null projected trace, i.e just by using the helper.

Lemma 4. For all M localized configuration processes :

∀N1, N2 ∈ C(M̃), N1 �N2, N1
τ

=⇒ N2 with π(τ) = ε

Sketch of proof: Intuitively, if a configuration process is greater than an other, it means we
can just run the helper several time in the smaller one to reach the greater one. We just need
to take care of the fact that a signed term may contain an other, so we do a proof on the
number of substitutions in N2 and not in N1. We then just prove that we can use the helper
to construct a specific term and apply the induction hypothesis. �

Theorem 12. For all M, M’ localized configuration processes :

∀N ∈ C(M̃),M
t

=⇒M ′ ⇒ ∃N ′ ∈ C(M̃ ′)N
t′
=⇒ N ′ with π(t′) = ρ(t)

Sketch of proof: We prove the result by induction on the length of the trace. Then, we just
have to prove that the final step can be made. The semantic rule Sign does not exist any more
but the rewriting has been done by the translation. Finally, with the previous results, we have
that any term deduced by the attacker on the left can be obtained on the right, so most rules
can be instantly applied. �
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Corollary 2.

if (M
τ

=⇒) then (M̃
τ ′
=⇒), π(τ ′) = ρ(τ)

Proof. Direct consequence of theorem 5.1 as M̃ ∈ C(M̃).

Finally, we can have a look at the properties. What we want is that if there is a trace that
falsifies the property in Slapic, there is a trace that falsifies the translation in Sapic.

Theorem 13. For any localized configuration process M and property φ:

∃t, (M t
=⇒) ∧ ¬φ(t)⇒ ∃t′, (M̃ t′

=⇒) ∧ ¬φ̃(t′)

Sketch of proof: With the previous corollary, we can obtain the trace t’. Then, we consider
the t’ that is the shortest, because it is the one closest from t and we are then sure that the
attacker has not built some term signed with an other key than skloc. Then we have π(t′) = ρ(t)
and t’ is well-formed, so if φ(t) is falsified φ̃(t′) will also be falsified.

�

Finally, we obtained the correctness, so if a protocol in Slapic has an attack, we know that
the translation has an attack. So if a property is verified in Sapic, it is verified in Slapic. In
conclusion, if Tamarin proves that a property of the translation is true, we will know that the
property is true in the Slapic protocol. We can now prove that our translation does not create
false attack, i.e if Tamarin says that a translated property is falsified then the original property
is also falsified.

Completeness

We now want to prove the converse, i.e if there is a trace that falsifies a translated property in
a translated process, there is a trace that falsifies the property in the process.

As a translated configuration could have a trace that corresponds to a partial run of the helper,
we first introduce the notion of normal form of a translated configuration, which corresponds
to the completion of any partial helper run present in the multi-set process.

Definition 36. The completion trace comp(M) of a process is such that for any process of the
form {if (x /∈ L) then out(H, sign(x, y, skloc))} ∈ PM , the corresponding ⇒If⇒A−out∈ t.

With comp(M), we can run all partially used helper. We now just have to delete the unused
ones that may have appeared with Rep and we obtain a process with only a clean helper !Hlp.

Definition 37. We consider M’ such that: M
comp(M)
=====⇒ M ′ . The normal form nf(M) is then

equal to M’ except for the processes :

Pnf(M) = PM ′/{Hlp}

To be usable, the normalization needs to preserve the availability of any action not depending
on the helper, hence the following lemma.
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Lemma 5. For any M, N ∈ C(M̃), N’ :

∀a, π(a) 6= ε, (N ⇒a N
′)⇒ (nf(N)⇒a nf(N ′))

Sketch of proof: As a is not an action of the helper, we show that completing all the helpers
does not affect a, and a does not affect the completion trace. Intuitively, the normalization and
the action a commute. �

We can now show that if there is a well formed trace for a translated process, there is a
corresponding trace for the original process.

Theorem 14. For all M, N’ configuration process :

∀N ∈ C(M̃), N
t

=⇒ N ′ ∧WF (t)⇒ ∃M ′, nf(N ′) ∈ C(M̃ ′) and M
π(ρ−1(t))
=====⇒M ′

Sketch of proof: Intuitively, if the trace is well-formed, it contains only terms that can be
translated to Slapic. Then, we proceed as for the correctness, reasoning on the length of the
trace and proving that we can do one step. The proof is not however as simple because several
small details must be taken care of. For example, if we consider an action that can do N, for
example executing a out(x). Then, this action must exist in M, but it could be after a sign
action ,let z = report(′h′); out(x), so we cannot just run it.

Being careful, we can however reproduce every action and obtain the desired result. �

Corollary 3.

if (M̃
t

=⇒) ∧WF (t) then M
π(ρ−1(t))
=====⇒

Proof. Direct consequence of theorem 8.1 as M̃ ∈ C(M̃).

Finally, we say that if there is a trace that falsifies the property in Sapic, there is a trace that
falsifies the translation in Slapic.

Theorem 15. For any localized configuration process M and property φ:

∃t, (M̃ t
=⇒) ∧ ¬φ̃(t)⇒ ∃t′, (M t′

=⇒) ∧ ¬φ(t′),

Sketch of proof: If φ̃ is falsified, it means that it is falsified by a well-formed trace. Then, the
corresponding trace directly falsify φ �

In conclusion, we now have a translation such that the validity of a property in the translated
process is equivalent to the validity of the property in the original process. Therefore, we can
now prove security properties in Slapic using Tamarin.
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7.3 Experimental results

Now that we have a translation from Slapic to Sapic, we can use it to automatically prove
security properties of protocols following the steps :

� Model a protocol and security properties in slapic

� Apply our translation to obtain a Sapic theory

� Use the Sapic tool to convert into MSR

� Launch the Tamarin prover on the MSR

After translating protocol 7.10, we can now ask Tamarin to prove the AC trace property in the
Tamarin language:

lemma attested-computation:

"All #t1 h . Voutput(h)@t1 ==> (Ex #t2 . Poutput(h)@t2 & t2<t1)"

The syntax of the trace properties is common to Slapic and Tamarin, # being use to declare
time variables and @ to say that an event occurred at some precise time. By default, lemmas
are proved for all possible traces of a process unless if ”exists-trace” is specified at the start of
the lemma.

Tamarin returns that it is verified for all traces, thus proving that the protocol provides attested
computation. As mentioned before, this is a basic form of attested computation, we now want
to obtain more powerful properties like secrecy of the messages and unicity of the computation
in the spirit of the SOC properties from Chapter 5.

Attested key exchange

To achieve secrecy which yields unicity, the idea is to encrypt all the inputs and outputs of the
IEE with a shared secret key. We then need to use a key exchange. We could of course use
NSL or any other protocol, but with the IEEs capabilities and the locations, we can start from
a basic key exchange as in SOC:

Bob
pk−→ Alice

Bob
aenc(pk,key)←−−−−−−− Alice

pk and key are fresh keys generated respectively by Alice and Bob. This protocol is trivially
not a secure key exchange, however, if we encapsulate it into a secure attested computation
protocol, we obtain a valid key exchange.

Basically, we consider that a verifier wants to share a secret key with an IEE. Then, the verifier
remotely starts an IEE that contains pk. The IEE generate a fresh key, encrypt it with the
verifier public key and then sign it with its location. Then, the verifier can check the signing
and decode the shared key.

Here, we define a special set of trusted location. Indeed, we need to be able to differentiate all
the IEEs that have different keys, so the location of an IEE will actually contain the public key
of the verifier. We will give the location (’loc’,pk) to an IEE containing the public key pk, and
we say that every location (’loc’, ) is a trusted location.

We finally obtain the protocol bellow :
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hloc(loc) <=> Ex z. loc = <’loc’,z>

// first the provider

let p=

in(pk(skV)); // receives a public key

!( // and initiate any number of IEE with the according location

new shared_k; //generate the fresh key

event SessionP(pk(skV),shared_k);

let x = sign_loc aenc(shared_k,pk(skV)) in

out(<aenc(shared_k,pk(skV)),x>);

)@<’loc’,pk(skV)>

// Run part of the NSL on the verifier side.

let v =

new skV;

event HonestP(pk(skV));

out(pk(skV)); // public key sent

in(<aenc(shared_k,pk(skV)),signed>); //reception of the signed key

if aenc(shared_k,pk(skV)) = checksign(<’loc’,pk(skV)>,pk(skloc),signed) then

event SessionV(pk(skV),shared_k); //the session is established

new init; ( (!p) || (!v) )

We can then prove the classical security properties of a key exchange. We want secrecy of the
key obtained and the fact that if V accept a session there is a P that accepted it too. Both of
the following lemmas were verified by Sapic.

lemma sessions:

"All pka k #t1 . SessionV(pka,k)@t1 ==> Ex #t2. SessionP(pka,k)@t2 & t2<t1"

lemma secrecy[reuse]:

"not (Ex pka k #t1 #t2 . SessionV(pka,k)@t1 & K(k)@t2)"

We now have a simple and valid key exchange.
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Secure Outsourced Computation

Using the previous key exchange, the verifier and the producer can communicate with a channel
encrypted using the shared key, thus obtaining a Secure Outsourced Computation protocol.
This protocol is given below:

hloc(loc) <=> Ex z. loc = <’loc’,z>

// first the provider

let p=

in(pk(skV)); // receives a public key

!( // and initiate any number of IEE with the according location

new shared_k; //generate the fresh key

event SessionP(pk(skV),shared_k);

let x = sign_loc aenc(shared_k,pk(skV)) in

out(<aenc(shared_k,pk(skV)),x>);

[] --> [StoreP(init,shared_k)];

!( // start the computation part

[StoreP(old_i,shared_key)] --> [];

in(senc(ip,shared_key)); // for any encoded input

event Poutput(senc(prog(ip,old_i), shared_key));

out(senc(prog(ip,old_i), shared_key)); // compute the result and send it

[] --> [StoreP(list(ip,old_i), shared_key)]

)

)@<’loc’,pk(skV)>

let v =

new skV;

event HonestP(pk(skV));

out(pk(skV)); // public key sent

in(<aenc(shared_k,pk(skV)),signed>); //reception of the signed key

if aenc(shared_k,pk(skV)) = checksign(<’loc’,pk(skV)>,pk(skloc),signed) then

(

event SessionV(pk(skV),shared_k); //the session is established

[] --> [StoreV(init,shared_k)];

!( //and we start sending input to the provider

[StoreV(old_i,shared_key)] --> [];

new ip;

event Input(senc(ip,shared_key));

out(senc(ip,shared_key));

in(senc(prog(ip,old_i), shared_key));

event Voutput(senc(prog(ip,old_i), shared_key));

[] --> [StoreV(list(ip,old_i), shared_key)]
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)

)

new init; ( (!p) || (!v) )

The lemmas corresponding to the secret attested computation were then proved by Tamarin.

lemma secrecy_computed:

"not (

Ex pka ip k oldi #t1 #t2 #t3 .

SessionV(pka,k)@t1

& Input(senc(ip,k))@t2

& K(prog(ip,oldi))@t3

)"

lemma attested_computation[reuse]:

"All #t1 h . Voutput(h)@t1 ==> (Ex #t2 . Poutput(h)@t2 & t2<t1)"

Finally, combining attested computation with a simple protocol, we obtained a secure attested
computation protocol.
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Chapter 8

Conclusion

In this report we address the problem of verifiability in secure computation, i.e., to design
secure computation protocols where parties can efficiently and independently check that the
results they obtain from the computation are correct and/or prove to third parties that this is
the case.

We have considered two classes of solutions. In the first part of the deliverable we have looked
at two protocols that go beyond the state-of-the-art in extending secure multiparty computa-
tion techniques with verifiability guarantees. These solutions provide better performance and
extend the range of functionalities that can be computed in practice. The proposed protocols
provide universal verifiability, which means that correctness guarantees can be transferred to
third parties—a key property in applications such as electronic voting and electronic cash. Fur-
thermore, these protocols do not rely on special hardware assumptions, and can therefore be
deployed today in real-world systems.

In the second part of the deliverable we explore a novel range of solutions that leverage emerging
computational platforms that offer inbuilt software isolation and attestation guarantees. These
new secure hardware architectures are not yet available to the general public but their general
design is public. We have formalized the security guarantees that this new type of hardware
aims to provide, designed protocols whose verifiability strongly relies on these designs and have
shown how one can reason formally about their security.

While an experimental efficiency comparison between the two different approaches is currently
not possible as actual hardware is not yet available, we note that these new protocols offer
potentially significantly faster alternatives to secure outsourcing of computation and secure
functional evaluation than the present day, software-only solutions. Furthermore, we have
validated our specifications using formal verification techniques.

These results are essential stepping stones to ensure that the verifiable secure computation
protocols that emerge in the future offer a comparable degree of security when compared to
present day solutions, and to exactly pinpoint the trust/performance trade-offs that they entail.
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Chapter 9

List of Abbreviations

FHE Fully Homomorphic Encryption

MPC Multi-party Computation

OT Oblivious Transfer

UV Universal Verifiability

VC Verifiable Computation
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