
D14.3
Protocol Implementations

Project number: 609611
Project acronym: PRACTICE

Project title: Privacy-Preserving Computation in the Cloud
Project Start Date: 1st November, 2013

Duration: 36 months
Programme: FP7/2007-2013

Deliverable Type: Report
Reference Number: ICT-609611 / D14.3 / 1.0
Activity and WP: Activity 1 / WP14

Due Date: October 2016 - M36
Actual Submission Date: 3rd November, 2016

Responsible Organisation: ALX
Editor: Peter Sebastian Nordholt

Dissemination Level: Public
Revision: 1.0

Abstract:

This report documents implementations of secure computation
protocols derived from theoretical work of work package 13. To-
gether, this report and the implementations it documents con-
stitute the deliverable D14.3.

Keywords: Protocol, Protocol Suite, Secure Computation

This project has received funding from the European Union’s Seventh Frame-
work Programme for research, technological development and demonstration
under grant agreement no. 609611.

Protocol Implementations

Editor

Peter Sebastian Nordholt (ALX)

Contributors (ordered according to beneficiary numbers)

Daniel Demmler (TUDA)
Ágnes Kiss (TUDA)
Thomas Schneider (TUDA)
Michael Zohner (TUDA)
Jonas Lindstrøm (ALX)
Sander Siim (CYBER)
Manuel Barbosa (INESC PORTO)
Vitor Pereira (INESC PORTO)

PRACTICE D14.3 Page I

Protocol Implementations

Executive Summary

This report documents implementations of secure computation protocols derived from the-
oretical work of work package 13. Together, this report and the implementations it documents
constitute the deliverable D14.3.

We consider four different protocol implementations, which are embedded in application
oriented secure computation frameworks, and are more or less ready to be used in secure
computation applications. First we describe a protocol for generating so-called Beaver Triples
which is an important building block in many secure computation protocols, including the
TinyTables protocol and the ABY framework which are both described in this report. The
implementation is embedded in the Sharemind framework. Then we describe an implementation
of a novel two-party secure computation protocol called the TinyTables protocol, which is
based on the FRESCO framework. The third protocol we describe is the mixed protocol of
the ABY secure computation framework, which allows one to switch between different secure
computations protocols in order to optimize performance. The last protocol we describe is a
formally verified implementation of Yao’s garbled circuits protocol, including the effort to create
a proof of the security and correctness of the protocol. The implementation is embedded in the
FRESCO framework.

PRACTICE D14.3 Page II

Protocol Implementations

Contents

1 Introduction 1

2 Efficient Beaver Triple Generation with Oblivious Transfer Extensions 3
2.1 Protocol Description . 3
2.2 Implementation . 6

2.2.1 Pseudo-random generator . 6
2.2.2 Hash function . 7
2.2.3 Bit-level operations . 7
2.2.4 Batching . 8

2.3 Performance . 8

3 Tiny Tables 10
3.1 Protocol Description . 10

3.1.1 Implemented gates . 11
3.2 Implementation . 12

3.2.1 Architecture . 12
3.2.2 Oblivious transfers implementations . 14

3.3 Performance . 15

4 Mixed-protocol implementation – ABY 17
4.1 Protocol Description . 17
4.2 Implementation . 18

4.2.1 Architecture . 18
4.2.2 Functions . 20

4.3 Performance . 23

5 Formally Verified Implementation of Yao’s SFE Protocol 25
5.1 Protocol Description . 25
5.2 Implementation . 26

5.2.1 Formalizing and verifying Yao’s Protocol in EasyCrypt 27
5.2.2 Extracting an implementation . 44

5.3 Performance . 45

6 Conclusion 47

PRACTICE D14.3 Page III

Protocol Implementations

List of Figures

3.1 A gate G with n input wires wu1 , . . . , wun and one output wire wo. 10
3.2 UML-diagram of how the the TinyTable protocol is implemented as an instance

of a protocol suite in the FRESCO framewoek. 13
3.3 UML-diagram of the different implementations of OTSender. 14

4.1 Overview of the ABY framework that allows efficient conversions betweenCleartexts
and three types of sharings: Arithmetic, Boolean, and Yao. 17

4.2 Architecture of our open source ABY library at https://github.com/encryptogroup/
ABY. Upward arrows denote class inheritance. 18

4.3 Detailed architecture of ABY. Upward arrows denote class inheritance, grey ar-
rows denote communication. 19

5.1 Abstract Two-Party Protocol. 28
5.2 Security of a two-party protocol protocol. 29
5.3 Instantiating Two-Party Protocols into Abstract OT. 30
5.4 Abstract Garbling Scheme. 30
5.5 Abstract SFE Construction. 32
5.6 SomeGarble: our Concrete Garbling Scheme. 34
5.7 Indistinguishability-based Security for Garbling Schemes. 35
5.8 Global values. 36
5.9 Random generation module. 37
5.10 Procedures garb and garb′. 37
5.11 Game GameReal. 37
5.12 Random generator to use in the instantiation of game IND-CPA. 38
5.13 Random generator of GameFake’. 38
5.14 Garbling procedure of GameFake’. 39
5.15 Game GameHybrid. 40
5.16 DKC security experiment. 41
5.17 Oracle encrypt. 41
5.18 Tokens generation. 42
5.19 Our Concrete Oblivious Transfer Protocol. 43

PRACTICE D14.3 Page IV

https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY

Protocol Implementations

List of Tables

2.1 KK13
(
N
1

)
-OT security parameters for equivalent security of ALSZ13 protocol. . 5

2.2 Optimal Li values for Alg. 2 minimizing total communication of Alg. 1. 5
2.3 Communication in bits for single `-bit triple computation with different methods. 6
2.4 Total running times in seconds for the triple generation to compute 100 000

triples with different OT extension methods. The fastest time for each setting is
highlighted in bold. 9

3.1 Timings for two players performing an instance of 128-bit AES using the TinyTa-
bles protocol implemented in the FRESCO framework measured as the average
after 10 executions. 15

3.2 The network traffic between the two parties in the preprocessing and online
phases of a protocol which using 128-bit AES encrypts a clear text provided by
player 1 using a key provided by player 2. 16

4.1 Operations . 20
4.2 Overall amortized complexities for generating one multiplication triple using Ho-

momorphic Encryption or Oblivious Transfer Extension with two threads. Small-
est values marked in bold. 24

4.3 Modular Exponentiation: Setup, Online, and Total run-times (in s), communi-
cation, and number of messages for the modular exponentiation on len= 32-bit
inputs and long-term security. Smallest entries marked in bold. 24

4.4 PSI: Setup, Online, and Total run-times (in s), communication, and number of
messages for the Private Set Intersection application on n = 4 096 elements of
length σ = 32-bits and long-term security. Smallest entries marked in bold. . . . 24

4.5 Biometric Identification: Setup, Online, and Total run-times (in s), communica-
tion, and number of messages for biometric identification on 512 elements with a
length of σ = 32-bits and with dimension d = 4 and long-term security. Smallest
entries marked in bold. 24

5.1 Execution times (milliseconds) . 45

PRACTICE D14.3 Page V

Protocol Implementations

Chapter 1

Introduction

This deliverable is the accompanying report for chosen implementations of secure computation
protocols derived from theoretical work of workpackage 13. We note that there is some over-
lap between this deliverable and deliverable 13.4 that also reports on such implementations.
However, in this deliverable we focus on implementations that are fitted inside larger secure
computation frameworks. Thus, while deliverable 13.4 focuses on proofs-of-concepts, this deliv-
erable focuses on protocol implementations which are embedded in application oriented secure
computation frameworks. Thus the protocols described here are in some sense ready to be
utilized in building applications based on secure computation.

We describe four different protocol implementations in this report. The first three im-
plementations represent different levels the PRACTICE project has been dealing with secure
computation. First, at the low level we present an implementation of an improved sub-protocol
used as a basic building block in many secure computation protocols. Second, at the middle
level we present an implementation of a secure computation protocol following a new approach
to secure computation in the two party setting. Third, at the high level we present an imple-
mentation of a system that takes several secure computation protocols and combines them in
to a new mixed protocol benefiting from the distinct strengths of each of the underlying proto-
cols. The fourth implementation described in this report represent a relatively new direction for
secure computation. Namely, an implementation of a well known secure computation protocol
that has been formally verified to follow the theoretical specification of the protocol.

In more detail we start in chapter 2 by describing an optimized protocol for generating so
called Beaver triples. These are widely used in SMC protocols based on secret sharing, and
is hence an important building block in many SMC protocols, including the ABY framework
discussed in chapter 4 and the TinyTable protocol discussed in chapter 3. The concrete imple-
mentation described in this chapter is embedded in the Sharemind framework, and has been
used in their prototypes described in deliverable D23.3.

In chapter 3 we describe an implementation of the TinyTable protocol, which is a novel two-
party SMC protocol for computing boolean circuits developed by Damgård et al. at Aarhus
University. The protocol is based on secret sharing, and we present an implementation based
on the FRESCO framework described in deliverable D14.2.

Chapter 4 discusses the mixed protocol of the ABY secure computation framework. In par-
ticular how it allows one to switch between different protocols, based on boolean or arithmetic
sharing as well as Yao’s garbled circuits during the evaluation of a circuit in order to optimize
the performance.

In chapter 5 we describe a formally verified implementation of Yao’s garbled circuits protocol.
In particular, the effort to obtain a mechanised proof of the security and correctness of the

PRACTICE D14.3 Page 1 of 50

Protocol Implementations

protocol is presented. The resulting verified Yao implementation has been integrated in the
FRESCO framework as described in deliverable 14.4.

PRACTICE D14.3 Page 2 of 50

Protocol Implementations

Chapter 2

Efficient Beaver Triple Generation with
Oblivious Transfer Extensions

In this chapter, we describe an optimized protocol for generating Beaver triples that are com-
monly used in two-party secure computation protocols based on secret sharing. Secret sharing
based protocols provide a useful alternative to the Yao’s garbled circuits approach to two-party
computation [31] as they are more communication-efficient, with the drawback of non-constant
round complexity. However, there are many practical examples of applications where the algo-
rithms can be efficiently parallelized, greatly reducing the performance impact caused by the
larger round complexity of the protocols and resulting in very fast implementations1.

Two-party computation based on additive and bitwise secret sharing is supported in secure
computation frameworks such as ABY (see Chapter 4) and Sharemind [9, 36]2. In both of these
frameworks, performing arithmetic on additively shared values relies on precomputed Beaver
triples. The performance bottleneck for these protocols is in the offline precomputation phase,
as the online phase is roughly an order of magnitude faster [21, 36]. Therefore, optimizing
the Beaver triple generation protocols is most important for improving the efficiency of secret
sharing based protocols in these frameworks.

2.1 Protocol Description
Our protocol is similar to the state-of-the-art passively secure Beaver triple generation protocol
used in ABY [21]. The protocol in [21] relies on the 1-out-of-2 oblivious transfer extension
protocol of Asharov et al. (ALSZ13 [1]). In our protocol, we instead employ the 1-out-of-
N oblivious transfer extension of Kolesnikov and Kumaresan (KK13 [29]) to reduce the total
communication cost [36].

In addition, we can show that our protocol is secure in the Universal Composability (UC)
framework [13] without relying on the random oracle model. The security of our protocol is
based on the notion of correlation robustness for hash functions [27], which is the underlying
security assumption for both the ALSZ13 and KK13 oblivious transfer extension protocols [1,
29]. For details on the security proof, we refer the reader to [36].

Throughout this chapter, we describe protocols executed between two parties P1 and P2.
1For example, the privacy-preserving tax fraud detection [10, 11] and genome similarity computation [19]

applications on Sharemind both employ heavily parallelized algorithms, that result in practically viable imple-
mentations.

2The online two-party protocols used in Sharemind are described also in PRACTICE deliverable D13.1,
Section 3.4 [28].

PRACTICE D14.3 Page 3 of 50

Protocol Implementations

We denote an additively shared value x as [[x]] and refer to the share of party Pi as [[x]]i. Additive
sharing is performed over a ring Z2k for some k ∈ N, such that [[x]]1 + [[x]]2 ≡ x mod 2k and the
shares [[x]]1, [[x]]2 are uniformly random and independent. We implicitly use modular arithmetic
whenever dealing with elements of Z2k .

We present the overall triple generation protocol as Alg. 1.

Algorithm 1 Computation of `-bit multiplication triples
Input: No input
Output: Beaver triple [[a]] · [[b]] = [[c]]

1: Pi generate uniformly random values [[a′]]i ← Z2` , [[b′]]i ← Z2`

2: The parties compute [[u]] = [[a′]]1 · [[b′]]2 using Alg. 2
3: The parties compute [[v]] = [[a′]]2 · [[b′]]1 using Alg. 2
4: Pi fixes [[c′]]i = [[a′]]i · [[b′]]i + [[u]]i + [[v]]i
5: [[a]] ← reshare([[a′]]), [[b]] ← reshare([[b′]]) and [[c]] ← reshare([[c′]])
6: return [[a]], [[b]], [[c]]

Here, reshare() denotes a secure resharing protocol, which produces fresh random shares for
a secret-shared value, without changing the actual value. The resharing step is required to show
UC security of our protocol [36]. The crux of the protocol is multiplying the shares of [[a′]] and
[[b′]]. For this, we use a modified version of Gilboa’s protocol for multiplying secret inputs from
different parties [23] that uses 1-out-of-N oblivious transfer (denoted by

(
N
1

)
-OT). For x ∈ Z2k ,

we denote by x[i] the ith bit of x, where 1 ≤ i ≤ k. The protocol is presented as Alg. 2.

Algorithm 2 Protocol for multiplying `-bit integers held by different parties using
(
N
1

)
-OT

Setup: Values L1, . . . , Lk, such that Li ≥ 1 and ∑k
i=1 Li = `

Input: P1 inputs x ∈ Z2` , P2 inputs y ∈ Z2`

Output: Additively shared result [[z]], where z = xy

1: t = 0
2: for i ∈ {1, . . . , k} do . Perform

(
2Li

1

)
-OT for multiplying next Li bits

3: P1 computes x′ = x · 2t and generates random ri ← Z2`

4: P1 fixes OT messages mj
i = ri + x′ · (j − 1) for j ∈ 1, . . . , 2Li

5: P2 fixes choice index ai =
(∑Li

j=1 2j−1 · y[j + t]
)

+ 1
6: Parties run

(
2Li

1

)
-OT with messagesmj

i from P1 and choice index ai from P2. P2 receives
si = mai

i .
7: t = t+ Li
8: end for
9: P1 fixes [[z]]1 = −∑k

i=1 ri
10: P2 fixes [[z]]2 = ∑k

i=1 si
11: return [[z]]

Note that for L1 = . . . = L` = 1, we get the original protocol from [23] using
(

2
1

)
-OT. In

the original protocol, x and y are multiplied bit-by-bit. Our protocol is a generalized version
that multiplies chunks of consecutive Li bits of the inputs using a single

(
N
1

)
-OT, as opposed

to performing
(

2
1

)
-OT Li times. Our insight is that this way, the total communication of the

protocol can be reduced when using appropriate values of Li.

PRACTICE D14.3 Page 4 of 50

Protocol Implementations

Similarly to the original protocol, instead of using a standard
(
N
1

)
-OT functionality, we can

use a more efficient correlated oblivious transfer in Alg. 2. In correlated
(
N
1

)
-OT, the sender

does not fix the first messagem1 as input to the protocol, but instead, a randomm1 is generated
as part of the protocol. The sender inputs correlation functions f2, . . . , fN , which are used in
the protocol to fix the other N − 1 messages to mi = fi(m1) for i ∈ {2, . . . , N}. It is straight-
forward to apply correlated OT to Alg. 2, since the first message is randomly generated by
P1.

Another optimization that is mentioned also in [21], is that as the value of x′ in the protocol is
shifted left bitwise, only the uppermost bits need to be obliviously transferred, since the lower
bits are zeroed out. This means that the message size for each successive OT is effectively
smaller, the i-th OT then has message size ` − ∑i−1

j=1 Lj. Naturally, all the transfers can be
performed in a single round in parallel.

We instantiate the correlated
(
N
1

)
-OT using the KK13 oblivious transfer extension proto-

col [29], since it is currently the most efficient known protocol for passive security. We have
calculated the optimal Li values to minimize total communication of the triple generation for
security parameter κ0 = 128 (Table 2.2). Note that the equivalent KK13 protocol security
parameter is larger, depending on the number of messages in the OT [36]. The corresponding
security parameters are presented in Table 2.1.

Table 2.1: KK13
(
N
1

)
-OT security parameters for equivalent security of ALSZ13 protocol.

ALSZ13 security
parameter κ0

Number of messages N Equivalent KK13
security parameter κ

128 2 128
128 4 192
128 8 224
128 16 240

Table 2.2: Optimal Li values for Alg. 2 minimizing total communication of Alg. 1.
Triple

length `
Li values Required KK13

security parameter κ
Communication
of Alg. 1 (bits)

8 (4,4) 240 1320
16 (4,4,4,4) 240 3120
32 (2,3,3,3,3,3,3,3,3,3,3) 224 7430
64 (2, . . . , 2) 192 18624

Note that we assume the highest security parameter κ required by the Li values is used for
all oblivious transfers. Theoretically, different κ values can be used, which would result in a
different set of optimal Li values and further reduced communication cost, but this makes an
efficient implementation more difficult. We also implicitly assume that optimal message sizes
are used for each OT iteration as explained above.

In summary, Table 2.3 compares the communication cost of our approach with the previous
state-of-the-art protocol using ALSZ13

(
2
1

)
-OT extension [21]. The communication cost reflects

the total bi-directional communication in Alg. 1 for security parameter κ0 = 128. Note that
since the roles of P1 and P2 can be trivially switched in Alg. 1, we are interested in minimizing

PRACTICE D14.3 Page 5 of 50

Protocol Implementations

the protocol’s total communication, although communication is asymmetric for both ALSZ13
and KK13 OT protocols.

Table 2.3: Communication in bits for single `-bit triple computation with different methods.

Triple
length `

ALSZ13
1-out-of-2 OT

KK13
1-out-of-2Li OT

Communica-
tion

reduction
8 2120 1320 37.7%
16 4368 3120 28.6%
32 9248 7430 19.7%
64 20544 18624 9.3%

2.2 Implementation
We have implemented the triple generation protocol as a precomputation step to Sharemind’s
two-party protocol suite in C++. For benchmarking purposes, we implemented both the stan-
dard ALSZ13

(
2
1

)
-OT extension based protocol (the protocol used in ABY [21]) as well as the

KK13
(
N
1

)
-OT extension protocol in Alg. 1.

The triple precomputation protocol is executed on a separate thread from the main thread of
Sharemind’s runtime, that runs privacy-preserving programs and the required online protocols.
The precomputation thread computes multiplication triples in fixed-size batches and stores
them in a memory buffer with fixed size. The batch size and buffer size for triple generation is
read from a configuration file when starting the Sharemind servers.

Access to the buffers is synchronized with the thread running the online protocols, that
removes triple elements from the buffers as they are needed in computations. The precompu-
tation thread independently computes a new batch of triples whenever the buffers are depleted
enough to fit a single new batch of triples.

2.2.1 Pseudo-random generator
To instantiate the pseudo-random generator (PRG) required in the oblivious transfer extension
protocols, we use the AES-128 block cipher in CTR mode, which gives us 128-bit security. In
the case where the OT extension parameter κ = 128, we seed only the AES key with 128 bits,
and take the IV (initialization vector) as 0. For larger κ values (in the KK13 protocol), we use
the extra bits to also seed the IV. This gives a unique PRG for each seed (supporting up to
256 bit seeds), while still retaining at least 128-bit security for the PRG, according to the NIST
recommendations [2].

Using AES allows us to leverage the Intel AES-NI instruction set for much better perfor-
mance than a software implementation of AES3. Especially, we can process 8 blocks of output
in parallel in CTR mode. We do not need to use AES-NI intrinsics explicitly in our implemen-
tation code, as we use the OpenSSL implementation of AES, which automatically uses AES-NI
instructions by default if they are supported by the hardware. Also, parallel encryption/decryp-
tion is handled by the OpenSSL implementation in block cipher modes that allow it. Overall,

3Intel’s hardware accelerated AES implementation https://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-instructions-aes-ni

PRACTICE D14.3 Page 6 of 50

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni

Protocol Implementations

the PRG computations are not a bottleneck in our protocols, even though we need to generate
pseudorandomness from κ different PRG-s at the same time.

2.2.2 Hash function
We instantiate the correlation-robust hash function with either an AES block cipher construc-
tion or SHA256 hash function. For the ALSZ13 OT extension protocol (with κ = 128), we can
use the fixed-key AES construction used in [21]:

H(x, t) = AESK(x⊕ t)⊕ x⊕ t
for public K, input x and monotonically increasing nonce t. However, for the KK13 protocol
(with κ > 128), the same construction cannot be used, since the size of the hash input is κ
bits in the protocol, but the block size of AES is 128 bits for all key sizes. For KK13 protocol,
we thus use SHA256 directly as an instantiation. The AES construction is much faster due to
AES-NI instructions and as such, gives the ALSZ13 protocol an advantage in performance of
local computations.

Calculating the hash function was the clear bottleneck in our LAN (local area network)
setting benchmarks with fast network links, taking up to 80% of the total running time. Due to
this, we use multiple parallel threads for calculating the hashes and we performed benchmarks
with different numbers of hashing threads. A SHA-256 implementation, which could leverage
hardware SIMD (single-instruction multiple-data) instructions for calculating many hashes in
parallel on a single thread would be very beneficial for increased performance. Currently, we
use the OpenSSL implementation of SHA-256, as local benchmarks showed it is more efficient
then the implementation of CryptoPP library.

We also briefly considered and tested other instantiations, in particular SHA-3 and an
improved version of one of the SHA-3 finalists, BLAKE2. For SHA-3, the only C++ imple-
mentation we found was from the CryptoPP library. Initial benchmarks showed that it was ∼2
times slower than SHA-256, and so we currently abandoned it as an instantiation candidate.

For BLAKE2, we tested the official implementation4. Specifically, we used the SIMD-
optimized Blake2b variant with 32-byte outputs. Although the BLAKE2 official web-site ad-
vertises very high performance, we only observed relatively little performance gains in our
protocols compared to OpenSSL’s SHA-256. We suspect that the function and perhaps the
implementation also is fine-tuned for computing a single hash from very large input data, but
not for our use case of computing a huge amount of hashes on relatively small inputs.

2.2.3 Bit-level operations
Our bit matrix transposition uses a sequential algorithm, which employs Intel’s SIMD AVX2
instructions. AVX2 instructions allow to operate directly with 256-bit registers. In our case,
we use these operations for bitwise XOR and bitwise AND and a few other specific operations.
With AVX2 instructions, we can perform these bitwise operations on 256 bit inputs in roughly
the same amount of processor cycles as performing a single 64-bit bitwise operation.

Our bit matrix transposition implementation is based on the code from5, modified to use
AVX2 instructions, as the original code uses only SSE2 instructions with access to 128-bit
registers. Bit matrix transposition is required in all OT extension protocols we have considered
and is a rather costly computational task, as already noted in [1].

4https://github.com/BLAKE2/BLAKE2
5https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/

PRACTICE D14.3 Page 7 of 50

https://github.com/BLAKE2/BLAKE2
https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/

Protocol Implementations

Local tests show that Eklundh’s algorithm [22] used in ABY (and originally proposed in [1])
performs slightly better than AVX2-based sequential algorithm. Even more gains might be
possible with a implementation of Eklundh’s algorithm that leverages the SIMD-instructions.
We currently have not implemented Eklundh’s algorithm ourselves due to time constraints but
this would help optimize our implementation.

2.2.4 Batching
Our current implementation generates triples in large batches. After some initial testing, we
chose to generate 100 000 triples in a single batch, so that the time it takes to complete one
batch is reasonably small. To generate a million triples, we calculate ten of these batches
sequentially and so on. Note that for generating 100 000 triples, the corresponding batch size
for OT is much higher. E.g. for the baseline ALSZ13 protocol and 64-bit triples, we have to
perform 12 800 000 OT-s in total using the OT extension.

We observed that performing triple generation in smaller batches sequentially leads to longer
total running time. However, doing the computation in one large batch means that there is a
significant overhead introduced by one party having to wait for a message from the other party
while it finishes its computations. This overhead is introduced by data dependencies of the
network message on local computation results. We attempted to reduce the overhead of local
computation by using parallel threads for hashing, which is the most intensive computation
done in the protocols. However, using the PRG-s and transposing bit matrices also takes
noticeable time on very large matrices.

In hindsight, a more efficient batching strategy would have been to run smaller batches
independently and in parallel on the network. This means local computations and network
communication would be naturally more interleaved, although some overhead is introduced for
multiplexing the messages from different protocol instances. Our current implementation does
not support this, but this is a useful optimization strategy for the future. We also believe it
would give the KK13-based protocol more of an advantage over ALSZ13, even when using a
slower hash function.

2.3 Performance
The benchmarks were performed on a cluster of two machines, with a dedicated fast 10 Gbit/s
network link, 128 GB of RAM and two Intel Xeon E5-2640 v3 2,6 GHz/8GT/20M processors,
meaning a total of 16 cores and 32 parallel threads with Intel HyperThreading.

We performed benchmarks in both a LAN and WAN (wide-area network) setting. The LAN
setting means that network performance of the communication channel is very high, especially,
latency is very low. The WAN setting simulates low performance network conditions, or when
the computing parties are located very far from each other geographically. We simulate the
WAN setting in our local cluster by using the Linux command line tool tc (traffic control).

• LAN — < 0.1ms latency and up to 10Gbit/s bandwidth

• WAN — 170 ms latency (round-trip time) and throttled bandwidth at 70 Mbit/s (peak
rate at 100 Mbit/s)

In Table 2.4, we report the time for computing a total of 100 000 triples in a single batch.
The average time of ten iterations of these batches is shown for each experiment in seconds.
We performed tests in both LAN and WAN settings and using either 4 or 16 parallel hashing

PRACTICE D14.3 Page 8 of 50

Protocol Implementations

threads. We did not observe any significant performance gains when using more than 16 threads
for batch size of 100 000 triples.

We benchmarked three different methods. First, we measured triple generation using the
standard 1-out-of-2 OT extension of ALSZ13, which is the method used in [21]. We tested the
ALSZ13 version with both the fast fixed-key AES hash construction and SHA256, to measure
the effect of the hash function on overall performance. Finally, we benchmarked our approach
of using KK13 1-out-of-N OT extension protocol using SHA256 as the hash function.

Table 2.4: Total running times in seconds for the triple generation to compute 100 000 triples
with different OT extension methods. The fastest time for each setting is highlighted in bold.

Threads Network Triple
bitlength

ALSZ13
SHA256

ALSZ13
AES

KK13
(2Li

1
)

SHA256
4 LAN 8 0.91 0.53 1.13
4 LAN 16 1.62 0.96 2.15
4 LAN 32 3.09 1.71 3.05
4 LAN 64 5.49 3.25 5.31
4 WAN 8 4.39 3.90 3.84
4 WAN 16 8.58 7.61 8.39
4 WAN 32 18.10 15.45 16.55
4 WAN 64 37.93 33.89 38.26
16 LAN 8 0.60 0.48 0.57
16 LAN 16 1.10 0.86 1.01
16 LAN 32 1.93 1.60 1.64
16 LAN 64 3.51 3.09 3.24
16 WAN 8 3.99 3.92 3.01
16 WAN 16 7.75 7.53 6.32
16 WAN 32 15.95 15.52 14.11
16 WAN 64 34.86 34.07 34.94

The results show, that KK13 based protocol performs better in WAN setting, due to the
decreased communication cost. However, in our implementation, the local computations proved
to be a larger bottleneck than the network overhead, which suggests it could still be heavily
optimized. Especially, our ALSZ13 implementation with fixed-key AES does not achieve the
same performance as the implementation in ABY [21]. We believe the main issue in our
implementation is a suboptimal batching strategy. Since we compute large batches sequentially,
there is a significant overhead caused by local computations and network communication not
being interleaved. For a more streamlined approach, we should compute many smaller batches
in parallel.

Another improvement would be to use a faster hash function, as SHA256 does not live up
to state-of-the-art performance standards, even when multiple parallel threads for hashing are
used. This is demonstrated by the benchmarks of LAN setting with 16 threads, where the
standard ALSZ13 with fixed-key AES still outperforms the KK13 protocol. However, when
comparing the KK13 protocol against ALSZ13 with SHA256, we see the KK13 protocol is
faster, showing the potential of our approach.

One option is to make a construction based on fixed-key AES that can handle more than 128
bits of input. However, since fixed-key AES constructions are secure only in the (optimistic)
ideal cipher model, another option is to use AES as a pseudorandom function, similarly to the
approach of [24]. The authors show that it is also possible to streamline the costly AES key
scheduling operation with AES-NI instructions, which means this approach can be competitive
performance-wise with fixed-key AES. This would allow AES256 to be used for 256-bit inputs.

PRACTICE D14.3 Page 9 of 50

Protocol Implementations

Chapter 3

Tiny Tables

3.1 Protocol Description
The TinyTables protocol is a two-party protocol for securely computing a boolean circuit. The
protocol was developed by Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen and Samuel
Ranellucci [18]. We have implemented the semi-honest version of this protocol, although a
version with malicious security is also described in the paper.

Computing a boolean circuit C consisting of boolean gates G1, G2, . . . , GN and wires w1,
w2, . . . , wM using the TinyTables protocol is done in two phases: a preprocessing phase and an
online phase. The idea is that the actual value bu ∈ Z2 on a wire wu in the circuit is encrypted,
such that both players instead know an encrypted value eu = bu ⊕ ru where ru ∈ Z2 is an
additively shared masking parameter where player i knows riu for i = 1, 2 and ru = r1

u ⊕ r2
u.

Now, when evaluating a gate G with input wires wu1 , . . . , wun and output wire wo which is
a linear function, e.g.

G(bu1 , . . . , bun) = a1bu1 ⊕ · · · ⊕ anbun ⊕ c
for some a1, . . . , an, c ∈ Z2, in the preprocessing phase, player i defines his mask of the output
wire rio as

rio = a1r
i
u1 ⊕ · · · ⊕ anr

i
un
,

and in the online phase the players let

eo = a1eu1 ⊕ · · · ⊕ aneun ⊕ c.

Figure 3.1: A gate G with n input wires wu1 , . . . , wun and one output wire wo.

PRACTICE D14.3 Page 10 of 50

Protocol Implementations

For a non-linear gate G with input wires wu1 , . . . , wun and ouptut wire wo, both players need
to calculate an n-dimensional table each during preprocessing, a so-called TinyTable, which
for player i is denoted T i(G) and is indexed by elements in Zn2 . This table is created such
that for encrypted input values (eu1 , . . . , eun) ∈ Zn2 , the two table entries T 1(G)eu1 ,...,eun

and
T 2(G)eu1 ,...,eun

are an additive sharing of the encrypted output value

eo = bo ⊕ ro = G(bu1 , . . . , bun)⊕ ro.

Below we will give some more details on how the two phases are done for specific gates. We
will omit the proof of the protocol being semi-honest, but it can be found in the paper.

3.1.1 Implemented gates
We have implemented five different gates in the circuit: XOR, NOT, AND, CLOSE, OPEN.
Note that here only AND gates are non-linear so we only need to calculate TinyTables for these.
Also, even though we allow for an arbitrary number of inputs, all the gates considered have
either one or two inputs.

In both the preprocessing and the online phases, evaluation of gates are done in an order
such that when a gate G is evaluated, the gates whose output wires are one of G’s input wires
has already been evaluated.

We recall that after the preprocessing and online phases of a gate G with input wires
wu1 , . . . , wun and output wire wo, both players should know the encrypted value

eo = G(bu1 , . . . , bun)⊕ ro

where ro is additively shared between the two players. We leave it to the reader to verify this
for each gate below.

XOR An XOR gate G with two input wires wu and wv and output wire wo is linear and is
defined as G(bu, bv) = bu ⊕ bv.

Preprocessing Player i let rio = riu ⊕ riv for i = 1, 2.
Online Both players let eo = eu ⊕ ev.

NOT A NOT gate G with a single input wire wu and an output wire wo is linear and is defined
as G(bu) = bu ⊕ 1.

Preprocessing Player i let rio = riu for i = 1, 2.
Online Both players let eo = eu ⊕ 1.

AND An AND gate G with two input wires, wu and wv and an output wire wo is non-linear
and defined as G(bu, bv) = bubv.

Preprocessing Player 1 picks r1
o and two masking parameters x0 and x1 at random.

Now, player 1 acts as the sender in two Oblivious Transfer (OT) protocol instances,
using (xo, xo⊕ r1

u) and (x1, x1⊕ r1
v) respectively as inputs, where player 2 acts as the

receiver and uses r2
v and r2

u respectively as selection bits. The outputs of the two
OTs for player 2 are

y0 = x0 ⊕ r1
ur

2
v

y1 = x1 ⊕ r1
vr

2
u,

PRACTICE D14.3 Page 11 of 50

Protocol Implementations

so now x0 and y0 is an additive secret sharing of r1
ur

2
v, and x1 and y1 is an additive

secret sharing of r2
ur

1
v, so player 1 and 2 now have a secret sharing of rurv.

Player 1 now defines his TinyTable T 1(G) as

T 1(G)0,0 = r1
o ⊕ x0 ⊕ x1 ⊕ r1

ur
1
v,

T 1(G)0,1 = T 1(G)0,0 ⊕ r1
u,

T 1(G)1,0 = T 1(G)0,0 ⊕ r1
v,

T 1(G)1,1 = T 1(G)0,0 ⊕ r1
ur

1
v.

Player 2 picks his share r2
o of the mask of the output wire at random and calculates

his TinyTable T 2(G) as follows:

T 2(G)0,0 = y0 ⊕ y1 ⊕ r2
ur

2
v ⊕ r2

o,

T 2(G)0,1 = T 2(G)0,0 ⊕ r2
u,

T 2(G)1,0 = T 2(G)0,0 ⊕ r2
v,

T 2(G)1,1 = T 2(G)0,0 ⊕ r2
u ⊕ r2

v ⊕ 1.⊕ 1.

It is now straight-forward to verify that

T 2(G)c,d = T 1(G)c,d ⊕ ro ⊕G(ru ⊕ c, rv ⊕ d)

for all (c, d) ∈ Z2
2.

Online On input values eu, ev, player i looks up the corresponding value in his TinyTable,
T i(G)eu,ev , and sends this value to the other player. Both players now let eo =
T 1(G)eu,ev ⊕ T 2(G)eu,ev .

CLOSE A CLOSE gate has one input wire wu which is unmasked, ie. ru = 0, and one output
wire wo. One of the players i is the inputter (the player who will provide the input in the
online phase).

Preprocessing The inputter, say player i, picks rio at random, and the other player, say
player j, picks rjo = 0.

Online The inputter, say player i, let eo = bo ⊕ rio where bo is his input value, and sends
eo to the other player.

OPEN An OPEN gate has one input wire wu and one output wire wo.

Preprocessing Player i let rio = riu for i = 1, 2.
Online Both players send their share of ro to the other player, and let bo = eo ⊕ ro.

3.2 Implementation

3.2.1 Architecture
We have implemented the TinyTable protocol in the FRESCO framework, whose architecture
is described in detail in [20], and is available for download at https://github.com/aicis/
fresco/. The preprocessing and online phases have been implemented as two seperate protocol
suites in FRESCO, see figure 3.2 and also figure 3.1 in [20]. In order to evaluate a cirtcuit, it has

PRACTICE D14.3 Page 12 of 50

https://github.com/aicis/fresco/
https://github.com/aicis/fresco/

Protocol Implementations

Figure 3.2: UML-diagram of how the the TinyTable protocol is implemented as an instance of
a protocol suite in the FRESCO framewoek.

to be evaluated first using the TinyTablesPreproProtocolSuite which is an implementation
of the preprocessing phase, and then TinyTablesProtocolSuite which is an implementation
of the online phase. After the preprocessing, each player stores his generated TinyTables and
the masks for his inputs to a file so they can be used in the online phase.

We have implemented CLOSE, OPEN, NOT, AND and XOR protocols for both phases. In
the preprocessing phase the corresponding classes are named TinyTablesPreproXProtocol an
in the online phase they are called TinyTablesXProtocol. These are created by two factory
classes, TinyTablesPreproFactory and TinyTablesFactory respectively.

Encrypted wires in the preprocessing phase are represented by instances of the TinyTables
PreproSBool class. Note that the wires in the preprocessing phase holds no values since
values are not assigned to the wires until the online phase where wires are represented by
TinyTablesSBool, but we let the TinyTablesPreproSBool hold the players share of the mask-
ing parameter, which in the preceeding section was denoted by riw for players i’s share of the
mask of the wire w.

In order to be able to load the correct TinyTable for a gate in the online phase, an ID is
assigned to each gate by the TinyTablesPreproFactory and TinyTablesFactory based on the
order of the gates with the first being assigned an ID equal to 0, the next is assigned an ID
equal 1, etc. To maintain consistency between the preprocessing and online phases, the circuit
has to be constructed in the exact same order in the two phases.

The gates we have considered in this implementation either have one or two input wires.
However, the protocol allows more complicated gates with an arbitrary number of inputs. This
will for example allow us to implement an S-box, which is used in AES, as a gate with a
corresponding TinyTable, such that evaluating an S-box will be reduced to a single look-up in
the TinyTable. Note that the size of a TinyTable is 2n bits where n is the number of input
wires, so an S-Box, which has eight input wires, will use 32 bytes.

PRACTICE D14.3 Page 13 of 50

Protocol Implementations

Figure 3.3: UML-diagram of the different implementations of OTSender.

3.2.2 Oblivious transfers implementations
We use OTs during the generation of the TinyTable for an AND-gate. We do this in the
finishedEval method of the TinyTablesPreproProtocol class, which is called when the eval-
uation of the circuit is finished.

We use the SCAPI1 library for performing the OTs. The SCAPI library features several im-
plementations of OT, and we use two different semi-honest implementations: one implemented
in Java, and a faster protocol, OT-Extension, which is implemented in C++ with a Java Native
Interface (JNI) to make it usable for Java applications. In the implementation, we let both of
these be realizations of the interfaces OTSender and OTReceiver. We also include a version of
the OTSender and -receiver where the OTExtensionSender and -receiver are called from a
seperate Java application. This is only used for test purposes where both have to be run in the
same Java Virtual Machine. We have shown the realtionship between the different implemen-
tations of OTSender in figure 3.3, and the relations between the different implementations of
OTReceiver are equivalent.

The SCAPI Java-library is already included in FRESCO, so the first version of OT is avail-
able already, but the OT-extension implemented with JNI requires the SCAPI library to be in-
stalled2. OT-extension is faster but is not always available, so in order to use the fastest solution
the players negotiate before the preprocessing begins whether they both have the SCAPI library
installed. If this is the case, the faster version is used and if not, they fall back to the slower
version. The implementation of this is in the method TinyTablesPreproProtocolSuite.
negotiateOTExtension.

To optimize performance, we do all OTs (two per AND-gate) in one batch in the finishedEval-
method of the TinyTablesPreproProtocolSuite class.

Using precomputed multiplication triples

It is possible to compute a secret sharing of rurv using a precomputed additively shared multi-
plication triple, e.g. three secret shared values a, b, c such that ab = c, which can be computed
using OTs before the preprocessing phase (see chapter 2 for an in depth discussion on how these
triples can be generated efficiently). Now if the players open the secret shared values d = ru⊕a
and e = rv⊕b so they are known by both players, they can locally compute their additive share
of

de⊕ ea⊕ db⊕ c = rurv.

1https://scapi.readthedocs.io/en/latest/
2See http://scapi.readthedocs.io/en/latest/install.html on how to install the SCAPI library.

PRACTICE D14.3 Page 14 of 50

https://scapi.readthedocs.io/en/latest/
http://scapi.readthedocs.io/en/latest/install.html

Protocol Implementations

Table 3.1: Timings for two players performing an instance of 128-bit AES using the TinyTables
protocol implemented in the FRESCO framework measured as the average after 10 executions.

Preprocessing Online
Evaluation strategy Sequential Parallel Sequential Parallel
Player 1 2 1 2 1 2 1 2
Timing (ms) 522 537 538 557 1352 1458 1088 1087

However, since they have to open the values d and e, this will require two bits of additional
network communication each way compared to the solution currently implemented where only
the OTs are needed during preprocessing.

3.3 Performance
We have benchmarked our implementation of TinyTables with respect to timing and network
traffic. Specifically, our measurements are done on an encryption of a 128-bit plaintext provided
by player 1, using the 128-bit AES cipher and a key provided by player 2. After the evaluation
of the protocol, both players know the cipher text but not the other player’s input.

The platforms used for testing are two virtual machines running on the same host. Both
virtual machines run Ubuntu Linux 16.04, and the host is an early 2013 Macbook Pro with 2,8
GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 RAM, running Mac OSX 10.11.6.

Timings of how fast the preprocessing and online phases are completed are shown in table
3.1. The FRESCO framework allows several evaluation strategies of the gates in a protocol, and
here we consider two strategies: sequential evaluation, where all gates are evaluated one after
the other, and parallel evaluation where gates, if possible, are evaluated in parallel, allowing
some network communication to be batched. Since we have been running the tests locally,
running in parallel does not give much advantage. However, on a network with high latency,
we believe it will give a significant advantage.

Timings are measured from the init method which is called on the used instance of
ProtocolSuite, until the finishedEval method is called on the same instance.

The amount of network traffic is shown in table 3.2. We have specified both the actual
amount of data transmitted, but also the theoretical amount of data needed to be transmitted
by the protocol. Note that only the CLOSE, OPEN and especially AND gates require commu-
nication between the two parties, and in the specficitaion of the AES protocol we have used
there are 256 CLOSE gates, 128 OPEN gates and 6,800 AND gates.

The difference between the theoretical and actual amount of transmitted data in the online
phase is very large. This is because in the FRESCO framework, a class whose instances are to be
transmitted over the network must implement the Serializable3 interface. This ensures that
instances of the class can be encoded as a byte-array and reconstructed again by the receiver.
In the TinyTables protocol most of the objects transmitted are of the primitive type boolean,
which must be wrapped as a Boolean object, which contrary to booleans do implement the
Serializable interface, in order to be transmitted. However, the serialization of a Boolean
object as a byte-array results in an of length 71, giving a factor 568 overhead to the one bit of
theoretical information transmitted. In future releases of the FRESCO framework, we plan to
allow the transmission of simpler types, e.g. byte-arrays, which will make it possible to reduce

3https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

PRACTICE D14.3 Page 15 of 50

https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

Protocol Implementations

Table 3.2: The network traffic between the two parties in the preprocessing and online phases
of a protocol which using 128-bit AES encrypts a clear text provided by player 1 using a key
provided by player 2.

Preprocessing Online
Actual

Direction 1 → 2 1 ← 2 1 → 2 1 ← 2
Amount (bytes) 13,600 108,800 500,976 500,976

Theoretical
Direction 1 → 2 1 ← 2 1 → 2 1 ← 2
Amount (bytes) 13,600 108,800 882 882

the overhead in this implementation by encoding booleans as bytes, giving a factor 8 overhead,
or by batching transmitted information as Bitsets4.

All the network traffic in the preprocessing phase is due to the OTs which is done using
native code from the SCAPI library, which does not give any overhead, so here there is no
difference between the actual and theoretical amount of data transmitted.

4https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

PRACTICE D14.3 Page 16 of 50

https://docs.oracle.com/javase/8/docs/api/java/util/BitSet.html

Protocol Implementations

Chapter 4

Mixed-protocol implementation – ABY

In secure two-party or secure multy-party computation, the function is often to be expressed
and evaluated as a Boolean or arithmetic circuit. As described in deliverable D13.1 [28], ABY
allows for mixing the secure computation protocols that are used for the secure evaluation of
the circuit.

A

C

B Y

A2YB2A

Y2B

B2Y

Figure 4.1: Overview of the ABY framework that allows efficient conversions betweenCleartexts
and three types of sharings: Arithmetic, Boolean, and Yao.

4.1 Protocol Description
Deliverable D13.1 [28] provides the detailed description on how mixing the secure computation
protocols, i.e., switching between two protocols is achieved in the ABY secure computation
framework. It efficiently combines arithmetic sharing, Boolean sharing with the GMW protocol
and Yao’s garbled circuits.

Protocols can be split in two phases: a setup phase that can take place at any time and an
online phase that takes place as soon as the parties’ inputs are known. The goal is thus to have
a very fast online phase and shift most computation to the setup phase.

A crucial part of the performance of ABY is the precomputation of so called multiplication
triples in the setup phase. These triples are then used for the computation of a multiplication
in arithmetic sharing and an AND gate in Boolean sharing. Both operations still require

PRACTICE D14.3 Page 17 of 50

Protocol Implementations

ABY Lib
ABY

ABYParty Circuit

Boolean Arithmetic

Sharing ABYSetup OT

Yao Boolean Arithmetic

Figure 4.2: Architecture of our open source ABY library at https://github.com/
encryptogroup/ABY. Upward arrows denote class inheritance.

interaction between the parties, but instead of evaluating cryptographic operations, only very
fast arithmetic resp. bit operations are required.

While Boolean multiplication triples are pre-computed using OT, arithmetic multiplication
triples can also be precomputed using additively homomorphic encryption. We analyzed two
encryption schemes and compared their performance in Section 4.3: The work of Damgård-
Jurik-Nielsen (DJN) [16, 17], which is a generalization of Paillier’s encryption scheme [34] and
the encryption scheme of of Damgård-Geisler-Krøigaard (DGK) [14, 15].

4.2 Implementation
The prototype implementation of the ABY secure computation framework from [21] is available
as an open source project at https://github.com/encryptogroup/ABY.

An outline of the architecture is given in Figure 4.2. Here we give a high level overview of
the classes that build up the framework. An instance of the ABYParty class is one of the
two parties (server or client) performing the secure computation. A Circuit object is built
up of gates and corresponds to the function that is to be evaluated. Sharings correspond
to the secure computation protocols available in ABY: arithmetic, Boolean or Yao sharing.
ABYSetup is used for performing the offline phase of the secure computation. OT is the
oblivious transfer extension implementation described in deliverables D13.3 [7] and D13.4 [8].

4.2.1 Architecture
1. Init – Initialization

In more details, in the first, initialization phase the following initializations take place that are
independent of the function we want to evaluate:

1.1. Base OTs are generated,

1.2. Sharings are initialized,

1.3. Circuits are built.

PRACTICE D14.3 Page 18 of 50

https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/ABY

Protocol Implementations

ABYParty

Circuit

Boolean Arithmetic

Sharing

ABYSetup OT

Yao Boolean Arithmetic

User

1.2) Sharing
3.3) Finish Online

1) Init
2) Setup
3) Online

 1) Init
2.2) Setup

 1) Init
2.2) Setup

2.1) Init Sharing
1.2) Sharings
 2) Setup
 3) Online

Figure 4.3: Detailed architecture of ABY. Upward arrows denote class inheritance, grey arrows
denote communication.

2. Setup – Offline Phase

In the second, setup or offline phase all the precomputations are performed, i.e. the precompu-
tations that may be dependent on the size of the circuit that is to be computed as well as the
inputs of the parties.

2.1. Sharing Setup is initialized,

2.2. Setup phase is performed, e.g. OT extension or garbling for Yao sharing,

2.3. Setup phase is finished.

3. Online – Online Phase

In the last, online phase the secure evaluation of the circuit takes place:

3.1. Sharing Online is initialized,

3.2. For d ∈ {1, . . . , depth}

3.2.1. Sharing layer d is initialized,
3.2.2. Sharing layer d is evaluated,
3.2.3. Sharing layer d is finished,
3.2.4. Parties communicate,

3.3. Online phase is finished.

The interactions between the ABY classes are shown in Figure 4.3.

PRACTICE D14.3 Page 19 of 50

Protocol Implementations

4.2.2 Functions
In this section, we describe how a developer that works with the ABY framework can compute
on secret shared values using several pre-defined Function gates and describe how to convert
secret shared values between different secure computation schemes using Conversion gates.

Function Gates

Function gates are used to perform various computation operations on the provided circuit.
Based on the provided circuit type, the gate operations are handled differently. Operations
such as AND (∧), OR (∨), XOR (⊕), MUX and GE (≥) are considered to be Boolean circuit
operations. Therefore, such operations are only implemented for circuits of type C_BOOLEAN.
For compatibility of the operations supported by the various sharing types refer to Table 4.1.

All operations in Table 4.1 are possible with Boolean circuits (C_BOOLEAN) while some are
not possible when using arithmetic circuits (C_ARITHMETIC).

Table 4.1: Operations
Operations AND XOR OR ADD MUL SUB GE MUX CONS INV
Arithmetic 7 7 7 3 3 3 7 7 3 3

Boolean 3 3 3 3 3 3 3 3 3 3

Yao 3 3 3 3 3 3 3 3 3 3

In the rest of this section, we will provide detailed information on the various available
pre-defined gate types.

PutANDGate PutANDGate performs a bitwise AND operation on the two input shares and
returns the result as share object of the same bitlength as the inputs.
share* PutANDGate (share* ina , share* inb);

PutXORGate PutXORGate performs a bitwise XOR operation on the two input shares and
returns the result as share object of the same bitlength as the inputs.
share* PutXORGate (share* ina , share* inb);

PutORGate PutORGate performs a bitwise OR operation on the two input shares and returns
the result as share object of the same bitlength as the inputs.
share* PutORGate (share* ina , share* inb);

PutADDGate PutADDGate performs an arithmetic addition operation on the two input
shares and returns the result as share object.

In arithmetic circuits the addition is carried out modulo 2`, where ` is the bitlength of the
sharing.
share* PutADDGate (share* ina , share* inb);

PRACTICE D14.3 Page 20 of 50

Protocol Implementations

PutMULGate PutMULGate performs an arithmetic multiplication operation on the two input
shares and returns the result as share object
share* PutMULGate (share* ina , share* inb);

In arithmetic circuits the multiplication is carried out modulo 2`, where ` is the bitlength
of the sharing.

PutSUBGate PutSUBGate performs an arithmetic subtraction operation on the two input
shares and returns the result as share object.
share* PutSUBGate (share* ina , share* inb);

Parameters

• ina contains the minuend (the number to subtract from).

• inb contains the subtrahend (the number to subtract).

This gate computes ina − inb, i.e. it subtracts inb from ina. In arithmetic circuits the
multiplication is carried out modulo 2`, where ` is the bitlength of the sharing. Thus the result
is always positive.

PutGEGate PutGEGate performs an greater-or-equal operation (≥) on the two input shares
and returns a single bit result as share object.
share* PutGEGate (share* ina , share* inb);

This gate computes ina ≥ inb. It returns 1 if this is true and 0 otherwise.

PutMUXGate PutMUXGate implements a multiplexer and returns one of two given data
inputs based on a selection bit.
share* PutMUXGate (share* ina , share* inb , share* sel);

Parameters

• ina share input containing the first value.

• inb share input containing the second value.

• sel selection bit input. 1 returns ina. 0 returns inb.

If the selection bit sel is 1, the content of ina is returned. If sel is 0, inb is returned.

PutCONSGate The PutCONSGate function can be used to input a constant plaintext value,
which is known to both parties, into the circuit. The function returns a share object, which
represents the secret-shared or encrypted constant.
share* PutCONSGate (uint64_t value , uint32_t bitlen);

PRACTICE D14.3 Page 21 of 50

Protocol Implementations

Parameters

• value the value of the constant that is supposed to be secret-shared.

• bitlen the bit-length of the constant.

Conversion

The ABY framework allows to perform secure computation using Arithmetic, Boolean or Yao
secure computation schemes and to arbitrarily convert secret-shared values between them. In
order to perform the conversion of shares, Conversion gates can be used. Unlike the function
gates, introduced in the previous section (Section 4.2.2), conversion gates do not change the
secret-shared value. Instead, conversion gates transform the shares, held by each of the parties,
from the representation of one secure computation scheme into another secure computation
scheme.

In the following, we will use the short notation A2B to denote that a method that converts
a share from Arithmetic to Boolean sharing. Given the existing schemes, this gives us six
possible conversion methods: A2B, A2Y, B2A, B2Y, Y2A, Y2B. Note, however, that currently only
four of these methods are implemented: A2Y, B2A, B2Y, and Y2B, as depicted in Figure 4.1. The
remaining two methods, namely A2B and Y2A can be implemented by computing Y2B(A2Y) and
B2A(Y2B), respectively. Note that the conversion gate function needs to be done on a Circuit
of the target sharing, i.e., the A2Y function would need to be invoked on a Circuit for Yao
sharing.

A2Y The A2Y function converts an Arithmetic share into a Yao share. Note that the A2Y
function needs to be called on a Circuit in Yao sharing.
share* A2Y(share* ina);

The returned share is a Yao share has the same plaintext value as the input Arithmetic
share.

Example The following example secret shares two 32-bit numbers A and B in the Arith-
metic sharing and multiplies them. The product is converted to Yao sharing and again multi-
plied by two.

1 share *shra , *shrb , * shrres ;
2 Circuit * ac = sharings [S_ARITH]-> GetCircuitBuildRoutine ();
3 Circuit * yc = sharings [S_YAO]-> GetCircuitBuildRoutine ();
4 shra = ac -> PutINGate (A, 32, SERVER);
5 shrb = ac -> PutINGate (B, 32, CLIENT);
6 shrres = ac -> PutMULGate (shra , shrb);
7 shrres = yc -> PutA2YGate (shrres);
8 shrres = yc -> PutADDGate (shrres , shrres);

B2A The B2A function converts a Boolean share into an Arithmetic share. Note that the B2A
function needs to be called on a Circuit in Arithmetic sharing.
share* B2A(share* ina);

The returned share is a Arithmetic share and has the same plaintext value as the input
Boolean share.

PRACTICE D14.3 Page 22 of 50

Protocol Implementations

B2Y The B2Y function converts a Boolean share into a Yao share. Note that the B2Y function
needs to be called on a Circuit in Yao sharing.
share* B2A(share* ina);

The returned share is a Yao share and has the same plaintext value as the input Boolean
share.

Y2B The Y2B function converts a Yao share into a Boolean share. Note that the Y2B function
needs to be called on a Circuit in Boolean sharing.
share* B2A(share* ina);

The returned share is a Boolean share and has the same plaintext value as the input Yao
share.

4.3 Performance
We provide performance results of the ABY framework that we measured in two settings: a
fast local network and a slower cloud network through the internet. The machines used in the
local setting were two Desktop PCs, each using an Intel Haswell i7-4770K CPU with 3.5 GHz
and 16 GB RAM, that are connected via Gigabit-LAN.

In the cloud setting, we run the benchmarks on two Amazon EC2 c3.large instances with
a 64-bit Intel Xeon dualcore CPU with 2.8 GHz and 3.75 GB RAM. One virtual machine is
located at the US east coast and the other one in Japan. The average throughput in this
scenario was 70 MBit/s, while the latency was 170 ms.

In Table 4.2 we list numbers for the communication cost and average runtimes for generating
multiplication triples (cf. Section 4.1) for typical data type sizes. The resulting numbers are
amortized cost for generating a single multiplication triple out of 100 000, excluding fixed one-
time computations.

The following tables show resulting performances and communication requirements of three
use cases in which mixed-mode secure computation is beneficial:

• Modular exponentiation (Table 4.3), which can be used in public-key cryptography.

• Private Set Intersection (Table 4.4), which securely computes the intersection of two
private sets.

• Biometric matching (Table 4.5), which computes an Euclidean distance to determine the
similarity between biometric samples.

We provide runtimes in seconds, the amount of data that is exchanged between the parties and
the number of communication rounds.

PRACTICE D14.3 Page 23 of 50

Protocol Implementations

Table 4.2: Overall amortized complexities for generating one multiplication triple using Homo-
morphic Encryption or Oblivious Transfer Extension with two threads. Smallest values marked
in bold.

Communication [Bytes] Time [µs]
Local Cloud

Bit-length 8 16 32 64 8 16 32 64 8 16 32 64
Paillier-based
legacy 528 531 541 555 245 246 278 328 842 867 990 1 139
medium 1 039 1 043 1 051 1 067 1 430 1 475 1 572 1 748 4 485 4 654 5 198 5 669
long 1 551 1 555 1 563 1 579 4 309 4 374 4 565 4 957 12 990 13 080 13 805 14 614

DGK-based
legacy 384 384 384 384 94 104 151 322 449 464 572 1 134
medium 768 768 768 768 259 313 465 1 020 971 1 128 1 651 3 107
long 1 152 1 152 1 152 1 152 534 629 929 2 005 1 894 2 118 3 049 6 319

Oblivious Transfer Extension-based
legacy 169 354 772 1 800 3 4 8 20 39 62 86 170
medium 233 482 1 028 2 312 3 6 10 24 44 77 107 219
long 265 546 1 156 2 568 3 6 11 27 46 82 110 224

Table 4.3: Modular Exponentiation: Setup, Online, and Total run-times (in s), communication,
and number of messages for the modular exponentiation on len= 32-bit inputs and long-term
security. Smallest entries marked in bold.

Local Cloud Comm. #MsgS O T S O T [MB]
Y-only 0,9 0,4 1,3 5,8 0,9 6,7 27.1 2
A+B+Y 0,6 0,3 0,9 5,6 29,5 35,1 18.7 353

Table 4.4: PSI: Setup, Online, and Total run-times (in s), communication, and number of
messages for the Private Set Intersection application on n = 4 096 elements of length σ = 32-
bits and long-term security. Smallest entries marked in bold.

Local Cloud Comm. #MsgS O T S O T [MB]
Y-only 3,5 0,7 4,3 32,2 1,8 34,0 247 2
B-only 2,0 0,6 2,6 11,5 22,6 34,1 163 123
B+Y 2,6 0,7 3,3 23,4 7,1 30,0 182 27

Table 4.5: Biometric Identification: Setup, Online, and Total run-times (in s), communication,
and number of messages for biometric identification on 512 elements with a length of σ = 32-bits
and with dimension d = 4 and long-term security. Smallest entries marked in bold.

Local Cloud Comm. #MsgS O T S O T [MB]
Y-only 2,24 0,31 2,55 23,78 0,84 24,62 147.7 2
B-only 2,15 0,28 2,43 10,34 29,07 39,41 99.9 129
A+Y 0,14 0,05 0,19 2,98 0,44 3,42 5.0 8
A+B 0,08 0,13 0,21 2,34 24,07 26,41 4.6 101

PRACTICE D14.3 Page 24 of 50

Protocol Implementations

Chapter 5

Formally Verified Implementation of
Yao’s SFE Protocol

The PRACTICE formally verified secure computation framework was outlined in deliverable
D22.2 [32], and specified in detail in D12.3 [12]. One fundamental component of this framework
is a formally verified secure computation protocol suite that is capable of evaluating arbitary
computations expressed as Boolean circuits. The work dedicated to the implementation and
validation of this protocol, namely the effort required to obtain a mechanised proof of security
and correctness, as well as a formally verified implementation, were conducted within WP14
and will be reported in this document. The integration of the resulting implementation, which
is automatically generated as OCaml code, into the FRESCO framework is presented in Deliv-
erable D14.4 as part of the validation of the general architecture for secure computation engines
developed in WP14. The work reported here has also been closely integrated with activities
carried out in WP22, namely in the development of formally verified computation specification
generation tools that are compatible with the protocol implementation that we present here.
This complementary effort is presented in D22.4 [35]. With respect to the status of the work
presented at the end of year 2, the material in this Chapter describes the effort carried out
to conclude the verification work (namely the verification of the low-level garbling procedure,
and which included a full migration to the new version of EasyCrypt), and finally a whole new
extraction of the verified code.

5.1 Protocol Description
Yao’s protocol was described in D12.3 [12], where the formal verification requirements for this
high-assurance secure computation protocol suite were specified. We also provide a succinct
description here, so as to facilitate the understanding of our description of the verification
and implementation work. Also described in detail in D12.3 are the potential usages of Yao’s
protocol in a wide range of applications; we omit a discussion of these applications here and
refer the interested reader to D12.3 for more details.

Yao’s protocol allows one to perform two-party secure function evaluation, i.e., to securely
compute functions expressed as circuits composed of Boolean gates, that output a single value
to be revealed to both parties, and that take secret inputs from both parties. Informally, Yao’s
idea of garbling circuits consists of:

• Expressing a circuit as a set of truth tables with information about the wiring between
gates.

PRACTICE D14.3 Page 25 of 50

Protocol Implementations

• Garble the Boolean values in the truth tables by replacing the Boolean values with random
cryptographic keys, or labels.

• Translate the wiring relation using a system of locks, meaning that for each possible
combination of the input wires, the corresponding labels are used as encryption keys that
lock the label for the correct Boolean value at the output of that gate.

The evaluation of a garbled circuit is straightforward: given a set of labels representing values
for the input wires encoding the inputs of both parties, only one entry in the corresponding
truth table will be decryptable, revealing the label of the output wire. The output of the circuit
will comprise the labels at the output wires of the output gates.

There are two security assets regarding Yao’s protocol: i. unless one is given the association
between labels and Boolean values for input and output wires, no information about the input
or output of the circuit are revealed; ii. given the label/Boolean value associations for x1 and the
output wires of the circuit, but only an encoding of x2 in the form of an input label assignment,
the garbled circuit reveals nothing other than f(x1, x2) about x2.

To build an SFE protocol between two honest-but-curious parties, one can use Yao’s garbled
circuits as follows:

1. Bob (holding x2) garbles the circuit and provides this to Alice (holding x1) along with the
label assignment for the input wires corresponding to x2 and all the information required
to decode the Boolean values of the output wires.

2. Using an oblivious transfer (OT) protocol, Alice obtains the labels that encode x1 from
Bob, without revealing anything about x1 and learning no more than the labels she
requires.

3. Finally, Alice evaluates the circuit, recovering the output, and providing the output value
back to Bob.

An oblivious transfer protocol is a particular case of a two-party SFE protocol that will
allow one party to obtain the labels corresponding to the encoding of its input without revealing
anything about it and without the party learning anything more than the labels it requires.

Formally, party P1 inputs to the protocol an array of bits of size n, i.e., I1 = (x1, . . . , xn) ∈
0, 1n. Party P2 inputs to the protocol an n-tuple of pairs of tokens, i.e.,

I2 = ((X0
1 , X

1
1), . . . , (X0

n, X
1
n)) ∈ (Token× Token)n

where Token is the type of keys (or labels) associated with the Boolean values of wires in a
garbled circuit (bitstrings of fixed value). The evaluation algorithms ev establish that Party P2
receives no local output at the end of the protocol, whereas Party P1 obtains Y = (X1

i1 , ..., X
n
in).

We require that ev is so defined for all n > 0, thereby imposing that the OT protocol is correct
for arbitrary input lengths.

5.2 Implementation
Our verified implementation of Yao’s protocol was obtained in three steps. We first specified
the protocol in EasyCrypt [3] (cf. D22.1 [25] and D12.3 [12]), an interactive proof assistant for
cryptography. We then used this tool to prove the protocol correct and secure, according to the
goals specified in D12.3. Finally, we used EasyCrypt and the Why3 [37] framework to extract an

PRACTICE D14.3 Page 26 of 50

Protocol Implementations

OCaml implementation of the verified protocol, which preserves the correctness and security
properties of the EasyCrypt specification by construction. We next describe each of these steps
in detail.

5.2.1 Formalizing and verifying Yao’s Protocol in EasyCrypt
Yao’s SFE protocol is a specific concretisation of an abstract notion of a two-party protocol,
that results of the composition of an oblivious transfer (OT) protocol (also a particular case a
two-party protocol) and a garbling scheme.

5.2.1.1 Two-party protocols

We first start by generically defining two-party protocols, that generalize both Secure Function
Evaluation and Oblivious Transfer, and their security. A generic two-party secure function
evaluation protocol, such as that proposed by Yao, is viewed formally as tuple (Π, ev), where
Π = (Π1,Π2) and ev = (ev1, ev2) are pairs of probabilistic polynomial-time (ppt) algorithms.

Intuitively, algorithms ev1 and ev2 deterministically compute functions f1(I1, I2) and f2(I1, I2)
that represent the outputs recovered by each party at the end of the protocol. Algorithms Π
represent the implementation of the cryptographic protocol that will be executed between the
two parties P1 and P2. Party P1 will run Π1 and party P2 will run Π2. Each party i iteratively
runs Πi on its current state and an incoming message to produce an outgoing message, a local
output, and a decision to halt or continue. The initial state of party i is its private input Ii.
The incoming message to the party initiating the protocol can be taken to be the empty string.

In EasyCrypt, the generic definition of a two-party protocol is obtained by combining a series
of abstract declarations:

• The types of the inputs and outputs of each party.

• The randomness they require to execute the protocol.

• The admissible leakage of each input. Here, leakage refers to the amount of information
that the protocol is allowed to reveal about some input (for example, its length).

• The function to be computed.

• The exchanged messages throughout the execution of the protocol, that we denote by
conv.

• Predicates that enforce well-formedness restrictions on inputs and randomness.

• The protocol itself.

Note that these elements are just abstract types or function headers, that will later be
fulfilled with concrete types and operations in order to obtain concrete implementations of
two-party protocols. Our abstract formalisation of a two-party protocol can be found in Figure
5.1.

The security of a two-party SFE protocol is defined as follows. For i = 1, 2, consider an
adversary Advi = (Adv1

i ,Adv2
i) that represents a malicious party i, and operates as follows:

i. Adv1
i takes no input and outputs a pair (I1, I2), and possibly some state information st; ii. on

input of view view and state st, Adv2
i outputs a bit b.

PRACTICE D14.3 Page 27 of 50

Protocol Implementations

1 theory Protocol.
2 type input1, output1.
3 type input2, output2.
4 type leak1, leak2.
5
6 op f: input1 → input2 → output1 ∗ output2.
7
8 type rand1, rand2, conv.
9 op prot: input1→ rand1→ input2→ rand2→ conv ∗ output1 ∗ output2.

10
11 op validInputs: input1 → input2 → bool.
12 pred validRands: (input1, input2, rand1, rand2).
13
14 op Ψ1: input1 → leak1.
15 op Ψ2 : input2 → leak2.
16 end Protocol.

Figure 5.1: Abstract Two-Party Protocol.

A two-party SFE protocol is secure in the presence of semi-honest adversaries if for all
ppt adversaries Adv = (Adv1,Adv2), there exists a ppt simulator S = (S1, S2) such that,
the probability of Advi to distinguish between the real-world and the ideal-world experiment is
negligible, i.e. the adversary Advi is not able to distinguish whether its view has been provided
by the protocol or by the simulator.

In EasyCrypt, we express this security notion using the module defined in Figure 5.2. Notice
that in our definition the two algorithms (Adv1

i ,Adv2
i) are provided by the same module Advi

and so can share state information. We define the advantage of an adversary Advi against a
two-party protocol prot with leakage Ψ = (Ψ1,Ψ2), running with simulator Si, and randomness
generators R1 and R2 as

Advproti
Ψ

prot,Si,R1,R2
(Advi) = |2 · Pr [Seci(R1,R2, Si,Advi) : res]− 1| .

The intuition of this simulation-based definition is that the existence of a successful simulator
establishes that the view of party P1 (resp. party P2) cannot possibly release more information
about I2 (resp. I1) in addition to the information received by the simulator, which includes
the evaluation result destined to that party and the admissible leakage. Security with respect
to leakage function Ψ clearly implies security with respect to leakage function Ψ′ that releases
more information about the secret inputs. Indeed, given the leakage produced by Ψ′, it is
easy to remove information from it to obtain the leakage produced by Ψ before running the
simulator.

Correctness and security definitions for two-party protocols are parametrized by the Protocol
theory. This allows us to instantiate these notions, as well as some generic lemmas (e.g. to
manipulate probabilities conditioning on ideal/real worlds) with any two-party protocol that
fits our abstract definition.
Oblivious Transfer. In EasyCrypt, an abstract OT protocol is a refinement of an two-party
protocol that imposes the type definitions described above, but still leaves some other types
undefined (e.g. the type of randomness) to be fixed by concrete protocols. Our partial instanti-
ation is shown in Figure 5.3. Defining OT security is then simply a matter of instantiating the
general notion of security for two-party protocols via cloning. Looking ahead, we use AdvOTi

to denote the resulting instance of Advproti
(|.|,|.|) , and similarly, we write AdvOT

i the types for
adversaries against the OT instantiation.

PRACTICE D14.3 Page 28 of 50

Protocol Implementations

1 type leak1, leak2. op φ1 : input1 → leak1. op φ2 : input2 → leak2.
2 type view1 = rand1 ∗ conv. type view2 = rand2 ∗ conv.
3
4 module type Sim = {
5 proc sim1(i1: input1, o1: output1, l2: leak2) : view1
6 proc sim2(i2: input2, o2: output2, l1: leak1) : view2
7 }.
8
9 module type Simi = {

10 proc simi(ii: inputi, oi: outputi, l3−i: leak3−i) : viewi

11 }.
12
13 module type Advprot

i = {
14 proc choose(): input1 ∗ input2
15 proc distinguish(v: viewi) : bool
16 }.
17
18 module Sec1(R1: Rand1, R2: Rand2, \ec{Sim}: Sim1, Adv1: Advprot

1) = {
19 proc main() : bool = {
20 var real, adv, view1, o1, r1, r2, i1, i2;
21 (i1,i2) = Adv1.choose();
22 real $← {0,1};
23 if (!validInputs i1 i2)
24 adv $← {0,1};
25 else {
26 if (real) {
27 r1 = R1.gen(φ1 i1);
28 r2 = R2.gen(φ2 i2);
29 (conv,_) = prot i1 r1 i2 r2;
30 view1 = (r1, conv);
31 } else {
32 (o1,_) = f i1 i2;
33 view1 = \ec{Sim}.sim1(i1, o1, φ2 i2);
34 }
35 adv = Adv1.distinguish(view1);
36 }
37 return (adv = real);
38 }
39 }.

Figure 5.2: Security of a two-party protocol protocol.

5.2.1.2 Garbling Schemes

Bellare et al.[5] view Yao’s garbled circuits as a particular case of a new encryption primitive
called garbling scheme. A garbling scheme G is a five-tuple of ppt algorithms (Gb, En, De, Ev,
ev) where:

• Gb is the garbling algorithm which, on input a circuit f implementing a function of type
{0, 1}n → {0, 1}m , outputs a garbled version of this circuit F, along with an encoding
key e ∈ (Token × Token)n.

• En is the input encoding algorithm. We take this to be the specific mapping that, on input
a bit string x = x1, . . . , xn ∈ {0, 1}n and the encoding key e = (X0

1 , X
1
1), . . . , (X0

n, X
1
n),

outputs garbled input X = X1
x, ..., X

n
x .

• Ev is the garbled evaluation algorithm which, given a garbled circuit F and a garbled input
X, produces a garbled output Y .

• De is the output decoding algorithm. We take this to be a public efficient mapping
that, given a garbled output Y ∈ (Token)m, outputs y = y1, . . . , ym ∈ {0, 1}m. In the
concrete garbling scheme we formalised and implemented this corresponds to taking the
least significant bit of a token.

PRACTICE D14.3 Page 29 of 50

Protocol Implementations

1 clone Protocol as OT with
2 type input1 = bool array,
3 type output1 = msg array,
4 type leak1 = int,
5 type input2 = (msg ∗ msg) array,
6 type output2 = unit,
7 type leak2 = int,
8 op φ1 (i1 : bool array) = length i1,
9 op φ2 (i2 : (msg ∗ msg) array) = length i2,

10 op f (i1 : bool array) (i2 : (msg ∗ msg) array) = i1i2 .
11 op validInputs(i1 : bool array) (i2 : (msg ∗ msg) array) =
12 0 < length i1 ≤ nmax ∧ length i1 = length i2,
13 . . .

Figure 5.3: Instantiating Two-Party Protocols into Abstract OT.

• ev is the deterministic (cleartext) evaluation algorithm that describes the functionality of
the scheme. Given a a circuit f implementing a function of type {0, 1}n → {0, 1}m and
an input x = x1, . . . , xn ∈ {0, 1}n, it produces an evaluated output y ∈ {0, 1}m.

Abstract garbling schemes are captured in EasyCrypt via the type and operator declarations
presented in Figure 5.4. We only consider projective schemes [5], where Boolean values on
each wire are encoded using a fixed-length random token. This fixes the type funcG of garbling
schemes, and the outputK and decode operators.

1 type func, input, output.
2 op eval : func → input → output.
3 op valid: func → input → bool.
4
5 type rand, funcG, inputK, outputK.
6 op funcG : func → rand → funcG.
7 op inputK : func → rand → inputK.
8 op outputK: func → rand → outputK.
9

10 type inputG, outputG.
11 op evalG : funcG → inputG → outputG.
12 op encode: inputK → input → inputG.
13 op decode: outputK → outputG → output.

Figure 5.4: Abstract Garbling Scheme.

The security of a garbling scheme is defined using a simulation-based notion of security.
Consider a ppt adversary Adv = (Adv1,Adv2) that operates as follows: i. Adv1 takes no
input and outputs a pair (f, x), and possibly some state information st; ii. on input a garbled
circuit and input pair (F,X) and state st, Adv2 outputs a bit b.

A garbling scheme is SIM-CPAΨ-secure if, for every Adv outputting valid (f, x) pairs, there
exists a simulator S that, on input ev(f, x), where (f, x) has been generated by Adv1, and some
leakage Ψ(f), outputs a garbled circuit and input pair (F,X) such that the adversary Adv2
has a low probability to distinguish between a pair (F,X) generated using the garbling scheme
or generated using the simulator S, i.e. (F,X)← S(ev(f, x),Ψ(f)).

Intuitively, the definition states that if a valid S exists, then real ciphertexts do not (com-
putationally) leak more information than simulated ones, and these cannot possibly contain
more than the information given to the simulator, i.e., the value of f(x) output and the value
of Ψ(f), where Ψ is a leakage function, that dictates which parts of the circuit description can
be leaked by the scheme.

We define the SIM-CPAΨ advantage of an adversary Adv against garbling scheme enc and
simulator S as

PRACTICE D14.3 Page 30 of 50

Protocol Implementations

AdvSIM-CPAΨ
Gb,R,S (Adv) = |2 · Pr [SIM(R, S,Adv) : res]− 1|

We note that all of the above security definitions are parametrized by randomness sampling
algorithms R, which allows the specifications of schemes to be deterministic and explicitly take
randomness. Theorem statements then quantify over all possible randomness generation algo-
rithms, which means that they hold in particular for the standard definitions where randomness
is sampled uniformly at random from the set of values in the appropriate data type.

5.2.1.3 SFE from Garbling Schemes and OT

Our construction of Yao’s generic SFE protocol follows closely what is described in [5], with a
slight adaptation that enables the input to the circuit to be split between the two parties, which
is natural in projective schemes. Intuitively this corresponds to party P2 hardwiring its part
of the input x2 in the garbled circuit before sending it to P1. The protocol relies on a garbling
scheme G and an OT protocol ΠOT as described above. For inputs I1 = x1 and I2 = (x2, f),
where f takes inputs of length n, |x1| = n1 and |x2| = n2 such that n = n1 +n2, the two parties
proceed as follows:

1. Party P2 uses the garbling scheme to compute (F, e)←$ Gb(f). It then splits the encoding
key

e = ((X0
1 , X

1
1), ..., (X0

n, X
1
n))

into two sequences

e1 = ((X0
1 , X

1
1), ..., (X0

n1 , X
1
n1))

e2 = ((X0
n1+1, X

1
n1+1), ..., (X0

n, X
1
n))

and encodes x2 as

X2 = (Xx1
2

n1+1, . . . , X
x

n2
2

n)

Finally it sends (F,X2) to P1.

2. The two parties execute the OT protocol on (x1, e1), so that P1 obviously obtains an
encoding of x1 as

X1 = (Xx1
1

1 , . . . , Xx
n1
1

n1)

3. P2 then uses the garbled evaluation algorithm to compute Y ←$ Ev(F,X1||X2) and de-
codes y ← De(Y).

We express this particular view of Yao’s protocol in EasyCrypt by refining the abstract view
we presented earlier as follows (some notations are simplified for clarity) in Figure 5.5.

Again, the definition of security for such an SFE protocol is obtained by instantiation of the
general security notion we presented in Section 5.2.1.1. We note that these definitions are still
abstract, i.e., they need to be parameterized by a concrete OT protocol and a concrete garbling
scheme. However, EasyCrypt allows us to define and prove the correctness and security of such

PRACTICE D14.3 Page 31 of 50

Protocol Implementations

1 clone Garble as Gb.
2 clone OT as OT.
3
4 clone Protocol as SFE with
5 type rand1 = OT.rand1,
6 type input1 = bool array,
7 type output1 = Gb.output,
8 type leak1 = int,
9 type rand2 = OT.rand2 ∗ Gb.rand,

10 type input2 = Gb.func ∗ bool array,
11 type output2 = unit,
12 type leak2 = Gb.func ∗ int,
13 op f i1 i2 = let (c,i2) = i2 in Gb.eval c (i1 || i2),(),
14 type conv = (Gb.funcG ∗ token array ∗ Gb.outputK) ∗ OT.conv,
15 op validInputs (i1:input1) (i2:input2) =
16 0 < length i1 ∧ Gb.validInputs (fst i2) (i1 || snd i2),
17 op prot (i1:input1) (r1:rand1) (i2:input2) (r2:rand2) =
18 let (c,i2) = i2 in
19 let fG = Gb.funG c (snd r2) in
20 let oK = Gb.outputK c (snd r2) in
21 let iK = Gb.inputK c (snd r2) in
22 let iK1 = (take (length i1) iK) in
23 let (ot_conv, (t1,_)) = OT.prot i1 r1 iK1 (fst r2) in
24 let GI2 = Gb.encode (drop (length i1) iK) i2 in
25 (((fG,GI2,oK),ot_conv), (Gb.decode oK (Gb.evalG fG (t1 || GI2)),())).

Figure 5.5: Abstract SFE Construction.

a protocol at this abstract level, based on the security and correcntess of these underlying
(unspecified) components, as follows.

Take any oblivious transfer protocol OT and any garbling scheme Gb, and let SFEa be the
SFE protocol built using Yao’s construction from OT and Gb. Fix also arbitrary randomness
generators RGb, ROT

1 and ROT
2 , which parametrize the games that define underlying assumptions

of security on the garbling scheme, and let RSFE
1 and RSFE

2 be the induced randomness genera-
tion modules for for the SFE security games, when these are instantiated with our construction.
Then the following theorem was proven in EasyCrypt.

Theorem 1 (Abstract SFE security) For all SFE adversaries Adv = (Adv1,Adv2), OT
simulators SOT and garbling simulator SGb, we can construct efficient adversaries AdvOT =
(AdvOT

1 ,AdvOT
2) and AdvGb and an efficient simulator S, such that the following inequalities

hold.

AdvSFE1
Ψ

SFE,S(Adv1) ≤ AdvOT1
Ψ

OT,SOT(AdvOT
1) + AdvSIM-CPAΨ

Gb,SGb (AdvGb)

AdvSFE2
Ψ

SFE,S(Adv2) ≤ AdvOT2
Ψ

OT,SOT(AdvOT
2)

The proof of security of the protocol follows the structure outlined in [5]. One first shows
that any attacker against the SFE protocol can be converted into adversaries attacking the
simulation-based security of the garbling scheme (AdvGb) and OT protocol (AdvOT

1) and
(AdvOT

2). The assumption that the underlying garbling scheme is secure ensures the exis-
tence of an algorithm SGb that successfully simulates garbled circuits. Similarly, security of the
underlying OT protocol ensures the existence of an algorithm SOT that successfully simulates
OT traces. Note that the statement of the lemma is quantified for all such simulators.

Such simulators can be used to construct a simulator S for the generic SFE protocol as
follows. To simulate the view of P1, simulator S uses SGb to create (F, e), follows the procedure
of P2 in creating X, and then SOT to generate a valid view for the OT protocol. The proof

PRACTICE D14.3 Page 32 of 50

Protocol Implementations

that such a simulation works is structured as a sequence of two game hops that permit upper-
bounding the computational distance between the real world and an ideal world instantiated
with S. To simulate the view of P2, S is able to run all of the garbling operations itself, and
then use SOT to simulate the OT view. The proof that this simulation is correct is a direct
reduction to OT security.

The SFE protocol proved secure in the previous theorem is still abstract, and is param-
eterized by a secure garbling scheme and a secure oblivious transfer protocol. Therefore, we
now provide a description of the concrete realisations of the two primitives and their security
proofs. In the rest of this section, the randomness generators and schemes are left implicit
and correspond to our concrete instantiations. We replace them with the name of the concrete
theory as indices in advantages.

5.2.1.4 A concrete garbling scheme: SomeGarble

Following the Garble1 construction of Bellare et al. [5], we construct our garbling scheme using
a variant of Yao’s garbled circuits based on a pseudo-random permutation, via an intermediate
Dual-Key Cipher (DKC) construction, composed of two functions:

• E - takes as input a tweak (unique IV), two keys and a plaintext and returns a ciphertext.

• D - takes as input a tweak (unique IV), two keys and a ciphertext and returns a plaintext.

We give functional specifications to the garbling algorithms in Figure 5.6. For clarity, we
denote functional folds using stateful for loops. The circuit evaluation algorithm eval is defined
as expected, and the outputK type and decode function are omitted below since they are fixed by
the convention we adopted in the previous section that we are dealing with a projective scheme.

To make use of Theorem 1, when composing this scheme with a secure OT protocol, we need
to prove that it is SIM-CPAΨtopo-secure. Following Bellare et al.’s definitions [5], the definition
of DKC security suffices to prove security of SomeGarble. Therefore, the security proof is made
by reducing the security of SomeGarble to the security of the underlying DKC scheme. In order
to prove SIM-CPAΨtopo security, we make of a more convenient security notion that informally
states that, under certain conditions on the leakage function (if it is efficiently invertible),
IND-CPAΨtopo-security implies SIM-CPAΨtopo-security. This result is discussed below as Lemma
1. Following [5], we view projective garbling schemes as a form of deterministic encryption.
Therefore, we adopt a classical definition of IND-CPAΨtopo-security, represented in Figure 5.7

We define the IND-CPA advantage of an adversary Adv against the encryption operator enc
with leakage Ψ as

AdvIND-CPAΨ
enc,R (Adv) = |2 · Pr[GameIND(R,Adv) : res]− 1|

where R is the randomness generation module used in the concrete theory.
In the rest of this subsection, we use the following notion of invertibility defined in [5]. A

leakage function Ψ on plaintexts (when we instantiate this notion on garbling schemes these
plaintexts are circuits and their inputs) is efficiently invertible if there exists an efficient algo-
rithm that, given the leakage corresponding to a given plaintext, can find a plaintext consistent
with that leakage.

Lemma 1 (IND-CPA-security implies SIM-CPA-security) If Ψ is efficiently invertible, then
for every efficient SIM-CPA adversary Adv, one can build an efficient IND-CPA adversary Adv′
and an efficient simulator S such that

AdvSIM-CPAΨ
enc,S (Adv) = AdvIND-CPAΨ

enc (Adv′).

PRACTICE D14.3 Page 33 of 50

Protocol Implementations

1 type topo = int ∗ int ∗ int ∗ int array ∗ int array.
2 type α circuit = topo ∗ (int ∗ α ∗ α ,α) map.
3
4 type leak = topo.
5
6 type input, output = bool array.
7 type func = bool circuit.
8
9 type funcG = token circuit.

10 type inputG, outputG = token array.
11 op evalG f i =
12 let ((n,m,q,A,B),G) = f in
13 let evalGate = λ g x1 x2,
14 let x1,0 = lsb x1 and x2,0 = lsb x2 in
15 D (tweak g x1,0 x2,0) x1 x2 G[g,x1,0,x2,0] in
16 let wires = extend i q in (∗ extend the array with q zeroes ∗)
17 let wires = map (λ g, evalGate g A[g] B[g]) wires in (∗ decrypt wires ∗)
18 sub wires (n + q − m) m.
19
20 type rand, inputK = ((int ∗ bool),token) map.
21 op encode iK x = init (length x) (λ k, iK[k,x[k]]).
22
23 op inputK (f:func) (r:((int ∗ bool),token) map) =
24 let ((n,_,_,_,_),_) = f in filter (λ x y, 0 ≤fst x < n) r.
25
26 op funcG (f:func) (r:rand) =
27 let ((n,m,q,A,B),G) = f in
28 for (g,xa,xb) ∈ [0..q] ∗ bool ∗ bool
29 let a = A[g] and b = B[g] in
30 let ta = r[a,xa] and tb = r[b,xb] in
31 G̃[g,ta,tb] = E (tweak g ta tb) ta tb r[g,G[g,xa,xb]]
32 ((n,m,q,A,B),G̃).

Figure 5.6: SomeGarble: our Concrete Garbling Scheme.

Using the inverter for Ψ, Adv′ computes a second plaintext from the leakage of the one
provided by Adv and uses this as the second part of her query in the IND-CPA game. Similarly,
simulator S generates a simulated view by taking the leakage it receives and computing a
plaintext consistent with it using the Ψ-inverter. The proof consists in establishing that Adv
is called by Adv′ in a way that coincides with the SIM-CPA experiment when S is used in the
ideal world, and is performed by code motion.

Armed with Lemma 1, it is sufficient to prove that SomeGarble is IND-CPAΨtopo-secure and
that Ψtopo is efficiently invertible to securely use SomeGarble in Yao’s construction. We reduce
the IND-CPAΨtopo-security of SomeGarble to the DKC-security of the underlying DKC primitive
(see [5]). This is the most intricate part of the proof, and it involved a significant effort, since
it is based on a highly intricate hybrid argument. We leave a description of this proof step to
the end, and first wrap up our description of the proof.

From Lemmas 1 and the IND-CPA security of our garbling scheme, we can conclude with a
security theorem for our garbling scheme.

Theorem 2 (SomeGarble is SIM-CPAΨtopo-secure) For every SIM-CPA adversary Adv, one
can construct an efficient simulator S and a DKC adversary Adv′ such that

AdvSIM-CPAΨtopo
SomeGarble,S (Adv) ≤ (bound + 1) · AdvDKC

SomeGarble(Adv′).

The bound factor is the size of the circuits provided by the adversary. The proof is performed
with an implicit quantification over bound. In practice we set a global bound maxBound on it
that must be taken into consideration when choosing concrete parameters at implementation-
time.

PRACTICE D14.3 Page 34 of 50

Protocol Implementations

1 module type AdvIND = {
2 fun choose(): ptxt ∗ ptxt
3 fun distinguish(c:ctxt): bool
4 }.
5
6 module IND (R:Rand, A:AdvIND) = {
7 fun main(): bool = {
8 var p0, p1, p, c, b, b’, ret, r;
9 (p0,p1) = A.choose();

10 if (valid p0 ∧ valid p1 ∧ Ψ p0 = Ψ p1) {
11 b $← {0,1};
12 p = if b then p1 else p0;
13 r = R.gen(|p|);
14 c = enc p r;
15 b’ = A.distinguish(c);
16 ret = (b = adv);
17 }
18 else ret $← {0,1};
19 return ret;
20 }
21 }.

Figure 5.7: Indistinguishability-based Security for Garbling Schemes.

Proving SomeGarble secure. As already mentioned above, the proof of security of
SomeGarble is done by reduction of the security of the DKC primitive used when defining
SomeGarble. We now provide a description of the security proof. We omit the proof of cor-
rectness, as it is simply made by proving that any bit of the output of ev bitstring corresponds
to the decoding of the corresponding label obtained via En. To perform the proof, we follow
the indications in [5], with some deviations to make the proof amenable to verification in rea-
sonable time. The result we prove is slightly weaker than that originally established by [5], but
it suffices to cover the instantiation of the Dual Key Cipher construction that we adopt in our
verified implementation. Details follow.

Consider the following circuit topology. Integers n, m and q define the number of input
wires, number of output wires and number of gates, respectively, vectors A and B save the first
and second incoming wires to some gate and map G describes the functionality of each gate.
Vectors A and B are defined for values of wires in [0 . . . n + q[, whereas map G is defined for
values of gates in [n . . . n+ q[. The proof is organised by means of three cryptographic games:
GameReal, GameFake and GameHybrid. GameReal is a rewrite of IND-CPA game from Figure 5.7,
GameFake is identical to GameReal except that it replaces every entry that may not be opened
by visible tokens by truly random bitstrings and it is independent from the decision bit b (i.e.,
the adversary has no advantage) and GameHybrid, parametrised by a value l, captures the steps
needed to go from GameReal to GameFake. Therefore, GameHybrid parametrised by l = 0 is
equivalent to GameReal and parametrised by l = n + q − m is equivalent to GameFake. The
distance between GameHybrid when parametrised with a value l and a value l + 1 will then be
bounded by building a distinguishing attacker that breaks the underlying DKC scheme, thereby
also bounding the distance between the two extreme cases l = 0 and l = n+ q −m.

All of these games operate in the same way: i. first it goes through all the wires and, for
each one of them, generates a toggle for that wire (a bit) and two tokens (one visible and one
invisible); ii. later, it runs across all the gates of the circuit and garbles each entry using the
underlying DKC primitive. We define three EasyCrypt modules that will store the values of the
random generated tokens, of the circuit and of the garbling process.
Token generation. The random tokens, that will subsequently be used to encode the inputs,
are generated in two ways, one that will be used when in GameReal, GameFake and GameHybrid

PRACTICE D14.3 Page 35 of 50

Protocol Implementations

1 module R = {
2 var t : bool array
3 var xx : tokens_t
4 }.
5
6 module C = {
7 var f:fun_t
8 var x:input_t
9 var n:int

10 var m:int
11 var q:int
12 var aa:int array
13 var bb:int array
14 var gg:bool gates_t
15 var v:bool array
16 }.
17
18 module G = {
19 var pp:word gates_t
20 var yy:word array
21 var randG: word gates_t
22 var a:int
23 var b:int
24 var g:int
25 }.

Figure 5.8: Global values.

and another one that will be used by the adversary attacking the DKC security of the DKC
primitive.

Regarding GameReal, GameFake and GameHybrid, one first chooses the toggle trnd of the token,
that will correspond to its least significant bit. This value will either be random (if the wire
is an input wire to any gate) or equivalent to the evaluation at the output of that gate (if the
wire is an output wire). Then, two tokens are generated, a visible one (that the adversary will
have access to) and an invisible one that is hidden from the adversary. The random generation
module formalisation can be found in Figure 5.9, where Dword.dwordLsb is a distribution over
bitstrings of fixed LSB and useVisible is a Boolean value that controls wether one should use the
values of the evaluation of the circuit.

In what concerns the DKC adversary, the two tokens are generated in a simpler, ad-hoc way:
for every value of i ∈ [0..bound[, then one token will be generated with LSB 0 and another will
be generated witht LSB 1. We proved that both constructions produce equivalent tokens.
Real Game. GameReal is represented in Figure 5.11, where ˆ̂ denotes the XOR operation. It
makes use of two auxiliary functions garb and garb′ that are used to garble the entries of the
truth table using the labels generated (Figure 5.10).

This proof is carried out by instantiating game IND-CPA with SomeGarble and then proving
the equivalence between the two games. We note that game IND-CPA is instantiated with
SomeGarble using a different token generator procedure of the type Rand as presented in Figure
5.12. This random generator can be seen as a specific case of the previous one when useVisible is
false. The reason for this is that the garbling scheme construction is used in its pure form in the
IND-CPA game, which means that wire values are encoded into the gates during the garbling
procedure, and randomness generation is totally oblivious of wire values.

The intuition behind the proof is that the tokens generated in both experiments are iden-
tically distributed, despite the fact that they are generated differently. Consequently, the
adversary will have the same information in both procedures.
Fake Game output is independent of the challenge bit. The independence proof
for the output of GameFake was carried on in two steps, as suggested in [5]: i. rewrite GameFake

PRACTICE D14.3 Page 36 of 50

Protocol Implementations

1 module RandomInit = {
2 proc init(useVisible:bool): unit = {
3 . . .
4
5 R.t = offun (fun x, false) (C.n + C.q);
6 R.xx = map0;
7 i = 0;
8 while (i < C.n + C.q) {
9 trnd = ${0,1};

10 v = if useVisible then C.v[i] else false;
11 trnd = if (i < C.n + C.q − C.m) then trnd else v;
12 tok1 = $Dword.dwordLsb (trnd);
13 tok2 = $Dword.dwordLsb (!trnd);
14
15 R.t[i] = trnd;
16
17 R.xx[(i, v)] = tok1;
18 R.xx[(i,!v)] = tok2;
19
20 i = i + 1;
21 }
22 }
23 }.

Figure 5.9: Random generation module.

1 proc garb(yy : word, alpha : bool, bet : bool) : unit = {
2 . . .
3
4 twe = tweak G.g (R.t[G.a] ^^ alpha) (R.t[G.b] ^^ bet);
5 aa = oget R.xx[(G.a, C.v[G.a] ^^ alpha)];
6 bb = oget R.xx[(G.b, C.v[G.b] ^^ bet)];
7 G.pp[(G.g, R.t[G.a] ^^ alpha, R.t[G.b] ^^ bet)] = E twe aa bb yy;
8 }
9

10 proc garb’(rn : bool, alpha : bool, bet : bool) : word = {
11 . . .
12
13 yy = $Dword.dword;
14 yy = if rn then yy else oget R.xx[(G.g, oget C.gg[(G.g, C.v[G.a] ^^ alpha, C.v[G.b] ^^ bet)])];
15 garb(yy, alpha, bet);
16 return yy;
17 }

Figure 5.10: Procedures garb and garb′.

1 module GarbleRealInit = {
2 proc init() : unit = {
3
4 . . .
5
6 G.g = C.n;
7 while (G.g < C.n + C.q)
8 {
9 G.a = C.aa[G.g];

10 G.b = C.bb[G.g];
11
12 garb(oget R.xx[(G.g, C.v[G.g])], false, false);
13
14 garb’(false, true, false);
15 garb’(false, false, true);
16 G.yy[G.g] = garb’(false, true, true);
17
18 G.g = G.g + 1;
19 }
20 }
21 }.

Figure 5.11: Game GameReal.

PRACTICE D14.3 Page 37 of 50

Protocol Implementations

1 module Rand : Rand = {
2 proc gen(l:topo_t) : tokens_t = {
3 var n, m, q, i : int;
4 var aa, bb : int array;
5 var t : bool;
6
7 (n,m,q,aa,bb) = l;
8
9 R.t = offun (fun x, false) (n+q);

10 R.xx = map0;
11 i = 0;
12 while (i < n+q) {
13 t = ${0,1};
14 t = if (i < n+q−m) then t else false;
15 R.t[i] = t;
16 R.xx[(i,false)] = $Dword.dwordLsb t;
17 R.xx[(i,true)] = $Dword.dwordLsb (!t);
18 i = i+1;
19 }
20
21 return R.xx;
22 }
23 }.

Figure 5.12: Random generator to use in the instantiation of game IND-CPA.

as a new game GameFake’ in which proving the independence was trivial; and ii. proving the
equivalence between GameFake and GameFake’. We omit the formalisation of GameFake because
it is similar to the one of GameReal, with the exception of the call to garb’ being made with the
first parameter as true. GameFake and GameFake’ differ in two main aspects:

• In GameFake’, we consider two maps R’.vv and R’.ii instead of a simple map R.xx. They
will store the visible and invisible tokens, respectively (Figure 5.13).

• GameFake’ does not make any call to garb or garb’, as it explicitly executes a similar code
during the garbling process (Figure 5.14).

1 module RandomInit’ = {
2 proc init(useVisible:bool): unit = {
3 . . .
4
5 i = 0;
6 while (i < C.n + C.q) {
7 trnd = ${0,1};
8 v = if useVisible then C.v[i] else false;
9 trnd = if (i < C.n + C.q − C.m) then trnd else v;

10 tok1 = $Dword.dwordLsb (trnd);
11 tok2 = $Dword.dwordLsb (!trnd);
12
13 R’.t[i] = trnd;
14
15 R’.vv[i] = tok1;
16 R’.ii[i] = tok2;
17
18 i = i + 1;
19 }
20 }
21 }.

Figure 5.13: Random generator of GameFake’.

To prove the equivalence between the two games, we showed that:

• The visible values of map R.xx in GameFake are equivalent to the values of map R’.vv in
GameFake’.

PRACTICE D14.3 Page 38 of 50

Protocol Implementations

1 module GarbleInitFake’ = {
2
3 proc init() : unit = {
4 . . .
5
6 G.g = C.n;
7 while (G.g < C.n + C.q) {
8 G.a = C.aa[G.g];
9 G.b = C.bb[G.g];

10
11 wa = oget R’.vv[G.a];
12 wb = oget R’.vv[G.b];
13 tok = oget R’.vv[G.g];
14 twe = tweak G.g (getlsb wa) (getlsb wb);
15 G.pp[(G.g, getlsb wa, getlsb wb)] = E twe wa wb tok;
16
17 wa = oget R’.ii[G.a];
18 wb = oget R’.vv[G.b];
19 tok = $Dword.dword;
20 twe = tweak G.g (getlsb wa) (getlsb wb);
21 G.pp[(G.g, getlsb wa, getlsb wb)] = E twe wa wb tok;
22
23 wa = oget R’.vv[G.a];
24 wb = oget R’.ii[G.b];
25 tok = $Dword.dword;
26 twe = tweak G.g (getlsb wa) (getlsb wb);
27 G.pp[(G.g, getlsb wa, getlsb wb)] = E twe wa wb tok;
28
29 wa = oget R’.ii[G.a];
30 wb = oget R’.ii[G.b];
31 tok = $Dword.dword;
32 twe = tweak G.g (getlsb wa) (getlsb wb);
33 G.pp[(G.g, getlsb wa, getlsb wb)] = E twe wa wb tok;
34
35 G.yy[G.g] = tok;
36
37 G.g = G.g + 1;
38 }
39 }
40 }.

Figure 5.14: Garbling procedure of GameFake’.

PRACTICE D14.3 Page 39 of 50

Protocol Implementations

• Similarly, the invisible values of map R.xx in GameFake are equivalent to the values of map
R’.vv in GameFake’.

• Every entry of the truth table will be garbled exactly the same way in both experiments,
as the inlining of procedures garb and garb’ will result in a similar code to the one of
GameFake’.

Independence of GameFake’ was easily proved considering the fact that the output of it does
not depend on any decision bit.
Hybrid Game bounds. In order to complete the proof of security of the garbling scheme,
there must be a bound on the distance between GameReal (identical to the IND-CPA game) and
GameFake, where the adversary has no advantage. To relate the two experiments, Bellare et al
[5] defined a hybrid argument represented by GameHybrid (Figure 5.15), parametrised by some
hybrid value l.

1 module GarbleHybridInit = {
2 proc init(l : int) : unit = {
3
4 . . .
5
6 G.g = C.n;
7 while (G.g < C.n + C.q) {
8 G.a = C.aa[G.g];
9 G.b = C.bb[G.g];

10
11 garb(oget R.xx[(G.g, C.v[G.g])], false, false);
12
13 tok = garb’(G.a ≤l, true, false);
14 tok = garb’(G.b ≤l, false, true);
15 G.yy[G.g] = garb’(G.a ≤l, true, true);
16
17 if (G.a ≤l < G.b ∧ C.gg[(G.g, !C.v[G.a], false)] = C.gg[(G.g, !C.v[G.a], true)]) {
18 garb(G.yy[G.g], true, false);
19 }
20
21 G.g = G.g + 1;
22 }
23 }
24 }.

Figure 5.15: Game GameHybrid.

The idea behind the hybrid argument is the following. In GameReal, every entry in the
garbled row is filled with the encryption of the corresponding token. In GameFake, every hidden
entry in the garble row is filled with a truly random bitstring. For l ∈ {0..n + q − m − 1},
GameHybrid will iteratively replace the correct value of the garbled gate by truly random strings.
Therefore, one can establish a path for going from the reference game IND-CPA (GameReal) to
an independent game (GameFake).

When l = 0, it is easy to establish that GameHybrid and GameReal are equivalent, since all the
Boolean values G.a ≤l and G.b ≤l are false. Likewise, GameHybrid and GameFake are equivalent,
since all the Boolean values G.a ≤l and G.b ≤l are false.

The proof is completed by reducing the distance between two consecutive hybrids to the
security of the underlying Dual Key Cypher scheme. The reduction is made by proving the
following two results

Pr
[
DKCD | b = 1 : res

]
= 1
n+ q

n+q−m∑
l=1

Pr
[
GameHybridAdv

l−1 : res
]

PRACTICE D14.3 Page 40 of 50

Protocol Implementations

Pr
[
¬DKCD | b = 0 : res

]
= 1
n+ q

n+q−m∑
l=1

Pr
[
¬GameHybridAdv

l : res
]

We adopt a slightly different, yet sufficient for our instantiation, security model from the
one described in [5]. As already mentioned, we consider a different token generation procedure
for the DKC security (Figure 5.18). The DKC adversary has access to an oracle Encrypt that it
will use to garble the Boolean circuit. The oracle is given the indices of the entry of the gate
being garbled and it returns with a valid garbled value to this entry. This garbled value can
be either the encryption of a token or the encryption of truly random value. Informally, the
adversary should not be able to distinguish between these two values. The formalisation of this
security definition in EasyCrypt can be found in Figures 5.16 and 5.17.

1 module Game(D:DKC_t, A:Adv_DKC_t) = {
2
3 proc game(b : bool) : bool = {
4 . . .
5 lsb = D.initialize(b);
6 b’ = A.get_challenge(lsb);
7 return b’ = b;
8 }
9

10 proc main() : bool = {
11 var adv : bool;
12 var b : bool;
13 b = ${0,1};
14 adv = game(b);
15 return adv;
16 }
17 }

Figure 5.16: DKC security experiment.

1 module DKC : DKC_t = {
2 . . .
3 proc encrypt(q:query_DKC) : answer_DKC = {
4 . . .
5 ans = bad;
6 (rn,ib,jb,lb,t) = q;
7
8 if (!(mem DKCp.used t) ∧ ib.‘1 < jb.‘1 ∧ jb.‘1 < lb.‘1 ∧ lb 6=(l,DKCp.lsb)) {
9 DKCp.used = DKCp.used ‘|‘ fset1 t;

10
11 ki = oget DKCp.kpub[ib];
12 kj = oget DKCp.kpub[jb];
13
14 (aa,bb) = if (ib = (l,DKCp.lsb))
15 then (DKCp.ksec, kj)
16 else (if (jb = (l,DKCp.lsb))
17 then (ki, DKCp.ksec)
18 else (ki,kj));
19
20 xx = oget DKCp.kpub[lb];
21
22 if (((((l,DKCp.lsb) = ib) || ((l,DKCp.lsb) = jb)) ∧ !DKCp.b) || rn) {
23 xx = $Dword.dword;
24 }
25 ans = (ki, kj, E t aa bb xx);
26 }
27 return ans;
28 }
29 }

Figure 5.17: Oracle encrypt.

PRACTICE D14.3 Page 41 of 50

Protocol Implementations

1 module DKC : DKC_t = {
2 . . .
3 proc initialize(b : bool): bool = {
4 . . .
5 while (i < bound) {
6 if (i = l) {
7 DKCp.lsb = ${0,1};
8 DKCp.ksec = $Dword.dwordLsb (DKCp.lsb);
9 DKCp.kpub[(i,DKCp.lsb)] = witness; (∗ can never return or encrypt this key ∗)

10 DKCp.kpub[(i,!DKCp.lsb)] = $Dword.dwordLsb (!DKCp.lsb);
11 }
12 else {
13 tok1 = $Dword.dwordLsb (false);
14 tok2 = $Dword.dwordLsb (true);
15 DKCp.kpub[(i, false)] = tok1;
16 DKCp.kpub[(i, true)] = tok2;
17 }
18 i = i + 1;
19 }
20
21 return DKCp.lsb;
22 }
23 }

Figure 5.18: Tokens generation.

The adversary queries Encrypt in the following way:

1. If the indices of both the left and right wires (a and b, respectively) of the gate being
garbled are greater than l, then the gate should be garbled using a valid token.

2. On the opposite, if both indexes are smaller than l, then the gate should be garbled using
a truly random word.

3. If l is greater than a but smaller than b, then only the entries corresponding to (1, 0) and
(1, 1) should be garbled with a truly random value, whereas the other rows should be
garbled with a valid token.

The reduction proof is completed by proving that, when DKCp.b = 1, the DKC adversary
will simulate GameHybridl−1 and will simulate GameHybridl otherwise. The complete EasyCrypt
code of the adversary is ommitted for brevity.

5.2.1.5 A concrete OT protocol: SomeOT

To instantiate the oblivious transfer protocol of the SFE theory, we have adopted an n-fold
extension of the protocol by Bellare and Micali [6], in the hashed version presented by Naor
and Pinkas [33] (n being the size of the selection string). The protocol requires a cyclic group
G of prime order q and a generator g, and operates as described in Figure 5.19. The protocol
is described in a purely functional manner, making any local state shared between the various
stages of a given party explicit. For example, step1 outputs the sender’s local state sts, for later
use by step3.

The security proof in the standard model is done via a reduction to the decisional Diffie-
Hellman assumption and an entropy-smoothing assumption on the hash function.

We let AdvDDH(Adv) and AdvES(Adv) be the advantage of an adversary Adv breaking the
DDH and the Entropy Smoothing assumptions, respectively.

PRACTICE D14.3 Page 42 of 50

Protocol Implementations

1 op step1 (m : (msg ∗ msg) array) (r:int array ∗ G) =
2 let (c, hkey) = r in
3 let sts = (m, gc,hkey) in
4 let m1 = (hkey,gc) in
5 (sts,m1).
6
7 op step2 (b : bool array) (r:G array) m1 =
8 let (hkey,gc) = m1 in
9 let stc = (b,hkey,r) in

10 let m2 = if b then gc / gr else gr in
11 (stc,m2).
12
13 op step3 sts (r:G) m2 =
14 let (m,gc,hkey) = sts in
15 let e = (H(hkey, mr

2) ⊕ m0,H(hkey,(gc/ m2)r) ⊕ m1) in
16 let m3 = (gr,e) in
17 m3.
18
19 op finalize stc m3 =
20 let (b,hkey,x) = stc in
21 let (gr,e) = m3 in
22 let res = H(hkey,grx) ⊕ eb in
23 res.
24
25 clone OTProt as SomeOT with
26 type rand1 = G array,
27 type rand2 = (G array ∗ G) ∗ G,
28 op prot (b:input1) (rc:rand1) (m:input2) (rs:rand2) =
29 let (sts,m1) = step1 m (fst rs) in
30 let (stc,m2) = step2 b rc m1 in
31 let m3 = step3 sts (snd rs) m2 in
32 let res = finalize stc m3 in
33 let conv = (m1,m2,m3) in
34 (conv,(res,())).

Figure 5.19: Our Concrete Oblivious Transfer Protocol.

Theorem 3 (OT-security of SomeOT) For all i ∈ {1, 2} and OTi adversary Advi against
the SomeOT protocol, we can construct two efficient adversaries DDDH and DES, and a efficient
simulator S such that

AdvOTi

SomeOT,S(Advi) ≤ n · AdvDDH(DDDH) + n · AdvES(DES).

The protocol is proven secure against malicious senders (i = 1) and malicious choosers
(i = 2).

5.2.1.6 A concrete SFE protocol: Concrete

Finally, we combine SomeOT and SomeGarble using Yao’s construction to obtain our Concrete
SFE functionality. The security proof for this concrete construction immediately follows from
Theorems 1, 3 and 2.

However, we take this opportunity to implement some instantiation-specific optimizations
across abstraction boundaries and translate high-level programming constructs like maps and
higher-order functions into more efficient data structures such as arrays. A separate proof
that our efficient implementation is perfectly equivalent to the one on which we performed the
security proof yields the final security theorem.

Theorem 4 (Security of the concrete SFE protocol) For all SFE adversary Adv against
the Concrete SFE protocol, we construct an efficient simulator S and efficient adversaries BDKC,

PRACTICE D14.3 Page 43 of 50

Protocol Implementations

BDDH and BES, such that the following inequalities hold:

Adv
SFE1

Ψtopo
Concrete,S(Adv) ≤ (c + 1) · AdvDKC(BDKC) + ε,

Adv
SFE2

Ψtopo
Concrete,S(Adv) ≤ ε,

where ε = n · AdvDDH(BDDH) + n · AdvES(BES).

5.2.2 Extracting an implementation
The EasyCrypt toolset uses the Why3 platform as a background interface with SMT solvers.
Consequently, having access to the generated Why3 proof tasks, we were able to use the ex-
traction mechanism of Why3 in order to obtain a verified OCaml implementation from our SFE
protocol specification.

A Why3 proof task is extracted at the end of the definition of our Concrete SFE protocol.
The task will contemplate every definition used by Concrete, from the previously defined charac-
terisations of a projective garbling scheme and of an oblivious transfer protocol to the definition
of EasyCrypt native types, like the integer type, resulting in a complex Why3 script.

The code extraction mechanism of Why3 uses some pre-defined libraries, such as the integer
library and the real library. Therefore, every definition regarding these two types that was
produced by the generation of the Why3 task needed to be syntactically changed to match the
Why3 types. Another important aspect is that Why3 does not extract abstract operators, like,
for example, our definition of a cyclic algebraic structure, dual-key cipher encryption scheme
or entropy smoothing hash functions. This forced us to extract the code in a manual way,
with minor syntactic adjustments, and then complete the implementation on the top of the
CryptoKit library.

The OCaml implementation files are the following:

• Cyclic_group_prime.ml - abstract operations over a cyclic group of prime order q, in
which the oblivious transfer relies on (instantiated using a multiplicative subgroup of
integers modulo a large prime).

• DKC.ml - implementation of a dual-key cipher encryption scheme based on an abstract
implementation of a pseudorandom function (instantiated using AES-128).

• Hash.ml - implementation of the SHA256 hash function.

• Prime_field.ml - implementation of a prime field corresponding to arithmetic modulo a
prime, instantiated using q, used for randomness generation in the OT protocol.

• Word.ml - implementation of the operations over bit strings of a fixed length.

• SFE.ml - implementation of the concrete definition of the SFE in EasyCrypt. This file
represents an OCaml implementation of a garbling scheme, an oblivious transfer protocol
and a combination of both that constructs a SFE protocol.

Additionally, we produced files that represent OCaml instantiations for the EasyCrypt native
types:

• ecBool.ml - OCaml interface for the EasyCrypt Boolean theory.

PRACTICE D14.3 Page 44 of 50

Protocol Implementations

Table 5.1: Execution times (milliseconds)
Circuit NGates TTime P2 S1 GT P2 S1 OT P1 S1 OT P2 S2 OT P1 S2 OT P1 S2 ET
COMP32 301 299 1 60 59 121 59 1
ADD32 408 346 2 70 70 138 68 1
ADD64 824 692 4 141 139 277 135 1
MUL32 12438 376 55 115 61 126 61 13
AES 33744 1333 137 370 234 468 232 29
SHA1 106761 2993 484 963 479 967 482 101

• ecIArray.ml - OCaml interface for the EasyCrypt array theory.

• ecInt.ml - OCaml interface for the EasyCrypt integer theory.

• ecPair.ml - OCaml interface for the EasyCrypt pair theory.

• ecPervasives.ml - OCaml interface for the EasyCrypt pervasives theory.

5.3 Performance
In this section we present a performance evaluation of the SFE implementation generated from
the EasyCrypt formalisation. Inputs are generated randomly using OCaml’s Rand module, and
the cryptographic randomness is generated using CryptoKit’s RNG. Our results show that,
whilst being slower than optimised implementations of SFE [26, 4], the performance of the
extracted program is compatible with real-world deployment, providing some evidence that the
(unavoidable) overhead implied by our formal verification and code extraction approach is not
prohibitive. We now present our experimental results in detail.

In addition to the overall execution time of the SFE protocol and the splitting of the
processing load between the two involved parties, we also measure various speed parameters
that permit determining the weight of the underlying components: the time spent in executing
the OT protocol, and the garbling and evaluation speeds for the garbling scheme. Our measured
execution times do not include serialisation and communication overheads (which are out of
the scope of this work), nor do they include the time to sample the randomness (which can be
pre-generated).

We run our experiments on an x86-64 Intel Core 2 Duo clocked at a modest 1.86 GHz with a
6MB L2 cache. The extracted code and parser are compiled with ocamlopt version 4.00.1. The
tests are run in isolation, using the OCamlSys.time operator for time readings. We run tests in
batches of 100 runs each, noting the median of the times recorded in the runs.

Our measurements are conducted over circuits made publicly available by the cryptography
group at the University of Bristol1, precisely for the purpose of enabling the testing and bench-
marking of multiparty computation and homomorphic encryption implementations. A simple
conversion of the circuit format is carried out to ensure that the representation matches the
conventions adopted in the formalisation.

A subset of our results are presented in Table 5.1, for circuits COMP32 (32-bit signed num-
ber less-than comparison), ADD32 (32-bit number addition), ADD64 (64-bit number addition),
MUL32 (32-bit number multiplication), AES (AES block cipher) and SHA1 (SHA-1 hash algo-
rithm), with respect to the garbling (S1 GT), the two stages of oblivious transfer (S1/S2 OT)
and the evaluation stage (S2 ET). The semantics of the evaluation of the arithmetic circuits is
that each party holds one of the operands. In the AES evaluation we have that P1 holds the

1http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

PRACTICE D14.3 Page 45 of 50

http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/

Protocol Implementations

128-bit input block, whereas P2 holds the 128-bit secret key. Finally, in the SHA1 example we
model the (perhaps artificial) scenario where each party holds half of a 512-bit input string.

We present the number of gates for each circuit as well as the execution times in milliseconds.
A rough comparison with results presented in, for example [26], where an execution of the AES
circuit takes roughly 1.6 seconds (albeit including communications overhead and randomness
generation time) allows us to conclude that real-world applications are within the reach of the
implementations generated using the formally verification approach that we are exploring within
PRACTICE. Furthermore, additional optimisation effort can lead to significant performance
gains, e.g., by resorting to hardware support for low-level cryptographic implementations as
in [4], or implementing garbled-circuit optimisations such as those allowed by XOR gates [30].

PRACTICE D14.3 Page 46 of 50

Protocol Implementations

Chapter 6

Conclusion

In this report we have described four implementations of protocol for secure computation.
First we described an optimized protocol for generating Beaver triples, which is a subprotocol
that are used in many secure computation protocols. Then we presented a two-party protocol
for securely computing boolean circuits, called TinyTables. Then we presented the mixed
protocol of the ABY framework which allows an application to switch between different secure
computation protocols in order to optimize performance. Finally, we presented a formally
verified implementation of Yao’s garbled circuits, in particular the efforts to obtain a mechanised
proof of the security and correctness of the protocol.

For each protocol we have first given a short theoretical overview of the protocol, and
provided details on how it has been implemented. Then we have measured the performance of
the protocols with regard to timing and amount of network communications, and we have for
each protocol discussed bottlenecks and possible optimizations. The results of the measurements
can be found in the individual chapters, but they include that the protocol for generating Beaver
triples can generate 100,000 32-bit triples in 15.45 seconds, and that the ABY framework can
compute private set intersection on 4096 elements of length 32-bits in 30.0 seconds. Both these
measurements have been done are in a setting with an average network latency of 170 ms.

Based on the quality of the implementations and the performance measurements we have
conducted, we belive that all the presented protocol implementations are feasible to use by
software developers in building applications based on secure computation.

PRACTICE D14.3 Page 47 of 50

Protocol Implementations

Bibliography

[1] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin, Ger-
many, November 4-8, 2013, pages 535–548, 2013.

[2] Elaine B. Barker and John M. Kelsey. Sp 800-90a. recommendation for random number
generation using deterministic random bit generators. Technical report, Gaithersburg, MD,
United States, 2012.

[3] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella-Béguelin.
Computer-aided security proofs for the working cryptographer. In Advances in Cryp-
tology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 71–90,
Heidelberg, 2011. Springer.

[4] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient gar-
bling from a fixed-key blockcipher. In IEEE Symposium on Security and Privacy (S&P’13),
pages 478–492. IEEE, 2013.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 784–796, New York, NY, USA, 2012. ACM.

[6] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications. In
Gilles Brassard, editor, Advances in Cryptology - CRYPTO’ 89 Proceedings, volume 435
of Lecture Notes in Computer Science, pages 547–557. Springer New York, 1990.

[7] Pille Pullonen Florian Kerschbaum Florian Hahn Agnes Kiss Thomas Schneider
Michael Zohner Benny Pinkas, Claudio Orlandi. PRACTICE Deliverable D13.3: the full
set of new protocols, 2016.

[8] Thomas Schneider Michael Zohner Benny Pinkas, Agnes Kiss. PRACTICE Deliverable
D13.4: prototype implementations of key protocols, 2016.

[9] Dan Bogdanov. Sharemind: programmable secure computations with practical applications.
PhD thesis, University of Tartu, 2013.

[10] Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the Estonian tax and
customs board evaluated a tax fraud detection system based on secure multi-party com-
putation. In Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, volume
8975 of LNCS, pages 227–234. Springer, 2015.

PRACTICE D14.3 Page 48 of 50

Protocol Implementations

[11] Dan Bogdanov, Marko J oemets, Sander Siim, and Meril Vaht. Privacy-preserving tax fraud
detection in the cloud with realistic data volumes. Technical Report T-4-24, Cybernetica
AS, http://research.cyber.ee/., 2016.

[12] Niklas Buescher, Peter Nordholt Dan Bogdanov, Roman Jagomägis, Jaak Randmets,
José Bacelar Almeida, Bernardo Portela, and Hugo Pacheco. PRACTICE Deliv-
erable D12.3: formal verification requirements, 2015. Available from http://www.
practice-project.eu.

[13] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[14] I. Damgård, M. Geisler, and M. Krøigaard. Homomorphic encryption and secure compar-
ison. International Journal of Applied Cryptography, 1(1):22–31, 2008.

[15] I. Damgård, M. Geisler, and M. Krøigaard. A correction to ’Efficient and secure comparison
for on-line auctions’. International Journal of Applied Cryptography, 1(4):323–324, 2009.

[16] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In PKC’01, volume 1992, pages 119–136, 2001.

[17] I. Damgård, M. Jurik, and J. B. Nielsen. A generalization of Paillier’s public-key sys-
tem with applications to electronic voting. International Journal of Information Security,
9(6):371–385, 2010.

[18] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samiel Ranellucci. Gate-
scrambling revisited - or: The tinytable protocol for 2-party secure computation. 2016.

[19] Kasper Damgård, Peter Nordholt, Marko Jõemets, Peeter Laud, Sander Siim, Ville Sokk,
Sander Valvas, Kurt Nielsen, and Tomas Toft. PRACTICE Deliverable D23.3: an online
portal providing secure computation capabilities, 2016.

[20] Kasper Lyneborg Damgård, Thomas Jakobsen, and Peter Sebastian Nordholdt. PRAC-
TICE Deliverable D14.2: platform for secure computation, 2013. Available from http:
//www.practice-project.eu.

[21] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY – a framework for effi-
cient mixed-protocol secure two-party computation. In Network and Distributed System
Security (NDSS’15). The Internet Society, 2015. Code: http://encrypto.de/code/ABY.

[22] J. O. Eklundh. A fast computer method for matrix transposing. IEEE Transactions on
Computers, C-21(7):801–803, July 1972.

[23] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, pages 116–129, 1999.

[24] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under
standard assumptions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-6, 2015, pages 567–578,
2015.

PRACTICE D14.3 Page 49 of 50

http://research.cyber.ee/
http://www.practice-project.eu
http://www.practice-project.eu
http://www.practice-project.eu
http://www.practice-project.eu
http://encrypto.de/code/ABY

Protocol Implementations

[25] Isabelle Hang, Ferdinand Brasser, Niklas Buescher, Stefan Katzenbeisser, Ahmad Sadeghi,
Kai Samelin, Thomas Schneider, Jakob Pagter, Peter Sebastian Nordholt Janus Dam Niel-
son, Kurt Nielsen, Johannes Ulfkjaer Jensen, Dan Bogdanov, Roman Jagomägis, Liina
Kamm, Jaak Randmets, Jaak Ristioja, Reimo Rebane, Jaak Ristioja, Sander Siim, Riivo
Talviste, Manuel Barbosa, Bernardo Portela, Rui Oliveira, Stelvio Cimato, and Ernesto
Damiani. PRACTICE Deliverable D22.1: tools: State-of-the-art analysis, 2013. Available
from http://www.practice-project.eu.

[26] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party compu-
tation using garbled circuits. In Proceedings of the 20th USENIX Conference on Security,
SEC’11, pages 35–35, Berkeley, CA, USA, 2011. USENIX Association.

[27] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, pages
145–161, 2003.

[28] Florian Kerschbaum, Florian Hahn, Thomas Schneider, Michael Zohner, Pille Pullonen,
and Claudio Orlandi. PRACTICE Deliverable D13.1: a set of new protocols, 2015. Avail-
able from http://www.practice-project.eu.

[29] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short
secrets. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 54–70, 2013.

[30] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and
applications. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming, Part II, ICALP ’08, pages 486–498, Berlin, Heidelberg, 2008. Springer-
Verlag.

[31] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[32] Tobias Mueller, Niklas Buescher, Hiva Mahmoodi, Janus Dam Nielsen, Peter S. Nordholt,
Dan Bogdanov, Manuel Barbosa, Johannes U Jensen, and Kurt Nielsen. PRACTICE
Deliverable D22.2: Tools design document, 2014.

[33] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC,
USA., pages 448–457, 2001.

[34] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, volume 1592, pages 223–238, 1999.

[35] Reimo Rebane. PRACTICE Deliverable D22.4: software development kit and tools pro-
totype (final version), 2016.

[36] Sander Siim. A Comprehensive Protocol Suite for Secure Two-Party Computation. Mas-
ter’s thesis, Institute of Computer Science, University of Tartu, 2016.

[37] Why3 user manual. http://why3.lri.fr/download/manual-0.81.pdf.

PRACTICE D14.3 Page 50 of 50

http://www.practice-project.eu
http://www.practice-project.eu
http://why3.lri.fr/download/manual-0.81.pdf

	Introduction
	Efficient Beaver Triple Generation with Oblivious Transfer Extensions
	Protocol Description
	Implementation
	Pseudo-random generator
	Hash function
	Bit-level operations
	Batching

	Performance

	Tiny Tables
	Protocol Description
	Implemented gates

	Implementation
	Architecture
	Oblivious transfers implementations

	Performance

	Mixed-protocol implementation – ABY
	Protocol Description
	Implementation
	Architecture
	Functions

	Performance

	Formally Verified Implementation of Yao's SFE Protocol
	Protocol Description
	Implementation
	Formalizing and verifying Yao's Protocol in EasyCrypt
	Extracting an implementation

	Performance

	Conclusion

