
D14.4

Validation Report

Project number: 609611

Project acronym: PRACTICE

Project title: Privacy-Preserving Computation in the Cloud

Project Start Date: 1 November, 2013

Duration: 36 months

Programme: FP7/2007-2013

Deliverable Type: Report

Reference Number: ICT-609611 / D14.4 / 1.0

Activity and WP: Activity 1 / WP14

Due Date: October 2016 - M36

Actual Submission Date: 2nd November, 2016

Responsible Organisation: ALX

Editor: Peter Sebastian Nordholt

Dissemination Level: Public

Revision: 1.0

Abstract:

We validate the work on the PRACTICE platform implementa-
tions done in WP14. We do this from the point of view of both
protocol developers and developers of applications based on se-
cure computation. We address the former by demonstrating how
protocols can be implemented and integrated into the platform.
The later we do by summarizing a number of real world scenar-
ios in witch the frameworks of PRACTICE have been used to
implement secure computation based solutions.

Keywords:
Protocol, Protocol Suite, Secure Computation, Sharemind,
FRESCO, ABY

This project has received funding from the European Unions Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no. 609611.

Validation Report

Editor

Peter Sebastian Nordholt (ALX)

Contributors (ordered according to beneficiary numbers)

Martin Deutschmann (TEC)
Mario Münzer (TEC)
Daniel Demmler (TUDA)
Ágnes Kiss (TUDA)
Thomas Schneider (TUDA)
Michael Zohner (TUDA)
Kasper Damg̊ard (ALX)
Peter Sebastian Nordholt (ALX)
Michael Stausholm (ALX)
Manuel Barbosa (INESC PORTO)
Vitor Pereira (INESC PORTO)

PRACTICE D14.4 Page I

Validation Report

Executive Summary

The main goal of WP14 was to produce a platform that supports working with secure
computation from two distinct perspectives; the protocol developer, developing new secure
computation techniques, and the application developer, developing academic prototypes or real
world application somehow utilizing secure computation. In this report we validate the platform
from these two perspectives by 1) demonstrating how new secure computation techniques can be
implemented and integrated into the platform and 2) giving a summary of how the platform has
been used in the development of various prototypes of solutions based on secure computation
to various real world problems.

We demonstrate how new secure computation techniques can be implemented and integrated
into the platform, by two examples. The first example is a formally verified secure computation
engine based on Yao’s protocol. The second example demonstrates how a Fresco based
application can be run using different secure computation techniques, while only modifying a
configuration.

The prototypes solutions to various real world problems, includes systems for performing
secure surveys, performing genome studies, detecting tax fraud, computing credit ratings and
collecting data.

PRACTICE D14.4 Page II

Validation Report

Contents

1 Introduction 1

2 Protocol Development 2
2.1 Integrating a Formally Verified Secure Computation Engine 2

2.1.1 Protocol Description . 3
2.1.2 Implementation . 4
2.1.3 Architectural View . 5
2.1.4 Integration . 6

2.2 Application Independence . 11
2.2.1 Problem Scenario and Solution . 11
2.2.2 Implementation and How to Run it . 12

3 Application Development 14
3.1 Sharemind . 14

3.1.1 Survey System . 14
3.1.2 Genome Studies . 15
3.1.3 Tax Fraud Detection . 16

3.2 Fresco . 17
3.2.1 Credit Rating . 17
3.2.2 Survey System . 18
3.2.3 Data Collection . 19

3.3 ABY . 19
3.3.1 Privacy-preserving biometric matching 20
3.3.2 Private Set Intersection . 20

3.4 UC Compiler . 21
3.4.1 Privacy-preserving applications with private functions 22

4 Summary 23

PRACTICE D14.4 Page III

Validation Report

List of Figures

2.1 A component view of the architecture. 5
2.2 Overview of the Verfied Yao Protocol Suite . 8

3.1 Overview of the ABY framework . 20

PRACTICE D14.4 Page IV

Validation Report

List of Tables

2.1 Execution times (milliseconds) . 11

3.1 Benchmark of Biometric Identification . 21
3.2 Benchmark of PSI . 21
3.3 Running time and communication for PFE . 22

PRACTICE D14.4 Page V

Validation Report

Chapter 1

Introduction

Workpackages 11-14 deals with the design and realization of secure computation protocols. In
WP14 we have worked with the implementation of such protocols and frameworks which can in
turn be used by application developers to implement full applications, that utilize secure com-
putation as part of their functionality. As such, PRACTICE WP14 draws on the new secure
computation techniques designed in WP13 and supplies the implementation and application
frameworks used to produce the real world prototypes in Activity 2 (Workpackage 21-24). In
D14.1 we first gave a description of an architecture for such a secure computation framework.
In D14.2 we reported on a concrete implementation of a secure computation framework fol-
lowing the architecture of D14.1 namely the FRESCO framework. In D14.3 we reported on
the implementation of a number of secure computation protocols which have made it into the
secure computation frameworks of the PRACTICE platform. Finally, in this report we will
validate the platform by demonstrating that it lives up to its goals.

The main goal of WP14 was to produce a platform that supports both the implementation of
secure computation protocols, i.e., the underlying cryptographic techniques involved in secure
computation, and the implementation of new applications based on secure computation. In
other words, a platform that supports the work with secure computation from two distinct
perspectives: the protocol developer and the application developer. In the remainder of this
report we treat these two perspectives separately. In Chapter 2 we first take the protocol
developers perspective and show how the platform supports the development of new protocols
and integration of protocol implementations into the framework. Additionally, we give an
example of how the framework allows applications to be written independently of the underlying
secure computation technique. In Chapter 3 we demonstrate the usability of the PRACTICE
platform from the application developer point of view by summarizing a number of the real
world scenarios in which the secure computation frameworks of PRACTICE has been used to
implement secure computation based solutions.

PRACTICE D14.4 Page 1 of 25

Validation Report

Chapter 2

Protocol Development

In this chapter we describe the work done to validate the secure computation framework archi-
tecture described in D14.1 and implemented in D14.2 from the perspective of the developer of
secure computation technologies. In particular one of the main goals of the architecture was a
flexible framework allowing to work with multiple secure computation technologies in the same
framework. The architecture was designed to make it easy to 1) implement new technologies in
the framework and to 2) integrate existing implementations of secure computation technologies
into the framework. In deliverable D14.3 we demonstrated 1) by describing the implementation
of the TinyTables protocol in the FRESCO framework. In the first part of this chapter we will
demonstrate 2) by describing the work done to integrate the formally verified implementation
of the Yao protocol, described in D14.3, into the Fresco framework.

Furthermore, an important goal was to make it possible for application developers to work
with multiple secure computation technologies without having to know about the internals of
each technology. This was achieved in FRESCO by making it possible for to write applications
in a format making minimal assumptions on the underlying technology. At run time it should
then be possible to chose an appropriate technology simply by configuration of the system. We
demonstrate this property of the framework by describing a small application that can be run
on top of both the TinyTables and Verified Yao technologies described above.

2.1 Integrating a Formally Verified Secure Computation

Engine

The PRACTICE formally verified secure computation framework was outlined in deliverable
D22.2 [17], and specified in detail in D12.3 [7]. One fundamental component of this framework
is a formally verified secure computation protocol suite that is capable of evaluating arbitary
computations expressed as Boolean circuits. The work dedicated to the implementation and
validation of this protocol, namely the effort required to obtain a mechanised proof of security
and correctness, as well as a formally verified implementation, were conducted within WP14
and were reported in D14.3 [18].

This document describes the integration of the resulting engine implementation, which is
automatically generated as OCaml code, into the FRESCO framework, as part of the validation
of the general architecture for secure computation engines developed in WP14. The work
reported here has also been closely integrated with activities carried out in WP22, namely in the
development of formally verified computation specification generation tools that are compatible
with the protocol implementation that we present here. More precisely, the computations

PRACTICE D14.4 Page 2 of 25

Validation Report

that can be evaluated by the FRESCO framework and, in particular, the formally verified
secure computation engine, can be generated in a certified way by a formally verified compiler
that transforms C programs into Boolean circuit descriptions. This complementary effort is
presented in D22.4.

2.1.1 Protocol Description

Yao’s protocol was described in D12.3, where the formal verification requirements for this
high-assurance secure computation protocol suite were specified. We also provide a succinct
description here, which is common to that included in D14.4, so as to facilitate the understand-
ing of our description of integration work into FRESCO. Also described in detail in D12.3 are
the potential usages of Yao’s protocol in a wide range of applications; we omit a discussion of
these applications here and refer the interested reader to D12.3 for more details.

Yao’s protocol allows one to perform two-party secure function evaluation, i.e., to securely
compute functions expressed as circuits composed of Boolean gates, that output a single value
to be revealed to both parties, and that take secret inputs from both parties. Informally, Yao’s
idea of garbling circuits consists of:

• Expressing a circuit as a set of truth tables with information about the wiring between
gates.

• Garble the Boolean values in the truth tables by replacing the Boolean values with random
cryptographic keys, or labels.

• Translate the wiring relation using a system of locks, meaning that for each possible
combination of the input wires, the corresponding labels are used as encryption keys that
lock the label for the correct Boolean value at the output of that gate.

The evaluation of a garbled circuit is straightforward: given a set of labels representing values
for the input wires encoding the inputs of both parties, only one entry in the corresponding
truth table will be decryptable, revealing the label of the output wire. The output of the circuit
will comprise the labels at the output wires of the output gates.

There are two security assets regarding Yao’s protocol: i. unless one is given the association
between labels and Boolean values for input and output wires, no information about the input
or output of the circuit are revealed; ii. given the label/Boolean value associations for x1 and the
output wires of the circuit, but only an encoding of x2 in the form of an input label assignment,
the garbled circuit reveals nothing other than f(x1, x2) about x2.

To build a Secure Function Evaluation (SFE) protocol between two honest-but-curious par-
ties, one can use Yao’s garbled circuits as follows:

1. Bob (holding x2) garbles the circuit and provides this to Alice (holding x1) along with the
label assignment for the input wires corresponding to x2 and all the information required
to decode the Boolean values of the output wires.

2. Using an oblivious transfer (OT) protocol, Alice obtains the labels that encode x1 from
Bob, without revealing anything about x1 and learning no more than the labels she
requires.

3. Finally, Alice evaluates the circuit, recovering the output, and providing the output value
back to Bob.

PRACTICE D14.4 Page 3 of 25

Validation Report

An oblivious transfer protocol is a particular case of a two-party SFE protocol that will
allow one party to obtain the labels corresponding to the encoding of its input without revealing
anything about it and without the party learning anything more than the labels it requires.

Formally, party P1 inputs to the protocol an array of bits of size n, i.e., I1 = (x1, . . . , xn) ∈
0, 1n. Party P2 inputs to the protocol an n-tuple of pairs of tokens, i.e.,

I2 = ((X0
1 , X

1
1), . . . , (X0

n, X
1
n)) ∈ (Token× Token)n

where Token is the type of keys (or labels) associated with the Boolean values of wires in a
garbled circuit (bitstrings of fixed value). The evaluation algorithms ev establish that Party P2

receives no local output at the end of the protocol, whereas Party P1 obtains Y = (X1
i1
, ..., Xn

in).
We require that ev is so defined for all n > 0, thereby imposing that the OT protocol is correct
for arbitrary input lengths.

2.1.2 Implementation

Our verified implementation of Yao’s protocol was obtained in three steps. We first specified the
protocol in EasyCrypt (cf. D22.1 and D12.3), an interactive proof assistant for cryptography.
We then used this tool to prove that the protocol is correct and secure, according to the goals
specified in D12.3. Finally, we used EasyCrypt and the Why3 framework to extract an OCaml
implementation of the verified protocol, which preserves the correctness and security properties
of the EasyCrypt specification by construction. This process has been detailed in D14.3 [18].
The resulting OCaml implementation files are the following:

• Cyclic group prime.ml - abstract operations over a cyclic group of prime order q, in which
the oblivious transfer relies on (instantiated using a multiplicative subgroup of integers
modulo a large prime).

• DKC.ml - implementation of a dual-key cipher encryption scheme based on an abstract
implementation of a pseudorandom function (instantiated using AES-128).

• Hash.ml - implementation of the SHA256 hash function.

• Prime field.ml - implementation of a prime field corresponding to arithmetic modulo a
prime, instantiated using q, used for randomness generation in the OT protocol.

• Word.ml - implementation of the operations over bit strings of a fixed length.

• SFE.ml - implementation of the concrete definition of the SFE in EasyCrypt. This file
represents an OCaml implementation of a garbling scheme, an oblivious transfer protocol
and a combination of both that constructs a SFE protocol.

Additionally, the implementation includes files that represent OCaml instantiations for the
EasyCrypt native types:

• ecBool.ml - OCaml interface for the EasyCrypt Boolean theory.

• ecIArray.ml - OCaml interface for the EasyCrypt array theory.

• ecInt.ml - OCaml interface for the EasyCrypt integer theory.

• ecPair.ml - OCaml interface for the EasyCrypt pair theory.

PRACTICE D14.4 Page 4 of 25

Validation Report

• ecPervasives.ml - OCaml interface for the EasyCrypt pervasives theory.

All of these files are then compiled into a shared library that can be integrated into higher
level applications. In what follows, we will describe how the WP14 architecture for the low-level
layers in the PRACTICE software stack has facilitated the integration of this shared library
into fully operational secure computation applications.

2.1.3 Architectural View

We recall in Figure 2.1 the development view of the PRACTICE general architecture as pre-
sented in the draft version of D21.2 [12]. This diagram aims to provide an in-depth view of
the different components and how they interact. In this scheme, the activity of Formal Ver-
ification (which is fulfilled by our formal verification framework) should be seen as providing
high-assurance instances to some of the components shown in the diagram within the DAGGER
package: a Secure Computation Protocol Suite and a Secure Language and Compiler capable
of generating Secure Computation Specifications.

SPEAR

Cloud Infrastructure

DAGGER

Secure Computation Engine

Computing Virtual Machine

Secure
Computat ion

Protocol

Secure
Computat ion
Specification

Secure
Language

& Compiler

< < l i b r a r y > >
Secure Service

Inter face

Secure
Storage

End User Client

Application Backend
Logic

Security
Hardware

Secure
Computat ion

Protocol Suite
Frontend

Secure
Computat ion

Protocol Suite

Securi ty Hardware
Inter face

Application
Frontend

1

1

1

1..*

1

0..*

Cloud Interface

Protocol API

DB Interface

API/RPC

Query I face

Operations

U IService Iface

< < u s e > >
evaluate

compatible with

< < u s e > >
access

specified using < < c a l l > >

secure data

load

access

access

< < u s e > >
access

load

make query
< < u s e > >

link

include

use UI, access backend

rely on supported queries

access backend

Figure 2.1: A component view of the architecture.

PRACTICE D14.4 Page 5 of 25

Validation Report

In this deliverable we focus on the lowest layer, which is the target of WP14, and we
describe the integration of a new Secure Computation Protocol Suite based on the verified
implementation of Yao’s protocol presented above, into the PRACTICE software stack via the
FRESCO framework. Concretely, we want to embed our secure computation protocol as one
of the cryptographic protocols that can be utilized by generic applications developed using the
FRESCO toolset, and particularly those that resort to computation descriptions specified using
primitive Boolean gate operations.

The FRESCO framework is focused in supporting two different groups of developers: the
protocol developers and the application programmers.

A protocol developer is responsible for implementing an interface for basic multi-party op-
erations (such as inputting and outputting values), as well as a few basic numeric or binary
operators (such as add, multiply, and and xor). FRESCO builds on these operators to provide
generic versions of more advanced operations (such as comparison or linear program solvers).
Advanced operations inherit properties from the basic protocols, such as performance and the
associated security assumptions. In particular, if the properties of a given protocol allow for
some optimisation of the advanced operations, the generic FRESCO operation can be replaced
by some protocol-specific operation. We will see later in this section how the generic architec-
ture adopted in FRESCO for guiding protocol developers has enabled the rapid integration of
the formally verified engine as a new protocol suite.

An application programmer will make use of a library operating on a combination of primitive
types, implemented as a set of Java objects (SInt, SBool, OInt, OBool) to represent secret
or publicly observable integers and Booleans. The application programmer is responsible for
combining these objects with a number of Java operations to construct a circuit representing the
intended computation. The associated run-time for executing the application is also chosen by
the application programmer, and is independent of the circuit. This means that, for instance,
a 2-party FRESCO application circuit can be executed using either a Yao-based or a secret
based implementation.

Including a new run-time protocol suite does not require a full reimplementation of the
network communication, as FRESCO provides a generic interface for sending/receiving byte
arrays. Each run-time considered for FRESCO is expected to take an instance of this interface
and use it for communicating with the other parties according to the protocol. However, it
is likely necessary for the run-time to provide some wrapper around the interface to convert
natural run-time types to byte arrays and vice-versa.

In what follows, we describe the steps we took to integrate the shared library produced
from OCaml code implementing our verified secure computation protocol into a new FRESCO
run-time.

2.1.4 Integration

The integration of our formally verified secure computation engine into FRESCO implied two
important challenges in order to bridge the gap between the Java implementation of FRESCO
and our formally verified OCaml implementation:

• On the OCaml side, in order to parse the information that was being sent by the Java
code (so that it would mach the types involved in the OCaml verified implementation of
Yao’s protocol) and in order to return to Java information that would be easily used by
FRESCO inside its network.

PRACTICE D14.4 Page 6 of 25

Validation Report

• On the Java side, in order to produce a configuration during the evaluation of the protocol
that would correspond to the one used by OCaml.

In a nutshell, our integration strategy is as follows. We use the FRESCO evaluation mecha-
nism in order to build the complete circuit in memory, and then we query the formally verified
secure computation engine to execute each state of the protocol. Note that this approach
deviates from the usual approach adopted in the FRESCO system. Indeed, FRESCO rec-
ommends an on-the-go evaluation, meaning that the circuits are evaluated as needed, which
brings significant advantages in, for example, memory saving. However, in the formally verified
computation engine, the circuit needs to completely known at the beginning of the protocol
(following directions of [2], thus requiring it to be built in memory.

Interfacing between OCaml and Java

The most challenging aspect of the integration of the formally verified secure computation
engine into FRESCO relied on the interface between OCaml and Java, namely, how to invoke
OCaml code in Java. Following related work in this topic, there were two possible approaches
that could be used to achieve this goal: using the OCaml-Java compiler or define wrappers for
the OCaml code in C and then use JNI in order to invoke C code from Java.

OCaml-Java is a toolset that aims to allow seamless integration of OCaml and Java. The
ocamljava compiler is able to generate Java archives that can then be runed on the Java virtual
machine. Additionally, it also contemplates a wrapper generation mechanism that produces
Java classes that wrap OCaml code. However, there were two major downsides in using this
tool.

OCaml-Java is based on OCaml version 4.01.0, which is not compatible with our verified
implementation of Yao’s protocol. In fact, we relied on the most recent Why3 code extraction
mechanism to obtain our implementation, resulting on OCaml version 4.02.3 code. Moreover,
the compatibility of the tool with OCaml primitives/libraries is high but it is not perfect and
many of the libraries used in the implementation are not yet supported by the tool.

The second approach also carries some significant disadvantages. Recent versions of the
OCaml native code compiler do not yet interface correctly with C code, thus restricting the
usage of this mechanism.

To surpass this difficulty, we use OCaml as a blackbox evaluator that can be called from
within Java. We defined four OCaml programs (one for each step of the protocol) that them-
selves invoke functions from the verified Yao’s protocol implementation:

• p2 stage1.ml - a program that executes the first stage of the protocol, where party P2
sets up the protocol given its input and its randomness. It outputs the parameters of the
OT protocol.

• p1 stage1.ml - a program that starts the execution of the OT protocol on the side of party
P1.

• p2 stage2.ml - a program that executes the OT protocol on the side of party P2. At the
end of this program, P2 sends to P1 the necessary information needed to evaluate the
garbled circuit.

• p1 stage2.ml - the final step of the protocol, where P1 evaluates the garbled circuit,
decodes the encoded result and obtains the evaluation of the circuit.

PRACTICE D14.4 Page 7 of 25

Validation Report

These programs can then be executed inside the Java virtual machine during the execution
of a FRESCO application. Naturally, some work is needed to convert between input/output
types of both programs.

Figure 2.2: Overview of the Verfied Yao Protocol Suite

Type conversion

We concentrated all the efforts regarding type interfacing on the OCaml side because the
language contemplates richer libraries concerning type conversion. In fact, we only use strings
when transferring data between Java and OCaml due to two main reasons: i. on one hand,
receiving the information from the OCaml execution of some protocol’s step in the string
format requires no additional computation in order to send that information to the other party
involved in the protocol using the FRESCO network; and ii. on the other hand, one is able to
easily convert strings into every type involved in the protocol (and vice-versa).

A FRESCO verified Yao’s protocol suite

The development of our verified Yao’s protocol suite inside the FRESCO framework was geared
towards the production of a valid input to our OCaml evaluator. To represent this input, we
defined a configuration class (VerYaoConfiguration) that contemplates the following informa-
tion:

• The number of input wires of both parties, n.

• The number of output wires of the circuit, m.

• The number of gates of the circuit, q.

PRACTICE D14.4 Page 8 of 25

Validation Report

• A list storing the first incoming wire of each gate, A.

• A list storing the second incoming wire of each gate, B.

• A list storing the functionality of every gate, G. This functionality is described by means
of the output column of a truth table. For example, a XOR gate would be represented
by the value 0110.

• The state of both parties. This state stores relevant information of both parties that is
used throughout the protocol.

The configuration class instance will be constructed during the FRESCO evaluation of the
protocol. At the end, when finishEval method from FRESCO is invoked, the values of the
configuration instance will be used to produce readable input to our OCaml evaluator, that
will actually evaluate the circuit according to the inputs of both parties. We provide a more
detailed description of the entire protocol suite (including how we transform a FRESCO circuit
into circuit that can be evaluated by our OCaml implementation) below.

Verified Yao types

The SFE Yao’s protocol evaluates functions described by means of Boolean circuits. There-
fore, we are interested in defining two types of Booleans inside our suite: an open Boolean,
corresponding to the outputs of the circuit that can be released to both parties and a closed
Boolean, which corresponds to secret inputs on either side. Inside the FRESCO nomenclature,
an open Boolean is a public Boolean such that its value can be read or modified and a closed
Boolean is a secret Boolean such that one is not allowed to read its value.

Verified Yao gates

We represent a circuit gate inside FRESCO by means of an abstract class VerYaoProtocol, that
all other classes of gate extend. A verified Yao gate has the following attributes:

• The number of input wires of the gate.

• The number of output wires of the gate.

• The input(s) wire(s) of the gate.

• The output(s) wire(s) of the gate.

• The functionality of the gate (using the format described above).

• An integer identifier.

Inside this class, we also define a series of constructors to be used according to the gate.
For example, an INV gate (negation gate) should be defined using the constructor that takes
one input wire and one output wire. We allow four types of gates in our protocol suite: AND,
OR, INV and XOR gates.

Attached to the two types described in section 2.1.4, we also defined two gates:

• VerYaoOpenBoolProtocol, that takes a close Boolean and transforms it into an open
Boolean, and that is used to open the Boolean values of the output of the circuit, so
that they can be read.

PRACTICE D14.4 Page 9 of 25

Validation Report

• VerYaoClosedBoolProtocol, that takes an open Boolean and transforms it into a close
Boolean, and that is used to close the Boolean values of the circuit, so that they can be
evaluated.

FRESCO gate evaluation

As mentioned above, the FRESCO evaluation process is used to first compute all the values
of the configuration class. The circuit, being sequentaly evaluated, is built in memory so that
it can subsequently be transformed into an input to the OCaml evaluator. We restrict this
process to just one party (with identifier 2), so that there are no unnecessary executions and
so that the protocol suite becomes closer to the formalisation.

Consequently, when party 2 invokes the evaluate method in a protocol gate (AND, OR,
INV or XOR), it will define the functionality of the gate (AND, OR, INV or XOR), assign
an identifier to it, store it in a list for further processing and increase the q parameter of the
configuration.

Regarding the closed Boolean and open Boolean gates, whenever the evaluate method is
invoked, party 2 will increase the value of its input wires and of the output wires, respectively.
Note that, in what concerns the VerYaoClosedBoolProtocol gate, we do not restrict the eval-
uation just for party 2, since we also need to capture the amount of input wires from party
1.

The VerYaoEvalProtocol gate

At the end of the FRESCO evaluation, all the parameters of the configuration instance are
defined according to the circuit and one is able to call the formally verified secure computation
engine. In order to do so, we defined a new VerYaoEvalProtocol gate that will invoke our OCaml
evaluator when the finishEval method form the protocol suite is called.

The VerYaoEvalProtocol gate will execute depending on the party identifier and on the
current protocol round and will be responsible for both the evaluation and the exchange of
messages. A typical evaluation of this gate would be:

1. Party 2 pre-processes the data of the configuration instance in order to produce valid
input to the formally verified secure computation engine and executes the first stage of
the protocol, while party 1 is on hold.

2. Upon receiving the first message of the protocol from party 2, party 1 executes the second
iteration of the protocol (which is the start of the OT protocol) and sends the second
message of the protocol (information about the tokens to receive) to party 2.

3. Party 2 finishes the OT protocol and sends to party 1 the necessary information needed
to evaluate the garbled circuit.

4. Finally, party 1 calls the OCaml evaluator in order to obtain the final output of the
protocol, corresponding to the evaluation of the circuit. It after informs FRESCO network
that the evaluation is completed.

We include a series of JUnit tests of our protocol suite in FRESCO. Those tests include
the addition of two 32-bit integers, the multiplication of two 32-bit integers, the AES or DES
ciphers, the SHA1 and SHA256 functions and the comparison of two 32-bit integers. In order to
run those tests, one simply needs to run the TestVerYaoProtocolSuite class inside the FRESCO
test package.

PRACTICE D14.4 Page 10 of 25

Validation Report

Table 2.1: Execution times (milliseconds)

Circuit NGates TTime TTime FRESCO
ADD32 408 346 528
MUL32 12438 376 7144
AES 33744 1333 33744
SHA1 106761 2993 643015

Performance

For assessing the performance of the formally verified secure computation engine inside the
FRESCO platform, we benchmarked some tests mentioned aboved and compared the evaluation
time of the protocol when the formally verified secure computation engine is invoked inside
FRESCO with the evaluation time when the protocol is invoked by itself. Table 2.1 sums up
this comparison.

The significant difference between the execution times arises due to the need to have a
circuits pre-processing phase inside FRESCO. Our formally verified secure computation engine
requires circuits to be in a specific format, with a series of restrictions defined in [2], and,
therefore, there is the need to convert a circuit that was generated by some FRESCO evaluation
into a circuit that is a valid input for the formally verified secure computation engine. If the
circuit has a small number of gates (like the ADD32 circuit) the difference is barely noticeable,
however, for bigger circuits, the disparities are significant.

2.2 Application Independence

In this section we demonstrate how the framework allows the application programmer to write
applications based on secure computation but independent of the underlying secure computation
technologies used at run time. Concretely, we describe a simple proof-of-concept application
implemented in the FRESCO framework, and how it can be run on the TinyTables and formal
verified Yao implementations described in this deliverable and deliverable 14.3.

2.2.1 Problem Scenario and Solution

The chosen application is motivated by the following real world problem scenario, which have
been discussed with a large consultancy house in Denmark.

The consultancy house is hired to do general statistics on the lending habits of users from
two public libraries within the same local region. The dataset from each library, contains a
record for each user registered at the library. Each record describes the users book borrowing
history. The records identify the user using a national ID number, which is assigned to all
persons living in Denmark. The libraries are willing to provide these datasets to the consultancy
house. However, because of privacy laws the national ID numbers must be removed, so that
the consultancy house can not associate the records to concrete identities of physical persons.

For statistics on the libraries individually this is not a problem because the identities are
not relevant. However, when doing statistics across the libraries some users may be registered
at both libraries meaning the statistics will be inaccurate. Since, the consultancy house does
not have the ID numbers associated with each record, there is no way for them to make the
link between records in each data set. Since the libraries are not simply allowed to share their
datasets with each other they cannot help in linking the records either.

This exemplifies a frustrating situation where privacy concerns do not allow to do an oth-
erwise simple operation on the datasets. The situations is particularly frustrating because the

PRACTICE D14.4 Page 11 of 25

Validation Report

consultancy house has no interest in learning the ID numbers, they simply need them to link
the records.

For our proof-of-concept application we solve this problem using secure computation in the
following way. First, we reduce the problem by noting that if the libraries were able to figure
out which users have registered at both libraries, the problem is easy to solve. The libraries
could simply provide records of the common users in some sorted order, making it easy for the
consultancy house to link the records. Thus, we now just need a mechanism for the libraries to
find the users they have in common without learning anything else about each other’s datasets.
Fortunately, this problem, i.e. finding the intersection between two lists, is a classic problem in
secure computation also known as private set intersection (PSI).

Here we chose the following basic approach to PSI using general purpose secure computation:
we first let the each library input their list of users Id’s into the secure computation system.
Additionally, the libraries each pick a random and secret 128 bit value and input these values
into the secure computation system. We denote these values as k1 and k2 respectively. Now
using secure computation the libraries jointly compute an AES encryption of each ID in both
of their lists under the key k = k1⊕k2. Finally, the output from the secure computation system
to both parties is the two lists of encrypted Id’s. The libraries can now find their common
users simply by comparing the two lists. Since the computation was done inside the secure
computation system, and since the Id’s are encrypted using a random key unknown to any
of the parties, the libraries learn nothing except for the identity of their common users. In
particular, the libraries does not learn the identity of the users they do not have in common.

We chose this method as it was relatively easy to implement, since we already had the
implementation of AES in the standard library of FRESCO. The solution also offers decent
performance as it avoids the naive solution of doing a quadratic number of equality tests using
secure computation. We do, however, note that there exists many solutions to the PSI problem,
both using general purpose secure computation and dedicated protocols which likely offer con-
siderably better performance. Many of these are developed and described in the PRACTICE
project, in e.g. D11.1 or D13.1.

2.2.2 Implementation and How to Run it

The proof-of-concept application was implemented using the FRESCO secure computation
application framework. The application code does not make any assumptions on the underlying
secure computation technique apart from it being able to work on Boolean values.

The application implementation can be split into two parts. A protocol independent appli-
cation building phase and a configuration phase:

The application building phase is given a concrete instance of the ProtocolFactory class as
well as the various (secret) inputs, i.e. the 128 bit ki and a list of n integers. The Protocol-
Factory.getCloseProtocol() is used to secret share the two keys and the bit representation of
the lists of integers. This results in two size 128 SBool arrays and 2 ∗ n size 128 SBool arrays
representing the integer lists1.

The key bits are then XOR’ed using the ProtocolFactory.getXorProtocol() and the result
is then used to encrypt the input lists using an AES implementation provided by the Bristol-
CryptoFactory class. Note that the constructor of this class takes the ProtocolFactory instance
as input. This allows the implementation of BristolCryptoFactory to be independent of the
secure computation technique. The resulting 2 ∗ n size 128 SBool arrays, representing the ci-

1For simplicity it is assumed that both parties input n integers. The application can be expanded to handle
lists that are not of equal length, but it would require a round of communication to declare the input lengths.

PRACTICE D14.4 Page 12 of 25

Validation Report

phertexts, are then opened using ProtocolFactory.getOpenProtocol() and can finally be revealed
to both parties.

All operations in the application building phase are done using the supplied ProtocolFac-
tory instance. This is what allows the actual application to become independent of the secure
computation technology. The ProtocolFactory class must therefore be instantiated before the
application can run. This instantiation is done in the configuration phase, which is also respon-
sible for configuring storage, network, etc. for each party.

While the same tasks related to configuration must always be done, this can be achieved
in a manner of ways and is independent of the actual computation. Currently the sample
application supports two forms of configuration: as a stand alone jar application or as part of
a JUnit test.

• Using the stand alone jar application, the various parameters and inputs are given as
commandline arguments.

• Using the JUnit test, each test case creates a configuration which is then passed to a
general method which runs the actual computation/application.

The stand alone application is mainly suited to demonstrate an MPC application built
using Fresco. To run the sample application, the following command can be used: java -jar
<jarname> -i1 -s <protocol> -p1:localhost:9994 -p2:localhost:9995
-key:000102030405060708090a0b0c0d0e0f -in1,3,66,1123.

This will start the application as player 1, using the specified protocol suite, listen for
incoming connections on port 9994, connect to player 2 on localhost:9995 and give an input key
as well as a list of inputs (1, 3, 66 and 1123). The protocol can be dummy, tinytableprepro,
tinytables or some other protocol suite implemented in Fresco. The main method of the class
is responsible for parsing the commandline arguments, initializing network, etc.

Implementing and testing new protocols using this approach is however somewhat tedious,
as the jar (and the entire Fresco framework) will have to be rebuilt. This is why it is
recommended to utilize the JUnit test case, when implementing a new protocol in Fresco.

To run the sample application using JUnit, a single testcase for each protocol should be
made. The test case must, for each party, create a generic configuration object. Each configu-
ration object contains some general configuration data such as and adress for each party, what
kind of storage should be used, etc. More important, the configuration object also contains a
reference to concrete implementations of a protocol suite and the corresponding protocol suite
configuration. Once the set of configurations have been properly instatiated, the set of configu-
rations are passed as parameters to a generic test method, which will run the MPC application
according to the provided configurations. Assuming the chosen protocol suite implements the
required interface, i.e. supports various boolean operations such as XOR, the JUnit test should
succeed.

PRACTICE D14.4 Page 13 of 25

Validation Report

Chapter 3

Application Development

In Chapter 2 the focus was mainly on the platform from the point of view of the developer of
new secure computation technologies. In this chapter we focus on the platform from the point
of view of the application developer. We do this by giving a short summary of various scenarios
where the developed frameworks have been used in more or less real world oriented prototypes.
Many of these applications have already been discussed in more detail in other deliverables,
thus the goal here is mainly to provide a convenient overview.

In the following sections, we first give a short introduction to the different frameworks and
then describe the applications that has been developed in those frameworks.

3.1 Sharemind

Sharemind is currently one of the most mature frameworks for general secure computation [1].
It supports the development of secure computation based applications through its domain
specific language SecreC. These applications can then be evaluated on the Sharemind system.
Previous versions of the Sharemind system was focused on secure computation using a fixed
secure computation technique involving three parties in the semi-honest security setting. It has
since evolved to a more flexible framework following an architecture similar to that described in
D14.1. Thus, the current version of Sharemind allows application to be evaluated on multiple
different protocol suites (called Protection Domains), both with various numbers of parties and
security properties. Additionally, Sharemind features a large library of highly optimized secure
computation functionality, ranging from basic arithmetic to advanced statistics, that can be
used in the development of secure computation applications. For more details on Sharemind
we refer deliverable D22.1.

In PRACTICE, Sharemind has been extended with new protocols in the underlying protocol
suites as described in D14.3. Additionally new tools to help the development of Sharemind
applications have been developed and described in D22.2.

The Sharemind framework has been used to develop a number of prototypes which we will
summarise in the following sections.

3.1.1 Survey System

Surveys are commonly used to collect sensitive information on individuals in order to derive
aggregated information on a larger group of individuals. This happens, for example, in personal
health surveys or employee satisfaction surveys. In these cases it is important for the quality
of the gathered information, that the respondents answer the survey honestly. This in turn

PRACTICE D14.4 Page 14 of 25

Validation Report

often requires that the respondents can be confident that their private answers will not be
leaked. Traditionally, this is ensured by letting some trustee (e.g., a consultancy firm) collect
survey answers, analyze the answers and announce the aggregated statistic information, without
revealing the answers of the individual respondents. This solution, however, requires trusted
third party, which in some cases can be hard and/or expensive to come by. This trusted third
party can be replaced by an MPC computation between multiple stakeholder, e.g. an employee
representative and the employer in the employee satisfaction case.

Deliverable D23.1 described a prototype of a survey system replacing the traditional central
trustee with a secure computation solution. Removing the single point of trust would mean
that leaking private information would require collaboration across organizations. Thus risk of
leaking individual answers either intentionally or by error should be reduced.

The initial prototype allows an organizer to design surveys, including traditional survey
question types such as ratings, multiple choice selection, and free text in a modern web-based
UI. The respondents answer the survey using a similar web UI with the individual answers
stored securely in the backend. Once the survey is complete the organizer can request a simple
analysis such as histograms. Additionally, the free text questions can be revealed, but in shuffled
order to protect the identity of the respondent. These analyses are computed using the secure
computation backend, and thus no other information than the results of the analysis is revealed
to the organizer or any other party in the system. Depending on the application scenario, the
organizer can then decide to publish the findings from the survey.

Following the initial prototype described in D23.1, the prototype has been considerably
improved and the functionality extended in D23.3. The current version now supports additional
question types, such as numeric questions, and analyses, such as measures of correlation between
questions and filtering of respondents into groups based on selected questions.

The prototype was developed with a common frontend implemented using essentially generic
web technologies and interchangeable secure computation backends implemented on either the
Sharemind or FRESCO frameworks. The prototype version based on the Sharemind backend
implementation was deployed as a three party setup, running a protocol suite based on additive
secret sharing, providing security against semi-honest corruption. The main work on the pro-
totype in terms a secure computation perspective was implementing the analyses of the survey
answers on Sharemind. These analysis mainly required simple arithmetic operations and a few
more complex statistical computations, all relatively easily implementable given the extensive
standard library of Sharemind.

The Sharemind based secure survey prototype has been used a number of real world case
studies: inside PRACTICE the system was used in D24.3 to run a survey among companies
in the aeronautics industry about their use of cloud technologies and their perceived risks in
doing so. The PRACTICE partner Cybernetica also used the system internally to conduct the
companies employee satisfaction survey. Finally, the second largest city in Estonia, Tartu, also
used the system to run an satisfaction survey among the 300 employees of the city government.
We refer to deliverable D23.3 for more information on these case studies. The case studies were
all executed satisfactory; validating that the secure survey system is indeed a viable solution
when dealing with surveys collecting and analyzing confidential information.

3.1.2 Genome Studies

The analysis of the genome data of human individuals has great medical promise, however, also
comes with obvious privacy concerns. For this reason since 2014 iDASH group of the University
of California San Diego has hosted the Privacy and Security workshop. The workshop focuses

PRACTICE D14.4 Page 15 of 25

Validation Report

on applying secure computation to various to problems in genome analysis. Each year iDASH
challenges teams in a competition to produce solutions to specific privacy related real world
problems in genome analysis. The submitted solution are then judged on performance, accuracy
and security.

In 2016 Cybernetica participated in the competition with a solution to the following problem:
Given a gene sequence of a cancer patient a medical researcher wants to find the patients
with the most similar genes at a hospital hosting a large database of patients gene sequences.
However, neither the medical researcher nor the hospital is allowed to reveal the gene sequences
they are holding. To solve this problem the parties should use secure computation to reveal the
identies of the k most similar patients without revealing any of the concrete genome data. The
problem is further complicated by the fact that a measure known as edit distance is used as the
relevant measure of similarity. However, computing edit distance is computationally expensive
to the point that secure computation currently becomes infeasible. Thus part of the challenge
involved coming up with an appropriate approximation to the edit distance measure.

The solution entered by Cybernetica is based on the Sharemind framework, using a novel
secure computation technique based on both Boolean and arithmetic secure computation with
semi-honest security. Solution required the implementation of many interesting secure computa-
tion functionalities such as matrix multiplication shuffling, indexing and sorting. The developed
solution is too extensive to cover in this summary and we refer the interested reader to D23.3
for details.

At the time of writing the 2016 iDASH competition has not been judged yet, so we can
not say how the Sharemind solution compares. However, the solution was benchmarked on a
two Xeon E2-2640 v3 servers with 128GB of RAM, connected by either a 10Gbit/s LAN or a
10Mbit/s WAN. In the LAN setup making 200 queries against a database of 500 gene sequences
took 13 minutes. The WAN setup required 149 minutes.

3.1.3 Tax Fraud Detection

In 2013 Estonia had an estimated loss of 220 million euros in tax revenue do to Value Added
Tax (VAT) fraud. VAT should be paid when whenever a product is sold, and companies can
cheat by simply neglecting to declare correctly the amount of sales to other companies. The
cheating could go undetected because the limited information accessible by the tax authorities
meant that investigating cases became extremely time consuming.

A suggested solution to this problem was by law to force all companies the register every
sale and purchase transaction made with another company with the Estonian tax authorities.
Roughly speaking, the tax authorities could this way simply balance all purchases and sales in
order to detect undeclared sales. This solution, however, was politically rejected. Creating a
central database containing the sensitive business data at the tax authorities was considered
too large of a privacy risk for the companies of Estonia.

As an alternative, a prototype solution was build in collaboration with the Estonian tax
authorities using the Sharemind framework. The prototype gathers essentially the same trans-
action information described above. However, instead of storing the information centrally, the
information is stored securely in the distributed secure computation system. Computing which
companies are likely to have committed fraud, is then done using secure computation. If, for
some companies, the transactions do not add up, the tax authorities can be advised to look
in to the discrepancies. This way, the Sharemind based solution reveals to the tax authorities
with high accuracy only which companies may be suitable target for further investigation. In
particular no one organization would have direct access to the transaction information of any

PRACTICE D14.4 Page 16 of 25

Validation Report

of the companies.
The prototype was set up as a three party secure computation system using the additive se-

cret sharing based protocol suite of Sharemind. While the analysis done to balance transactions
is rather simple, the main challenge in this prototype was scaling the secure computation system
to deal with the large amount of transaction data generated monthly by Estonian businesses
(estimated at 50 million transactions per month).

The initial prototype reported on in [3] was estimated capable of handling the monthly
data analysis in 10 days on 20,000 euros worth of hardware. This was not satisfactory to
tax authorities, as they had only three days to processes the VAT returns. However, a later
version of the prototype reported on in deliverable D21.3, greatly improved performance using
parallelization similar to techniques used in Big Data analytics such as MapReduce. The
improved prototype was reported to process the monthly data in between 3 to 9 hours depending
on the network setup and cost between 70 and 200 dollars to run on Amazons AWS cloud.
Unfortunately, while this was well within the three day time limit, the new political agreement
was in place to let the tax authorities do a similar calculation without using secure computation.

3.2 Fresco

The prototype implementation of the Fresco framework for general secure computation was
described in deliverable D14.2 following the architecture of D14.1. Fresco is still under de-
velopment and through WP14 it has been further improved in relation to user friendliness and
stability. Furthermore, the new protocols suites described in Chapter 2 was added, giving more
flexibility in the choice of underlying secure computation technologies to use when working with
Fresco based applications. Through the lifetime of the PRACTICE project the framework
has been validated through the implementation of a few prototype applications. These will be
described in the following sections.

Fresco is a framework for developing both new cryptographic protocol suites, but also for
building secure computation applications. The concept is to separate the two roles which enables
an application developer to write secure computation applications without any knowledge of the
protocol suite that powers his application. At the same time, constructing a new protocol suite
can be done without knowing how to write applications, but the new protocol suite can still be
tested using the protocol suite agnostic tests in Fresco. Fresco also works in a streaming
fashion by allowing construction of the circuit to be evaluated on the fly. This is not always
possible, and depends on the protocol suite used. There are a lot of facets in choosing the right
configurations for an application, and therefore it is a great advantage when using Fresco that
the user can switch protocol suite and other settings by just changing a few lines in a properties
file, while keeping the application as it is. This way, the optimal balance between performance,
security requirements, number of servers etc. can quickly be determined. We refer the reader
to D14.2 for a much more extensive in-depth walk through of Fresco.

3.2.1 Credit Rating

The credit rating application is described in depth in deliverable D23.2, and then further ex-
tended in deliverable D23.3. The application enables banks to access a much larger data
foundation when determining if the performance of their portfolio of farmers, and when bench-
marking potential new customers. The data foundation comes from a consultancy company for
farmers (SEGES) with access to a lot of financial records from farmers all over Denmark. The

PRACTICE D14.4 Page 17 of 25

Validation Report

system reveals nothing to SEGES, and only reveals the benchmarks and financial data of the
banks own customers.

The prototype was controlled by The Alexandra Institute, but the idea is to let SEGES
control one server and let The Danish Bankers Association control the other. SEGES initiates
the application by secret sharing the financial data of the farmers with The Danish Bankers
Association. Along with this, SEGES also secret shares the benchmarking score for each cus-
tomer. This can be done in the clear as they have all the data needed. After this step, a bank
can log in to the system and upload a list of identifiers for his customers. This is then secret
shared in the browser using the technique described in [9]. For each segment of farmers, the
bank can now request an analysis which benchmarks it’s portfolio against the entire dataset
of SEGES. This is done using a relative naive approach, where each identifier uploaded by the
bank is compared with all identifiers in the segment. If a match is found, the financial data
and benchmarking score is copied to the banks’ table entry in the database. This table is then
output to the bank employees browser using the technique also described in [9]. JavaScript
code then filters away results where no match was made and presents the remaining results to
the user through a table view or a graph representation.

The secure computation used here is quite simple, but that is not the case for the second
use case where a new customer needs to be benchmarked. Here the benchmark score is needed
without revealing the financial data, and since we don’t have the data from SEGES in the
clear, this means that we need to do linear programming within the secure computation. More
details on this can be found in D23.2. We used the protocol suite SPDZ for the task since we
worked with arithmetic numbers, and the SPDZ protocol suite os the fastest for this purpose
in Fresco at the time writing. The performance numbers for the linear programming can also
be found within [9], but to get an idea of the speed, consider a single dataset which has to
be benchmarked up against a dataset of 70 entries. Each entry consists of 6 variables and the
linear program has 4 constraints. The computation was run on two amazon m4.large instances
which has 8GB RAM, and 2 cores running 2.4 GHz Intel Xeon processors. Solving the linear
program on these machines took 23 seconds on average.

The prototype was tested in a real world setting by a number of Danish banks. Their
reaction was positive, indicating that the extra information provided could be usefull for their
credit rating process, and that the performance was adequate.

In order to demonstrate interoperability between secure computation applications the FRESCO
version of credit rating prototype and the survey system (described below) was additionally ex-
tended in D23.3. This was motivated by feedback from the banks in testing of the initial
prototype. Namely, the banks requested more subjective information on the customers to fac-
tor into the credit rating. For this purpose we designed a combined use case where subjective
information can be collected using the survey system, and then securely exported in to the
credit rating application. In the credit rating application this data would then be linked to
the objective scores of the survey respondents and aggregated information would be computed
using secure computation and displayed to the bank.

3.2.2 Survey System

As described in Section 3.1.1, the survey system described in D23.1 and extended in D23.3
was implemented to be able to run on both a Sharemind and FRESCO backend. From the
application user point of view there is, however, little difference between the two versions.
On the backend, the FRESCO version of the survey system is implemented using the two
party version of SPDZ protocol providing security against one malicious corruption. What this

PRACTICE D14.4 Page 18 of 25

Validation Report

essentially means is that the FRESCO version provides stronger security, but at the cost of
considerable worse performace.

3.2.3 Data Collection

Within the deliverable D21.3 we described the architecture of an application for collecting
data as a foundation for further analyses on that data foundation. This application is currently
being developed using FRESCO in project Big Data by Security fonded by the Danish Industry
Foundation. The application focuses only on the first part of large class of secure computation
application. Namely, the data collection phase. In many applications, we want to run analyses
against a data foundation collected from not just one provider, but on a joint set.

There are three roles in the application: Data Providers, Data Users and Organizers. The
latter is responsible for the data collection process i.e. which data should which data provider
provide and how will the final joint dataset look like. He also decides how to handle possible data
corruption, lacking values and collisions in entries. Data providers are responsible for providing
data in the format described by the organizer, and data users can use the joint datasets to do
analyses if allowed by the organizer. Which analyses can be done is inherently specific to the
use case and domain of the data users. Thus, no generic application can be developed for that
purpose, but we here list a few examples:

The credit rating application described in Section 3.2.1 could use the data collection appli-
cation as a way to include more data providers than the single consultancy house mentioned.
There might be accountants or even banks who could input financial data about the farmers
such that the joint data foundation would be even richer and thus give more accurate results.

Consider also medical data which is normally not legally allowed to share with others. This
might be legally possible with this application if the correct setup could be found. This would
enable general practioners and hospitals to create a joint secret shared database which could
benefit society if the analyses resulted in better medicine, better diagnostics, etc.

The system is still in development and funded by the Danish project Big Data by Security
funded by the Danish Industry Foundation. It is therefore not possible to say how much data
can be processed how fast, but it depends on the choices of the organizer. If e.g. collisions
should be checked, this will be a lengthy process since it must be done as a secure computation
as the data cannot be revealed to either the organizer or the MPC servers to which the data is
secret shared. The Big Data by Security project intends to develop prototypes using the data
collection application as a basis for the prototypes. One of those concerns energy data from
both Statistics Denmark and Energinet.dk, the latter being the Transmission System Operator
(TSO) in Denmark. The data is joined in order to improve benchmarks of companies energy
consumption. A company can enter their data securely in the browser and get a benchmark of
their performance against the best companies, comparable to their own.

3.3 ABY

In secure two-party or secure multi-party computation, the function is often to be expressed
and evaluated as either a Boolean or arithmetic circuit. As described in deliverable D13.1 [14],
ABY allows for mixing the secure computation protocols that are used for the secure evaluation
of the circuit. ABY efficiently combines arithmetic sharing, Boolean sharing with the GMW
protocol and Yao’s garbled circuits.

The prototype implementation of the ABY secure computation framework from [10] is avail-
able as an open source project at https://github.com/encryptogroup/ABY and is described

PRACTICE D14.4 Page 19 of 25

https://github.com/encryptogroup/ABY

Validation Report

in more detail in deliverable D22.4 [4, 5] and D14.3 [18].

3.3.1 Privacy-preserving biometric matching

For benchmarking ABY, we have implemented some prototype applications that were described
in [18] and in [10]. The first such prototype is privacy-preserving biometric matching,
where one party wants to determine whether its biometric sample matches one of several bio-
metric samples that are stored in a database held by another party. A fundamental building
block of these protocols is to compute the squared Euclidean distance between the query and
all biometrics in the database and afterwards determine the minimum value among these dis-
tances. In our experiments, each sample has d = 4 dimensions and each element is 32-bit long,
but we increase the database size to n = 512 entries. More specifically, we securely compute

min
(∑d

i=1(Si,1 − Ci)
2, . . . ,

∑d
i=1(Si,n − Ci)

2
)

, where P0 inputs the database Si,j and P1 inputs

the query Ci.
We benchmark four different instantiations: a pure Yao-based variant (Y-only), a pure

Boolean-based variant (B-only), a mixed-protocol that uses Arithmetic sharing for the distance
computation and Yao sharing for the minimum search (A+Y), and a mixed-instantiation that
uses Arithmetic sharing for the distance computation and Boolean sharing for the minimum
search (A+B). For each instantiation, we give the setup, online, and total run-time, overall
communication, and number of rounds in the online phase in Table 3.1.

3.3.2 Private Set Intersection

In the private set intersection application, two parties want to identify the intersection of
their n-element sets, without revealing the elements that are not contained in the intersection.
Boolean circuits that compute the private set intersection functionality were described in [13]
and evaluated using Yao’s garbled circuits protocol. For bigger sets with elements of longer
bit-lengths, the sort-compare-shuffle set intersection circuit was shown to be most efficient; for
sets with n σ-bit elements this circuit has O(σnlog2n) AND gates.

A

C

B Y

A2YB2A

Y2B

B2Y

Figure 3.1: Overview of the ABY framework that allows efficient conversions between Cleartexts
and three types of sharings: Arithmetic, Boolean, and Yao.

PRACTICE D14.4 Page 20 of 25

Validation Report

We implement the sort-compare-shuffle circuit of [13] in our ABY framework and instantiate
it in three versions: a Yao-only instantiation (Y-only), a Boolean-only instantiation (B-only),
and a mixed-instantiation (B+Y) that evaluates the sort and compare parts using the Yao
sharing and the shuffle part using the Boolean sharing. The Boolean sharing benefits from
the improved evaluation of MUX operations that frequently occur in the shuffle part of the
circuit. We run all three instantiations in the local and cloud setting and compare their setup,
online, and total run-time as well as their communication complexity and number of rounds in
Table 3.2

Table 3.1: Biometric Identification: Setup, Online, and Total run-times (in s), communication,
and number of messages for biometric identification on 512 elements with a length of σ = 32-bits
and with dimension d = 4 and long-term security. Smallest entries marked in bold.

Local Cloud Comm.
#Msg

S O T S O T [MB]

Y-only 2,24 0,31 2,55 23,78 0,84 24,62 147.7 2
B-only 2,15 0,28 2,43 10,34 29,07 39,41 99.9 129
A+Y 0,14 0,05 0,19 2,98 0,44 3,42 5.0 8
A+B 0,08 0,13 0,21 2,34 24,07 26,41 4.6 101

Table 3.2: PSI: Setup, Online, and Total run-times (in s), communication, and number of
messages for the Private Set Intersection application on n = 4 096 elements of length σ = 32-
bits and long-term security. Smallest entries marked in bold.

Local Cloud Comm.
#Msg

S O T S O T [MB]

Y-only 3,5 0,7 4,3 32,2 1,8 34,0 247 2
B-only 2,0 0,6 2,6 11,5 22,6 34,1 163 123
B+Y 2,6 0,7 3,3 23,4 7,1 30,0 182 27

3.4 UC Compiler

Universal circuits (UCs) can be programmed to evaluate any circuit up to a given size k.
They provide elegant solutions in various application scenarios, e.g. for private function evalua-
tion (PFE). The optimal size of a universal circuit is proven to be Ω(k log k). Valiant proposed
a size-optimized UC construction in [19], which has been put in practice in [15].

Any computable function f(x) can be represented as a Boolean circuit with input bits
x = (x1, . . . , xu). Universal circuits (UCs) are programmable circuits, which means that beyond
the u inputs, they receive p = (p1, . . . , pm) program bits as further inputs. Using these program
bits, the UC is programmed to evaluate the function, such that UC (x, p) = f(x).

The most prominent application of UCs is the evaluation of private functions based on secure
function evaluation (SFE) or secure two-party computation. Many secure computation protocols
use Boolean circuits for representing the desired functionality. In some applications the function
itself should be kept secret. This setting is called private function evaluation (PFE), where only
one of the parties P1 knows the function f(x), whereas the other party P2 provides the input to
the private function. P2 learns no information about f besides the size of the circuit defining
the function and the number of inputs and outputs.

PFE can be reduced to SFE [16] by securely evaluating a UC that is programmed by P1 to
evaluate the function f on P2’s input x. Thus, P1 provides the program bits for the UC and

PRACTICE D14.4 Page 21 of 25

Validation Report

Circuit
UC Compile UC I/O GMW Yao

Time Time Time Communic. Time Communic.
(ms) (ms) (ms) (KB) (ms) (KB)

Branching 18 4,8 31,4 26.23 307,77 17.34 145,87
CreditCheck 1,2 11,4 26.25 113,35 5.67 45,15
MobileCode 3,2 26,3 25.71 202,50 28.16 103,45

Table 3.3: Running time and communication for our UC-based PFE implementation with ABY.
We include the compile time, the I/O time of the UC compiler, and the evaluation time (in
milliseconds) and the total communication (in Kilobytes) between the parties in GMW as well
as in Yao sharing.

P2 provides his private input x into an SFE protocol that computes a UC. The complexity of
PFE in this case is determined mainly by the complexity of the UC construction. The security
follows from that of the SFE protocol that is used to evaluate the UC. If the SFE protocol is
secure against semi-honest, covert or malicious adversaries, then the PFE protocol is secure in
the same adversarial setting.

3.4.1 Privacy-preserving applications with private functions

[8] shows an application for secure computation, where evaluating UCs or other PFE protocols
would ensure privacy: when autonomous mobile agents migrate between several distrusting
hosts, the privacy of the inputs of the hosts is achieved using SFE, while privacy of the mobile
agent’s code can be guaranteed with PFE. Privacy-preserving credit checking using garbled
circuits is described in [11]. Their original scheme cannot represent any policy, though by
evaluating a UC, their scheme can be extended to more complicated credit checking policies.
Privacy-preserving evaluation of diagnostic programs was considered in [6], where the owner
of the program does not want to reveal the diagnostic method and the user does not want
to reveal his data. In the protocol presented in [6], the diagnostic programs are represented
as binary decision trees or branching programs which can easily be converted into a Boolean
circuit representation and evaluated using PFE based on universal circuits.

We validated the practicality of Valiant’s universal circuit construction with an efficient
implementation. We ran our experiments on two Desktop PCs, each equipped with an Intel
Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, that are connected via Gigabit-LAN and
give our benchmarks in Table 3.3. We show the real practicality of UCs through experimental
results proving the efficiency of our implementation of PFE with the ABY framework [10].

PRACTICE D14.4 Page 22 of 25

Validation Report

Chapter 4

Summary

In this report we have demonstrated how the platform for secure computation can be used from
the two distinct perspectives; the protocol developer, developing new secure computation tech-
niques, and the application developer, developing academic prototypes or real world application
somehow utilizing secure computation.

It was shown how protocol developers can implement and integrate new secure computation
techniques into the platform and use existing application and test code to verify the correctness
of the new protocol.

A number of prototypes were described to show how the platform has been used to provide
secure computation solutions to a wide array of real world problems.

PRACTICE D14.4 Page 23 of 25

Validation Report

Bibliography

[1] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity and per-
formance of programmable secure computation. IEEE Security and Privacy, 14(5):48–56,
Sept 2016.

[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 784–796, New York, NY, USA, 2012. ACM.

[3] Dan Bogdanov, Marko Jöemets, Sander Siim, and Meril Vaht. How the estonian tax and
customs board evaluated a tax fraud detection system based on secure multi-party com-
putation. In Financial Cryptography and Data Security - 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, volume
8975 of LNCS, pages 227–234. Springer, 2015.

[4] Jonas Bohler, Florian Hahn, Raad Bahmani, Daniel Demmler, Agnes Kiss, Thomas Schnei-
der, Michael Stausholm, Reimo Rebane, Jose Bacelar Almeida, Manuel Barbosa, Hugo
Pacheco, Vitor Pereira, and Bernardo Portela. PRACTICE Deliverable D22.3: software
development kit and tools prototype, 2015.

[5] Jonas Bohler, Florian Hahn, Daniel Demmler, Agnes Kiss, Thomas Schneider, Michael
Zohner, Kasper Damgaard, Karl Tarbe, Reimo Rebane, Ville Sokk, Jose Bacelar Almeida,
Manuel Barbosa, and Hugo Pacheco. PRACTICE Deliverable D22.4: software development
kit and tools prototype (final version), 2016.

[6] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-
preserving remote diagnostics. In ACM CCS’07, pages 498–507. ACM, 2007.

[7] Niklas Buescher, Peter Nordholt, Dan Bogdanov, Roman Jagomägis, Jaak Randmets,
José Bacelar Almeida, Bernardo Portela, and Hugo Pacheco. PRACTICE Deliv-
erable D12.3: formal verification requirements, 2015. Available from http://www.

practice-project.eu.

[8] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-round secure compu-
tation and secure autonomous mobile agents. In International Colloquium on Automata,
Languages and Programming (ICALP’00), volume 1853, pages 512–523, 2000.

[9] Ivan Damg̊ard, Kasper Damg̊ard, Kurt Nielsen, Peter Sebastian Nordholt, and Tomas
Toft. Confidential benchmarking based on multiparty computation. Technical report,
Cryptology ePrint Archive, Report 2015/1006, 2015.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY – a framework for effi-
cient mixed-protocol secure two-party computation. In Network and Distributed System
Security (NDSS’15). The Internet Society, 2015. Code: http://encrypto.de/code/ABY.

PRACTICE D14.4 Page 24 of 25

http://www.practice-project.eu
http://www.practice-project.eu
http://encrypto.de/code/ABY

Validation Report

[11] Keith B. Frikken, Mikhail J. Atallah, and Chen Zhang. Privacy-preserving credit checking.
In ACM Electronic Commerce (EC’05), pages 147–154, 2005.

[12] Isabelle Hang, Ferdinand Brasser, Niklas Buescher, Stefan Katzenbeisser, Ahmad Sadeghi,
Kai Samelin, Thomas Schneider, Jakob Pagter, Peter Sebastian Nordholt Janus Dam Niel-
son, Kurt Nielsen, Johannes Ulfkjaer Jensen, Dan Bogdanov, Roman Jagomägis, Liina
Kamm, Jaak Randmets, Jaak Ristioja, Reimo Rebane, Jaak Ristioja, Sander Siim, Riivo
Talviste, Manuel Barbosa, Bernardo Portela, Rui Oliveira, Stelvio Cimato, and Ernesto
Damiani. PRACTICE Deliverable D22.1: tools: State-of-the-art analysis, 2013. Available
from http://www.practice-project.eu.

[13] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled circuits
better than custom protocols? In 19th Annual Network and Distributed System Security
Symposium, NDSS 2012, San Diego, California, USA, February 5-8, 2012. The Internet
Society, 2012.

[14] Florian Kerschbaum, Florian Hahn, Thomas Schneider, Michael Zohner, Pille Pullonen,
and Claudio Orlandi. PRACTICE Deliverable D13.1: a set of new protocols, 2015. Avail-
able from http://www.practice-project.eu.

[15] Ágnes Kiss and Thomas Schneider. Valiant’s universal circuit is practical. In Advances in
Cryptology – EUROCRYPT’16, 2016.

[16] Vladimir Kolesnikov and Thomas Schneider. A practical universal circuit construction
and secure evaluation of private functions. In Financial Cryptography and Data Se-
curity (FC’08), volume 5143, pages 83–97, 2008. Code: http://encrypto.de/code/

FairplayPF.

[17] Tobias Mueller, Niklas Buescher, Hiva Mahmoodi, Janus Dam Nielsen, Peter S. Nordholt,
Dan Bogdanov, Manuel Barbosa, Johannes U. Jensen, and Kurt Nielsen. PRACTICE
Deliverable D22.2: Tools design document, 2014.

[18] Peter Nordholt. PRACTICE Deliverable D14.1: protocol implementations, 2015. Available
from http://www.practice-project.eu.

[19] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the Eighth
Annual ACM Symposium on Theory of Computing, STOC ’76, pages 196–203, New York,
NY, USA, 1976. ACM.

PRACTICE D14.4 Page 25 of 25

http://www.practice-project.eu
http://www.practice-project.eu
http://encrypto.de/code/FairplayPF
http://encrypto.de/code/FairplayPF
http://www.practice-project.eu

	Introduction
	Protocol Development
	Integrating a Formally Verified Secure Computation Engine
	Protocol Description
	Implementation
	Architectural View
	Integration

	Application Independence
	Problem Scenario and Solution
	Implementation and How to Run it

	Application Development
	Sharemind
	Survey System
	Genome Studies
	Tax Fraud Detection

	Fresco
	Credit Rating
	Survey System
	Data Collection

	ABY
	Privacy-preserving biometric matching
	Private Set Intersection

	UC Compiler
	Privacy-preserving applications with private functions

	Summary

