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Roman Jagomägis (CYBER)
Sander Siim (CYBER)
Matthias Schunter (INTEL)

PRACTICE D21.3 Page I



Application architecture for secure computation

Executive Summary

Work package WP21 unifies approaches for using secure computation in applications and pro-
gramming tools. The main goal of the work package is to provide helpful guidance for designers
of information systems that potentially could make use of secure computation. This includes
providing developers with insight on how to combine the deployment and trust models of differ-
ent techniques with the programmable secure computation technology to achieve better privacy
and security guarantees.
Deliverable D21.2 [22] presents a general architecture for the Secure Platform for Enterprise
Applications and Services (SPEAR) that allows for easy development and deployment of secure
cloud applications. SPEAR relies on the Distributed Aggregation and Security Services (DAG-
GER) sub-platform in order to provide Cryptography-as-a-Service for privacy-sensitive cloud
services and applications. Deliverable D21.2 also shows how SPEAR & DAGGER can be con-
structed in a number of alternative ways using different sets of secure computation technologies,
presenting a general architecture as a result of the PRACTICE project.
In this deliverable we extend deliverable D21.2 with guidelines and example applications in order
to help designers to rely on secure computation techniques when designing their applications.
These guidelines are drawn from the experience gained throughout developing real-life secure
applications. This deliverable covers not only generic secure computation protocols but also
techniques to integrate task-specific protocols, such as private set intersection, into applications.
A discussion on enhancing security using secure hardware is also included in the end of the
deliverable.
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Chapter 1

Introduction

This deliverable presents general guidelines for integrating secure computation tools into ap-
plications, both task-specific and generic protocols are considered. We show how the existing
Secure Platform for Enterprise Applications and Services (SPEAR) enables easy development
and deployment of secure cloud applications where the Distributed Aggregation and Security
Services (DAGGER) platform can be selected from the PRACTICE architecture. Helpful
guidance is provided for application developers who would use secure computation for achiev-
ing better security and privacy guarantees. This deliverable discusses the additional factors
that need to be taken into consideration when using secure computation – either generic or
task-specific – as opposed to applications using conventional cryptographic algorithms. The
guidelines given here are provided based on experience gained by developing and deploying ap-
plications throughout the PRACTICE project, e.g., in work packages WP23 and WP24. The
example applications that we review here are or potentially can be deployed in the cloud. They
all integrate secure computation tools from the PRACTICE general architecture and use them
to achieve a particular funcionality for a use case application. In the end of the deliverable, we
describe how hardware security can further enhance the security and privacy guarantees when
deploying applications based on secure computation.

1.1 Scope

This report is the third deliverable of work package WP21 (Architecture and Integration) in
the PRACTICE project. The main task of WP21 is to unify the approaches for using se-
cure computation in applications and programming tools. A general architecture with general
guidelines are to be provided for both secure computation services and applications. The work
package analyses the secure deployment models of state-of-the-art secure computation protocol
which is then combined with a generic architecture for building secure computation services
and applications.
Previously, in deliverable D21.1 [95] we devised the secure deployment and trust models of secure
computation technology as described in Task 2.1.1. Then, based on that work, in deliverable
D21.2 [22] we designed the general architecture for building and deploying programmable secure
computation systems on the cloud. The approaches of secure computation technologies were
unified, and an architecture describing the integration of protocols with cloud applications and
programming tools was provided, covering the Task 2.1.2.
In this deliverable, we build on top of the previous results from this and other work packages
to provide general guidelines for designing applications using both generic and task-specific
protocols. Figure 1.1 depicts the most important PRACTICE deliverables and work packages
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Figure 1.1: PRACTICE deliverables and work packages that influenced this work in D21.3,
grouped into categories. The inputs that have been taken from the mentioned deliverables or
work packages are indicated by the arrows.

that we build on throughout this work. On the figure we indicate what content had the main
influence on this deliverable with the respective arrows. These can be grouped into larger
categories such as

Protocols Existing secure computation protocols and their theoretical and practical evaluation
can be found in D11.1, D11.2 and D13.1.

Secure Computation WP14 covers the secure computation engine with algorithm evaluation,
and protocol integration into the engine and their usage. D14.1 describes the architecture
and D14.2 the concrete implementation of the FRESCO engine.

SPEAR Architecture D21.1 provides the trust and deployment models, D21.2 provides a
unified architecture for programmable secure computation, i.e., describes a VM based
design. In the current deliverable, D21.3, a general architecture for applications that use
secure computation (either VM-based or specific protocols) is given.

Tools The deliverables in WP22, i.e., D22.1, D22.2 and D22.3 describe the development tools.

Applications Application scenarios are described in D12.1 and D12.2, while prototype appli-
cations that we rely on throughout this deliverable are described in D23.1, D23.2, D24.3
and D24.4.

We summarize the scope of this deliverable as described in Task 2.1.3: ,,Design of a general
approach for using secure computation in applications”. General guidelines are to be described
for including task-specific, as well as generic secure computation protocols in application de-
velopment. We present a set of guidelines and examples on how to integrate as many kinds
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of secure computation tools as possible. The general guidelines, among others, answer the
following set of questions:

• What is the data that much be protected?

• How does this data need to be processed?

• What are the roles of the parties participating in the computation?

• What is the adversary model in the application?

• How should the DAGGER sub-platform be selected from the PRACTICE architecture?

• What algorithms does the application use and how do they process data?

• Where is the point of encryption?

• How is the data protected, what cryptographic primitives are used?

• Which performance optimizations can be included?

• How to deploy an application?

1.2 Organization

Chapter 2 of this deliverable provides the general guidelines on how to integrate secure com-
putation tools into applications. It answers the questions described above and gives insights to
application developers on how to develop and deploy their application that uses secure com-
putation. In Chapter 3, several PRACTICE partners describe their applications that were
developed (and possibly deployed) within the PRACTICE project. The application presented
in Section 3.2 is based on task-specific protocols and the ones presented in Sections 3.1, 3.3, 3.4
and 3.5 are based on generic secure computation. All the presented applications are based on
tools taken from the PRACTICE architecture presented in deliverable D21.2 [22]. In Chapter 4,
we describe the potential integration of secure hardware into applications. Finally, we conclude
in Chapter 5.
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Chapter 2

Integrating SPEAR into Applications

Previously in deliverables D21.2 [22] and D14.1 [30] we have presented the architectures for the
Secure Platform for Enterprise Applications and Services (SPEAR) and its Distributed Aggre-
gation and Security Services (DAGGER) sub-platform that together allow building and using
programmable secure computation systems on the cloud. We have also shown multiple examples
of different technology stacks that could potentially be used for constructing such systems. In
this chapter we will take a step further and describe a general approach for integrating SPEAR
into applications. The main goal is to provide helpful guidance for designers of information
systems that could use secure computation to achieve better privacy and security guarantees.
According to the SPEAR architecture the applications that use secure computation for pro-
cessing data receive an additional dimension of data security when compared to conventional
applications. This affects the way such applications are developed and deployed, as a num-
ber of important security related nuances must be taken into consideration throughout the
application’s life cycle. In the following we discuss these key aspects and propose the general
approach of developing SPEAR applications based on the experience gained while developing
several prototypes and real-life applications within and outside of PRACTICE documented in
deliverable D21.1 [95] as well as work packages WP23 and WP24. We mainly focus on the
specifics related to secure applications, as the rest of the software development process mostly
follows a traditional approach.

2.1 Architectural Drivers

2.1.1 Problem statement

The development of a SPEAR application begins with determining the problem that can be
solved using secure computation technology. The general motivation behind such problem
would be the need to process private data in order to gain some kind of benefit. Processing
private data allows learning new knowledge and can provide economic, strategic, social, medical
or other added value to one or more stakeholders. However, the privacy of the data must not
be compromised in the process, as otherwise the data owner’s interests might be put at risk for
personal, business or legal reasons.
Finding a Trusted Third Party (TTP) to process the data can be difficult and expensive, while
the privacy issue would still persist. Alternatively, cryptographic secure computation techniques
offer the trusted execution environment that acts as a TTP but significantly leverages the
privacy issue. The SPEAR application will, where appropriate, utilize secure computation
techniques to protect the sensitive data during processing.
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To identify potential usage scenarios for secure computation one would need to analyze the
current situation in one’s business case and try to highlight the bottlenecks that exist as a
result of data privacy issues. Some of the important topics to cover would be: a) Stakeholders
and trust issues among them (see Section 2.1.2); b) Privacy issues and risks involved with data
processing (see Section 2.1.3); c) Inefficiencies and inabilities resulting from the trust issues (e.g.
ineffective/insufficient processes and decision making, inability to learn new knowledge/lack of
data, inability to cooperate). This information will help to describe the bottlenecks and the
reasons that prevent them from being solved, and allow to establish the links between the
problems and the possible solutions. Then, by providing the privacy-preserving solutions to
those bottlenecks new benefits can be unlocked.
There are multiple ways the private data can be processed. In deliverable D11.1 [107] three
categories of usage scenarios for secure computation have been identified. Most applications
should fit one of these categories, although there can be modifications.

Outsourced computation on one’s own data This category will fit use cases where a data
owner has data that needs to be processed and wants to outsource such processing to
a service. This clearly represents the most common cloud computing scenarios where
an individual or an organization outsources computation to a service provider. Secure
computation is needed here to ensure that the service does not learn the confidential
information or leak it to third parties.

Outsourced computation on collected data The second category handles the situations
where the party who needs to process the data does not have the data and needs to
collect it. This scenario occurs in surveys, government statistics, social studies, voting,
medical research, auctions, and a wide range of corporate activities. Secure computation
is needed to ensure that nobody except for the data owner has access to the data but, at
the same time, data utility is retained.

Computation on shared data The third category covers use cases where similar parties
combine their information to jointly learn new things. These scenarios occur in industrial
consortiums, research collaborations and joint activities between coalitions of nations.
Secure computations allow partners to share data while ensuring control of this data
during its processing. The latter is achieved by having all parties participate in the
actual computation (i.e., all parties being computing parties as defined in Section 2.1.2).

2.1.2 Actor roles and trust relations

In this section, we will describe how actors who participate in the use case scenarios of the
application rely on and relate to each other: what roles they fulfill and what trust assumptions
they have towards each other.

Roles in secure computation

An important step towards the SPEAR application design is to determine the actors that will
participate in the use case scenarios enabled by the application. This is done by identifying the
potential stakeholders of a business case and mapping their roles and goals in the application.
As it was described in deliverables D21.1 [95] and D21.2 [22], the participants in a secure
computation application can have four fundamental kinds of actor roles: input parties, result
parties, computing parties and verifier parties. Each role has its own distinct generic behaviors
and goals based on which it can be assigned to a suitable stakeholder to form an actor. Specific
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Table 2.1: Actor roles in secure computation

Party Definition
input party possesses private input data and provides it to SPEAR; has complete

control over private data; single or multiple
result party wishes to gain benefits from computation outcomes; gets useful results;

is interested in receiving the correct output
computing party hosts and operates the SPEAR application and related infrastructure;

protects private data; should not collude with other parties nor deviate
from the application logic

verifier party special kind of result party; verifies correctness of the result

to secure computation are the privacy related goals and trust assumptions. Hence, in order to
properly assign the roles to stakeholders it is crucial to understand the trust relations among
the stakeholders. In the following and in Table 2.1 we describe the named roles and provide
assignment rationale for them.

Input party Input parties have the required input data and provide it to the SPEAR applica-
tion for processing and storage. The private data is either owned by the input parties or
entrusted to them under the agreement or legal obligation of non-disclosure. In any case,
input parties are interested in retaining complete control of their private data, protecting
it from any third party. An application can have one or more input parties, as the data
may come from a single or multiple sources.

The potential stakeholders suitable for this role must be willing to participate in the
application by providing their data. Among possible motivators for them are: a) hav-
ing an additional role of the result party who benefits from the application outcomes;
b) having obligations to participate.

Result party Result parties are the ones who want to analyze the private input data to answer
their questions. They make queries to the SPEAR application and in return get useful
computation results that can be interpreted to gain added value, but do not leak more
information about the original inputs than allowed by design. The result parties are
interested that the result values intended only for them are received from the application
by nobody else but them. They are also interested in the correctness of the results. This
role can be assigned to any stakeholders who wish to gain benefits from the computation
outcomes.

Computing party Computing parties are responsible for hosting and operating the SPEAR
application and related infrastructure. During the operation of the application the com-
puting parties collaboratively conduct data processing and storage in accordance with the
application logic and the DAGGER secure computing sub-platform used in its SPEAR
architecture. The choice of DAGGER determines the number of computing parties in a
deployed application and the trust model between them. In general, the computing par-
ties are expected to protect the private data they process throughout the application’s life
cycle. Therefore, they should not collude (i.e. share data encryptions) with each other
or any other parties, nor deviate from the agreed application logic and cryptographic
protocols of DAGGER.

Stakeholders suitable for this role should have strong interest in preserving the privacy of
the data providers, be as independent from each other as possible and share the incentive
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to host the application. Ideally, they would either be competing organizations, represent
(or be one of) the input parties or have legal obligation to protect data. They should
also be capable of independently arranging the necessary infrastructure and setting up
the application runtimes ensuring best security of the setup.

Verifier party There is also a special kind of result party whose goal is to verify the correctness
of the result after it has been computed. While the verifier does not necessarily participate
in the computation, it still wishes to see the proof (e.g. a transcript of computation) that
the computation has been performed correctly regardless of the trust assumptions of the
DAGGER protocol implementation used in the application hosted by computing parties.

Any set of stakeholders interested in the additional verification of the result correctness
can be assigned this role. Note, that this role can only be present in the system, if the
chosen DAGGER protocols support verifiability by external party.

Roles in abstract usage models

The usage scenarios for secure computation from Section 2.1.1 can be described as abstract
usage models of secure computing in terms of the roles we described above (as provided in
D11.1 [107]). We denote input parties as I, result parties as R and computing parties as C.

I R SC  C 

(a) Process own data

I SC   R

iC
(b) Process collected data

I C R SC

(c) Process shared data

Figure 2.1: Abstract usage models of secure computing

Outsourced computation on one’s own data The model is shown on Figure 2.1a. The
input party encrypts its input data and sends it to the computing party (e.g., a cloud
service provider) who processes the data without decrypting it during the process. Once
the computation has been completed, the encrypted result is returned to the data owner
who can decrypt it.

Outsourced computation on collected data The model in Figure 2.1b differs from the
previous model in the way that the input parties I and the result parties R are separated
from each other. This is to signify the fact that the I parties do not trust the R parties.

Computation on shared data This model is shown on Figure 2.1c. Each party fulfills all
roles by providing an input, contributing to the computation and benefiting from the
results.

In all these settings, the computing parties (the C nodes) can be deployed on the cloud, because
secure computation guarantees that the computing parties do not learn the private inputs.
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2.1.3 Data and privacy risk assessment

When designing a secure computation application an additional analysis is required in order
to get a good understanding of the data that needs to be processed by the application and
the privacy issues involved with the data. This will allow to highlight the security threats and
propose new security requirements.
The first step in this analysis would be to identify all the potentially useful data that each of
the stakeholders has. Having a good overview of the data space in the form of clusters of data
attributes centered around their owners would provide useful insight already in the problem
statement and initial solution proposal phases. Based on that knowledge it would be possible to
begin pinpointing connections between the business case bottlenecks discussed in Section 2.1.1
and the potential solutions by finding use for data that can become available via collaboration
assuming that all the privacy concerns will be addressed to an acceptable degree.
Next, the privacy issues associated with the data should be learned, as it is crucial for the
application designer to know which data in the data space must be protected and to what
extent. The privacy issues may apply to a particular data attribute or their combination, i.e. it
allows learning something sensitive that would not be possible to learn without different input
sources combining their data. The stakeholders may be reluctant to share some of the data for
personal, business or legal reasons. Also, there could be restrictions on who is or isn’t allowed
to know a particular data in the application. In any case, the privacy issues usually arise from
the risks that could be imposed on the interests of individuals or organizations as a result of
gaining access to sensitive or confidential data by third parties. By quantifying the privacy
risks related with the data it is possible to determine the confidentiality level of the data and
choose the appropriate level of protection.
The choice of methodology for privacy risk assessment depends on the specifics of a particular
application problem statement and the goals of its stakeholders. In general it would involve
performing a series of surveys or interviews with all the stakeholders to receive their view of
the risks related to their data, and then applying a risk scoring mechanism that takes into
account the parameters related with the application. An example risk measurement model has
been developed for the collaborative cloud-based supply chain planning system in deliverable
D24.3 [87]. From it we can derive a generalized approach as one possible way to assess privacy
risks.
For each data attribute in data space the following questions are addressed:

1. What potential disadvantage (i.e. negative impacts resulting from (mis)using the data by
stakeholders) may a data owner potentially incur when sharing private data?

2. What is the probability that a participating stakeholder (mis)uses the shared data to the
disadvantage of the data owner?

3. To what extent is the data prior knowledge? It is reasonable to assume that the risks
related with a certain data attribute are lower if it is already accessible to some of the
stakeholders.

Then, based on questions 1 and 2 the criticality of a data attribute can be assessed by first
calculating the criticality score of each individual negative impact (e.g. by multiplying the
corresponding impact and probability scores), and then summing together the criticality scores
of the individual negative impacts. The third question is used as a weight for determining the
overall protection level. The result can then be interpreted wrt. the maximum possible score.
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2.2 Design

2.2.1 Selecting DAGGER Engine

The Distributed Aggregation and Security Services (DAGGER) is a Platform-as-a-Service (PaaS)
sub-system of the SPEAR architecture stack that implements the cryptographic secure com-
putation techniques enabling the computing on encrypted data and provides the means for
integrating these capabilities into the SPEAR applications. As such, it is the key enabling
technology powering the subset of the application algorithms that are exclusively responsible
for processing private data and allowing the application to achieve its objectives while leveraging
privacy concerns.
DAGGER implementations differ in their functionality, security and efficiency aspects. When
designing a SPEAR application it is therefore important to make a careful and informed choice
of the DAGGER platform and its configuration by finding a suitable trade-off that satisfies the
requirements of a particular problem. To do this, the application designer should be aware of
different aspects of DAGGER implementations and understand how they affect the applica-
tion. In the following we provide a guideline for selecting the DAGGER platform. Based on
the previous architecture work in D21.2 [22] and D14.1 [30] we distinguish between two main
components of the sub-system: a) DAGGER Engine (covered in this section) and b) DAGGER
Protocol Suite (covered in Section 2.2.2).
A Secure Computation Engine (SCE) is the core engine of the DAGGER platform that organizes
and facilitates the execution of secure applications utilizing Secure Computation Techniques.
Once invoked by the application via the Secure Service Interface (SSI), the SCE evaluates the
private data processing algorithms specified in the requested Secure Computation Specification
(SCS) by applying secure functionalities (Protocols) of various Secure Computation Technique
implementations (Protocol Suites) to enforce the security of data according to the specification.
We can identify the following key aspects that can affect the choice of the DAGGER engine.

Available Protocol Suites

A Protocol Suite contains the implementation of a particular secure computation technique that
an SCE can use to securely process data. As various techniques differ in their properties, the
set of available Protocol Suites supported by the SCE defines the range of secure computing
capabilities that can potentially be utilized by a SPEAR application. Not every technique
is suitable for every application. For that reason, the availability of Protocol Suites suitable
for the concrete problem strongly affects the choice of the SCE. In some cases it might even
be desirable to combine the advantages of different secure computation techniques by using
multiple Protocol Suites in a single application. Thus, a larger collection of supported Protocol
Suites is a sign of a flexible and mature SCE implementation. The aspects that affect the choice
of Protocol Suites will be covered separately in the next section.

Integration support

The DAGGER engine is integrated with the rest of the SPEAR application via the Secure
Service Interface (SSI) that is used by the application to invoke the engine to perform secure
computation. Hence, the SSI shall be implemented in a way that simplifies application devel-
opment and satisfies its requirements. Aspects to consider here are as follows and are depicted
in Table 2.2.
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Table 2.2: Aspects impacting the integration of DAGGER with SPEAR

Approaches Provides
Coupling model
(SSI and SCE)

lower coupling + more deployment flexibility
- more difficult to implement inter-process
communication

higher coupling + easier to implement
- lacks the deployment flexibility

Platform
compatibility of
SSI

wide coverage + allows for flexibility in choosing platform for
application, increases SCE portability

poor coverage - new custom SSI wrappers need to be
implemented, less flexibility

Invocation method
of SCE

command API + better tailored for a particular SCE
implementation

query language + better conformance with standards, involves
an interpreter
- slightly less efficient

Expressive power
of an SSI

larger power + dynamic and customized queries

smaller power - execution of only agreed-on SCSs with
arguments

Coupling model This affects how much the SSI decouples the SCE from its consumer. An
SSI mechanism with lower coupling provides more deployment flexibility by allowing: a) the
SCE to be hosted on a different physical or virtual machine than the application backend; b) use
SSI on the client side of the application to directly communicate with SCE. However, this option
would assume some kind of inter-process communication protocol between the SSI and the SCE
instance (e.g. Remote Procedure Call (RPC) or a custom message passing over Transmission
Control Protocol (TCP)) to make secure queries to the SCE, and is more difficult to implement
and configure. Examples of SCEs with lower coupling are Sharemind and SEEED.
Alternatively, an SSI mechanism with higher coupling, such as an API, could be used. In this
case the SSI and SCE would be tightly coupled with the application backend in a single package.
The advantages of this option are that it is much easier to implement and because of the non-
existent communication layer the queries can be delivered to the SCE instantly. However, the
latter advantage is also a disadvantage, as the highly coupled mechanism lacks the deployment
flexibility discussed earlier. Examples of SCEs with higher coupling would be FRESCO and
ABY.

Platform compatibility The SSI interface of an SCE is usually implemented by its authors
using a certain programming language targeting certain platform(s). The reasons can vary from
personal preferences and ease of implementation to author’s specific needs. However, this sets
limitation on the potential range of platforms and technologies that can be used for developing
new SPEAR applications using that SCE due to compatibility issues. For example, if a suitable
SCE for the application has its SSI implemented in C++, it cannot be immediately integrated
into a Java application. This may become a problem, if some development platforms provide
more benefits to the developer than others, but are not supported by the best suitable SCE.
Hence, the compatibility of the SSI becomes an important aspect to consider.
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Typically the compatibility with new platforms can be achieved by implementing additional
SSI wrappers in the target languages, e.g. Java JNI can be used to wrap the C++ code and
make it usable in a Java application. Alternatively, the SCE may provide SSI implementations
originally written in different target languages, but this is less likely due to higher development
and maintenance costs. In any case, SCEs with a wider coverage of platform compatibility will
allow for more flexibility in choosing a platform for application development. Also, the ease
of creating new custom SSI wrappers for the particular SCE is another important aspect to
consider, as it increases SCE portability even if the required platforms are not supported out
of the box. Chapter 4 of D21.2 [22] provides a nice overview of supported SSI languages for
various existing SCE implementations.

Invocation method There are multiple ways the SCE can be invoked to perform a certain
computation. The queries can be formed using a command API or a query language inspired
by e.g. SQL or MDX. The command API is more likely to be used in a higher coupled SSI
calling mechanism. Both the command API and the query language may be used in a lower
coupled SSI to make queries to an SCE. The advantage of a command API is that it can be
better tailored for a particular SCE implementation, while the advantage of a query language
is its likely better conformance with standards. On the other hand, the query language would
involve an interpreter and could be slightly less efficient than a command API.

Expressive power When forming a query one should be able to request the required com-
putation and its parameters. The expressive power of an SSI defines how complex queries can
be formed. In simpler cases it may only allow requesting the execution of particular agreed-on
Secure Computation Specifications with given arguments. In other cases the user may have
more freedom to craft and customize the query to dynamically trigger rather complex aggre-
gations and data mining algorithms, that alternatively would have to be specified as dedicated
procedures and invoked separately. Thus, the SSI with a larger expressive power allows to shift
some logic complexity from the SCS and allow more dynamic and customized queries to be
used in the application.

Programming paradigm

Programmability of the DAGGER engine indicates how and to what extent it allows the appli-
cation developer to specify and customize the integrated procedures for computation on private
data. It also affects how easy it would be to extend the application with new features. There
are different approaches to program the Secure Computation Specifications, resulting in differ-
ent SCS formats that the engine can understand. We discuss the identified ones below and in
Table 2.3.

Interpreted programs Secure computation can be expressed in a Domain Specific Language
(DSL) that is interpreted by the Secure Computation Engine in an on-demand fashion. For
better performance a low-level DSL, such as a byte-code, is preferred. In these cases the com-
putation itself is specified using a high-level DSL better suited for the task and then compiled
into an interpreted low-level DSL that a particular SCE can understand. For example, the
high-level SecreC language is compiled into the low-level Sharemind byte-code.
The interpreted language provides a clear abstraction between the concrete programming task
at hand and the low-level cryptographic primitives it relies on. The secure computing task
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Table 2.3: Approaches to program the Secure Computation Specifications

Approach Advantages Disadvantages Example(s)
Interpreted
programs:
high-level DSL
compiled to
low-level DSL

simplifies code and
application development;
increases reuse of code;
reduces program size;
easier to read and verify;
improves deployment,
maintenance and
portability

more difficult
development and
maintenance of VM
that interprets the
program; VM limits
capabilities

high-level
SecreC to
Sharemind
bytecode

Embedded DSL
programs: builds
on top of an
existing
programming
language

reuse of language and
development platform;
capabilities and
performance of host
language; simplifies
development of SCE

may lack features;
syntax may be less
clear; more difficult to
write; native machine
code may introduce
vulnerabilities;
compatibility issues

FRESCO and
Java libraries

Compiled
circuits:
representation of
the computing task
as Boolean or
arithmetic circuits

can be highly optimized;
better performance;
enables function hiding

lower level of
abstraction; usually
needs dynamical
combination with
SCSs based on
interpreted or
embedded DSLs

circuits in
ABY

Task-specific
protocols:
implementation
tailored to perform
a specific task

efficient in a concrete task
and compact; can be
integrated into SPEAR;
triggered from an SCS

development requires
deep crypto
knowledge; more
difficult to combine
with other operations

private set
intersection

is, therefore, constructed from relatively high-level secure computation primitives, e.g. the
operations represented by the DAGGER protocols.
This approach has multiple advantages. First, it significantly simplifies the code and applica-
tion development as the developer only operates with easy-to-understand building blocks and
does not have to deal with complex cryptography. Second, it increases the reuse of code and
reduces the program size, as the low-level cryptographic primitives do not have to be copied
throughout the computation. Third, the resulting simpler code is also easier to read and verify
for undesired behavior. Fourth, it improves the deployment and maintenance of the overall
SPEAR application, as one can update the program or the cryptographic protocols without
having to update the other. Fifth, a tandem of a domain specific language compiler and well
designed VM can make the overall application rather efficient. Last but not the least, because
of the clear abstraction level the applications written in an interpreted language may be easier
portable to interpreted languages of different DAGGER engines.
The potential disadvantage of interpreted languages is that developing and maintaining the
virtual machine that interprets the program is a non-trivial task. If the virtual machine is
not sufficiently optimized and does not apply clever run-time optimizations to the program,
the resulting application can experience performance issues. Moreover, even if optimized, a
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VM can sometimes hardly compete in terms of performance with hand-crafted task-specific
applications. The expressive power of interpreted languages is also limited by the capabilities
of the virtual machine.

Embedded DSL programs An embedded DSL is an alternative to custom built DSLs, that
builds on top of an existing programming language and adds the secure computation related
features. In the work done in WP14 it has been shown that, if architected smartly, an SCE
programmable with an embedded DSL (e.g. the FRESCO and Java libraries) can have most of
the advantages of the interpreted languages by providing a level of abstraction comparable with
interpreted languages. However, this strongly depends on the capabilities of the host language,
as it may not allow to fully implement a good abstraction on the SCE side.
The main advantage of an Embedded DSL is its reuse of an existing programming language
and development platform. First, an embedded DSL largely inherits the capabilities and per-
formance of its host language and platform. The more powerful the host platform, the more
capabilities the SPEAR applications can immediately make use of. Second, this significantly
simplifies the development of an SCE, as new languages and interpreters do not have to be
built.
This approach does have drawbacks as well. Despite the power of its host language, an em-
bedded DSL may not provide some features that an interpreted DSL/VM specially built for
secure computation can have, and may lack in those regards. For example, the syntax may be
less clear, harder to write and lack in the type system department. This may lead to imple-
mentation errors and make static analysis of private information flow harder. Some languages
are compiled to native machine code directly and while this may contribute to execution per-
formance, it may also introduce dependence on particular machine architecture and introduce
new compatibility issues and attack vectors by allowing parts of the application tamper with
the memory of other components running in the same memory space.

Compiled circuits The computing task can be represented in a form of Boolean or arithmetic
circuits inspired from electronics. Indeed, one can imagine a Boolean circuit as an electrical
circuit in a processor. Boolean circuits operate on a bit level with logical operations and
are, therefore, very compact representations of a computing task. Arithmetic circuits work on
elements of a group, ring or field and use the arithmetic operations available.
The common property of circuits is that they represent the complete secure computing task on
a low level. As such, they can be highly optimized and offer higher performance compared to
programs that combine independent higher level secure operations to perform the same task.
Also, the compiled circuits have been shown to enable hiding of the particular function to be
computed. An example application doing just that is described in Section 3.1.
Compiled circuits can be integrated into SPEAR applications via the Protocol Suite mecha-
nism or as part of Task-specific protocols (see description below). In the protocol suite case
it is potentially possible to dynamically combine the complex compiled circuits with secure
computation specifications based on interpreted or embedded DSLs to optimize the overall
performance of the secure application.

Task-specific protocols Some secure computing tasks (e.g. set intersection) can be im-
plemented as protocols that are tailored to perform the necessary task very well. Developing
such protocols requires deep cryptographic knowledge and may also be harder to combine with
other secure computation operations due to the incompatibility of data representations or even
deployment models. However, their efficiency and compactness can still easily justify their use.
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Just like compiled circuits, the Task-specific protocols can sometimes be integrated with the
SPEAR applications via the Protocol Suite mechanism that plugs them into the programmable
interpreted or embedded DSL specifications. This way their execution can be easily triggered
from an SCS even if the result cannot be combined with other protocols. In other cases the
Task-specific protocol may have to be implemented as a completely separate SCE that can
only execute that particular task and is integrated with the SPEAR application via its own
respective SSI.
An advantage of Task-specific protocols is their performance and excellence at a concrete task.
Also, it may be easier to audit a protocol that does just one thing than a fully generic secure
computation runtime.

Performance level

While the performance of a SPEAR application largely depends on the chosen Protocol Suites,
it can also be noticeably affected by the DAGGER engine itself. When running the same secure
computation task and using the same cryptographic techniques, different DAGGER engines can
provide different overall performance. There are several aspects that can affect the performance:

• The implementation language and platform of the engine.

• Supported program evaluation strategies (e.g. linear, parallel, streaming, etc. See D14.1 [30]
and D14.2 [31] for more details.)

• Efficiency of the engine’s virtual machine (i.e. how fast the program instructions are
executed?).

• Efficiency of the engine’s network layer (i.e. how fast the data is transferred over the
network?).

• Overall quality of the engine implementation.

Sometimes the difference may seem like a small constant (e.g. 2, 5 or 10 times). However, if
large-scale computation is performed then even a small constant may become a considerable
factor. For example, running the computation for 2, 5 or even 10 days instead of one day can
make a strong financial and time difference. It is therefore advised, at least in case of large-
scale tasks, to choose the most efficient SCE that supports the required secure computation
techniques.

Secure storage

Secure computation involves processing private data, and that data needs to be securely col-
lected, stored and accessed in various amounts and shapes. One option is to use a general
purpose database engine in the application backend. The data would be handled by the ap-
plication backend at all times and only be passed to the DAGGER engine as arguments when
a secure computation is invoked via the SSI. However this approach has certain issues. First,
the stored data must be ordered correctly across all the SPEAR nodes making the application
having to deal with keeping the order of input data. Second, the encrypted data must be ac-
cessed and modified efficiently (wrt. both processing time and memory footprint) regardless of
its amount or shape, which may be harder to achieve if the algorithms can only operate with
data passed as arguments and cannot access the database itself.
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An alternative option is that the DAGGER engine can natively access the database layer. In
this case the engine can have built-in database integrity protection and also have direct access
to data at storage to reduce the need to have multiple copies of it in memory and be able to
access and modify it at source. By utilizing built-in capabilities of the engine the application
developer can save time on implementing these from scratch. Examples of DAGGER engines
with database layer support are SEEED and Sharemind.

Development tools

A good DAGGER engine comes with a set of tools that simplify the development of SPEAR
applications based on it. Here we list some of the most helpful tools to look for. Many of these
are also provided with the PRACTICE SDK in work package WP22.

1. Emulation-based secure computation runtime. This runtime is capable of emulat-
ing various secure computation protocols in a delay-compatible manner, providing realistic
application experience with a low resource footprint. The application can be developed
against emulated DAGGER interfaces locally without having to deploy a full-blown sys-
tem on the cloud. This significantly increases developer’s productivity.

2. Secure Language Compiler. A high-level language for specifying DAGGER secure
data analysis algorithms in SPEAR applications. A compiler for the DAGGER specifica-
tion language.

3. Developer’s guide. The support documentation that directs the developer through
creating a complete application.

4. Secure programming reference. The reference includes API descriptions for the se-
cure computation protocol suites, available secure operations, their performances, security
assumptions etc.

5. Standard library. A set of (possibly advanced) algorithms that can be used in secure
computation algorithm implementations.

6. Integrated development environment. An IDE for developing secure computation
algorithms for the DAGGER platform. Supports syntax highlighting, compiler integra-
tion, emulator integration, documentation integration, debugging support, etc.

7. Verification tools. These tools can validate certain formal properties of a system. For
example, a) analyze the secure computation algorithms for security leaks; b) verify the
correctness of computation results; c) verify correctness of implementations, i.e., whether
a desired protocol (the researchers intent) has been correctly translated into a specified
protocol, and then correctly implemented in a given programming language; d) determine
bottlenecks; and so on.

8. Deployment tools. Easy to use cloud provisioning and application deployment tools.

9. Existing applications A well-established DAGGER engine would have been used in a
variety of existing application. The more the technology is used, the more experience
its developers gain and the the larger community it manages to build. This which also
means more community support, documentation, examples and new applications. Both
the prior work and the community of an engine would also contribute to its quality and
the overall experience.
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2.2.2 Selecting DAGGER Protocol Suite

Based on the unified architecture defined in deliverable D21.2 [22] the DAGGER engine can
be configured with a set of Secure Computation Protocol Suites. Each Protocol Suite imple-
ments a certain secure computation technique for computing on encrypted data and exposes
its functionality to the engine via a special generic interface as described in more detail in
deliverable D14.1 [30]. The engine can then apply these technique implementations according
to pre-defined algorithm specifications in order to provide the actual security for the SPEAR
applications during the processing of private data.
The Protocol Suites define many properties of the SPEAR applications, such as the security
guarantees, functionality, performance and deployment model, as all of these can vary between
different secure computation techniques. When choosing the appropriate Protocol Suites for a
SPEAR application, an adequate trade-off between these properties should be found based on
the requirements of the application. In Section 2.1 we discussed some of the main steps that
lead to identifying the application requirements. In this section we describe the properties of
Protocol Suites and discuss their potential effect on the applications.

Secure Computation Technique

Secure computation is a cryptographic method for computing a function on confidential inputs
while keeping them secure even in the presence of the adversary who is trying to deliberately
learn the inputs or affect the computation outcomes. Deliverables D11.1 [107] and D21.1 [95]
provide a good overview of the existing secure computation techniques and their properties.
Here we briefly reiterate on the types of secure computation and their main differences below
and in Table 2.4.

Multi-Party Computation (MPC) The techniques in the MPC category involve multiple
parties who collaborate to jointly compute a function over their privately held inputs. Each
party may also receive a distinct private output of the computed function. The most common
type of MPC techniques is based on secret sharing. Secret sharing allows the secret data to be
split into shares that can then be distributed among the parties. The individual shares do not
reveal any information about the secret value. The original value can only be reconstructed if
sufficient amount of shares (e.g. all or at least some threshold) is held by a single party. The
number of corrupt parties an MPC based technique can withstand is an important parameter

Table 2.4: Secure computation techniques

Technique Protocol Parties Function
Multi-party
computation

secret sharing based multiple parties agreed on in
advance

Garbled
circuits

Yao’s secure function evaluation
protocol, Boolean circuit-based

two parties
(garbler and
evaluator)

agreed on in
advance

Homomorphic
encryption

computing function of encrypted
inputs results in the encrypted
output

two parties not defined in
advance

Trusted
hardware

used as TEE multiple parties not defined in
advance
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to consider when choosing such a technique to meet the security requirements derived from the
application stakeholder trust and data analysis.

Garbled Circuits (GC) GC is a set of two-party MPC techniques based on Yao’s secure
function evaluation protocol. The general idea is that the previously agreed upon function to
be evaluated is represented as a Boolean circuit. One of the parties, the garbler, encodes his
inputs by creating a garbled circuit from the original one. He then sends that garbled circuit
to another party, the evaluator, who evaluates the received circuit with her own inputs and the
respective keys, and sends the result back to the garbler. In the process, the evaluator is unable
to uncover the inputs of the garbler from the circuit.

Homomorphic Encryption (HE) HE is a group of techniques that allow one party to
encrypt their input values and let another party to compute a function on the encrypted val-
ues. By computing function on encrypted inputs a new encryption with the respective result
is created. For example, in an additively homomorphic scheme adding two encryptions to-
gether would result in a new encryption of the sum of the values of in the original encryptions.
We can distinguish between Partially Homomorphic Encryption (PHE), Semi- and Somewhat-
Homomorphic Encryption (SHE) as well as Fully Homomorphic Encryption (FHE). A PHE
scheme supports only one type of operation with no restriction on the amount of operations
that can be performed. The Semi-HE schemes are essentially additively homomorphic with
some limit on the amount of homomorphic additions the scheme can tolerate before the en-
cryption starts to degenerate and can no longer be decrypted. The SHE schemes support
arbitrary functions of limited size. Finally, the FHE schemes support the evaluation of arbi-
trary functions on the ciphertexts. One property that differentiates this type of technique from
the others is that the function to be computed does not have to be agreed in advance, as the
encrypted values can be reused in different functions, potentially not determined at the time of
encryption.

Trusted Hardware As an alternative to software-based techniques, trusted hardware can
be used as Trusted Execution Environment to securely compute on private data. This topic is
covered in more depth in Chapter 4.

Deployment model

One of the properties that distinguishes the types of secure computation techniques discussed
above is their deployment model. We can clearly say that they can have a minimum and a
maximum number of supported computing parties. The homomorphic encryption and trusted
hardware mostly support one computing party, the garbled circuits support two computing
parties, and the multi-party computation can have a minimum of two and maximum of n
computing parties.
As such, each technique can fit one of the canonical deployment models of secure computation
applications as identified in deliverable D21.1 [95]. These models are: centralized secure com-
putation, distributed secure computation and casual secure computation. A centralized secure
computation model is appropriate in situations where all input providers I can agree on some
trusted computing party C to perform computation. The input providers send their encrypted
input to the C who then performs the computation in a secure domain and finally sends the
encrypted results to the result parties R. In a distributed secure computation model a num-
ber of computing parties C cooperate to perform the computation securely. A casual secure
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computation is a modification of the distributed model, where a coordinating server is placed
as a buffer for network communication, allowing for asynchronous exchange of messages and
execution of secure computation. Please refer to D21.1 for more details on the proper choice
of secure computation techniques based on the trust relations/assumptions of these canonical
deployment model.

Usage model

In Section 2.1 we also mentioned three usage models for secure computation. As not all secure
computation techniques are well suited for each type of application model, we provide here a
recommendation with that regard.

• Outsourced computation on one’s own data. This usage model is basically covered by the
centralized secure computation deployment model above. Relevant secure computation
techniques for this category include techniques that support a single computing party,
such as homomorphic encryption, property-preserving encryption and trusted hardware.

• Outsourced computation on collected data. This usage model can be implemented with
all three deployment models described above. One requirement is that the technique
allows combining data from different sources. Examples of suitable secure techniques
for outsourced computation on collected data include property-preserving encryption and
secure multi-party computation based on secret sharing or garbled circuits.

• Computation on shared data. This usage model is better suited for the distributed and
casual deployment models, as each data provider is also a computing party and a result
party. Hence, the secure multi-party computation based on secret sharing or garbled
circuits ideally fits this usage model.

Level of security

The protocols of secure computation techniques are designed to provide security against an
adversary that has a certain amount of power to attack the computation. An adversary may
control a subset of the parties participating in the protocol and might operate in different ways.
Thus, an appropriate level of security should be chosen for the developed application. Below
we discuss the main adversary properties to consider (cf. Table 2.5).

Adversary behavior The adversary model defines what kind of behavior an adversary may
dictate to the parties that it controls. Aumann and Lindell [14] distinguish three adversary
models:

• Malicious adversaries (also known as active adversaries) are adversaries that may behave
arbitrarily and are not bound in any way to follow the instructions of the specified pro-
tocol. Protocols that are secure in the malicious model provide a very strong security
guarantee for the user.

• Covert adversaries have the property that they may deviate arbitrarily from the protocol
specification in an attempt to cheat, but do not wish to be “caught” doing so. Protocols
secure in the covert model guarantee that an adversary is caught cheating with at least a
defined probability ε.
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Table 2.5: Adversary properties to be considered

Aspect Category Description
Adversary
behavior

malicious may behave arbitrarily, strongest

covert may behave arbitrarily but does not wish to be
caught, protocols provide probability for
adversary being caught

semi-honest follows protocol but attempts to learn
information, weaker security notion

Computational
complexity

polynomial time adversary can run polynomial-time algorithms
wrt. a security parameter

computationally
unbounded

adversary has no computational limits, e.g., can
run exponential algorithms as well

Corruption
strategy

static corruption adversary controls pre-defined fixed set of parties,
achieves better performance

adaptive
corruption

adversary dynamically corrupts parties

• Semi-honest adversaries (also known as passive, or honest-but-curious, adversaries) cor-
rectly follow the specified protocol, yet they may attempt to learn additional information
by analyzing the transcript of messages received during the execution. Security in the
presence of semi-honest adversaries provides a weaker security guarantee, yet might al-
ready be sufficient if the adversary is given limited access to the computation, e.g. through
defined interface to framework executed in isolation (like trusted hardware).

The adversary model can be determined for each actor and each specific data attribute of the
application based the trust and risk analysis described in Section 2.1.

Computational complexity An additional parameter of adversarial power identifies how
much computing power an adversary is assumed to have. This defines the difficulty of the
problems that it can solve.

• Polynomial-time complexity is the common bound used in the theory of computer sci-
ence for defining efficient computation. It is assumed that the adversary is allowed to
run in (probabilistic) polynomial-time wrt. a security parameter, such as the length of
cryptographic keys. This means that the adversary cannot perform computations that
take super-polynomial time (e.g. exponential time).

• Computationally unbounded complexity assumes that the adversary has no computational
limits. It can run arbitrarily long brute force attacks and break any encryption scheme
that does not have information theoretic security.

Corruption strategy We can distinguish between two main ways in which the adversary
might corrupt the parties participating in the protocol.

• In the static corruption model the adversary decides before the start of the computation
a fixed set of parties whom it controls. The techniques assuming this corruption strategy
are usually easier to design and have better performance.
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• In the adaptive corruption model the adversary is able to dynamically corrupt parties
during the computation. This model is more complex to achieve and can have negative
impact on performance.

Out of the three properties, the adversary behavior model identifies an adequate level of security,
because a higher security level usually has negative impacts on the performance. If more
advanced security is required, then the computational complexity and corruption strategy can
also be considered in a more complex risk analysis algorithm.

Verifiability and Integrity

Another security related aspect of secure computation techniques to consider when choosing
Protocol Suites is their ability to indicate that the computation is actually working as expected
and produces the correct results with desired security guarantees.
The secure computation techniques can support different approaches to protocol integrity. One
approach is that the protocol is able to detect outside attacks and as a result either attempt to
recover or else identify a failure of the protocol.
Another approach is the support for the verifiability of computation correctness. In Verifiable
Computation the protocols are capable of producing proof evidence (e.g. transcripts) that is
sufficient for the external verifiers to validate the correctness of computation results. There
are two kinds of verifiability: public (universal) verifiability and designated verifiability. In the
universally verifiable scheme any verifier can perform the verification, while in the designated
scheme only a chosen verifier with specific characteristics (e.g. the capability of authenticated
interaction) is able to perform the verification.
Not all techniques support these approaches, as they introduce additional complexity to the
protocols and negatively affects the performance. For more details on verifiability please refer
to deliverable D13.2 [15].

Functionality

Each secure computation technique provides a number of operations it is capable of performing
on values on certain data types. When choosing a suitable Protocol Suite to perform the secure
computation subset of the SPEAR application it is important that the Protocol Suite supports
all the operations and data types required to express the computation on private data.
In the programmable setting, these operations typically represent fundamental functions (e.g.
addition, multiplication, etc.) that are composable into more complex programs and can be
thought as building blocks for SPEAR applications. In many cases more complex composable
functions can also be available, such as sorting or finding a minimum. In a task-specific setting,
the operations may be not composable with other operations, but represent a larger function
that performs a rather complex well defined task in a very optimized way. Examples of such
operations include private set intersection or private function evaluation. The supported data
types may include, but not limited to: signed and unsigned integers of different lengths, floating
and fixed point numbers of different lengths and strings.

Performance

Different properties of the protocol suites have different effect on the performance the protocol
suites provide to he application. Below and in Table 2.6 we give an overview of the main
contributors to the performance of protocol suites.
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Table 2.6: Performance contributors of protocol suites

Performance
contributor

Impact Example

Construction
of secure
computation
techniques

performance is affected by the
underlying fundamental crypto
primitives as well as their
combination

secret-sharing based MPC,
garbled circuits or trusted
hardware; crypto primitives (e.g.
MACs, rings/fields) and their
properties (e.g. homomorphism)

Level of
security

stronger security results in lower
performance

adversarial power, adversary’s
corruption strategy

Deployment
model

communication with other parties
degrades performance, minimal
number of computing parties is
preferred

centralized or distributed secure
computation

Verifiability additional work during runtime,
negative impact on performance

provides correctness proof and
ensures integrity

Operations operations have performance curve,
depends on input size, might be
parallelized, specialized protocols
might have better performance

implement a function by
combining multiple operations or
provide specialized protocols
(e.g. finding a minimum)

Data types supported data types can have
different performance, smartly
converting between them might
lead to better performance

data types of shorter length
perform better than data types
of longer length

Construction of Secure Computation Techniques Secure computation techniques build
on top of cryptographic primitives that directly affect how efficient the techniques are in com-
puting a function on encrypted data. First, these primitives have their own cost of computation.
Second, the cryptographic primitives have properties (e.g. homomorphic properties) that sim-
plify and make inexpensive some kinds of fundamental operations while making difficult and
expensive the other operations. The secure computation techniques make use of this fact by
combining a set of primitives with best possible properties in certain ways to achieve the desired
outcome. Hence, the way these primitives are combined also largely affects the performance of
the final construction.
In practice the secret-sharing based MPC is generally quite fast. The operations supported
by the homomorphic properties of the secret sharing schemes can be performed locally. Other
operations require network communication between the computing parties to be computed.
Such operations (protocols) have round complexity proportional to the depth of the circuit
being evaluated, which introduces dependence on latency and can be problematic in high latency
setups.
The techniques based on garbled circuits are also considered to have good performance. The
computation performed by the parties is linear in the size of the circuit and relies on efficient
symmetric cryptographic primitives. The computation is also highly parallelizable as the gar-
bling of gates can usually be done independently. Furthermore, the round complexity of GC is
constant as it does not depend on the circuit size.
Trusted hardware can be used either for increasing the performance of other types of secure
computation techniques or to provide efficient trusted execution environments as alternative
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secure computation techniques. In either case, the performance advantage comes from the
highly optimized hardware implementation.
The performance of the state-of-the-art protocols as well as the improved protocols of PRAC-
TICE is analyzed in deliverables D11.2 [106] and D13.1 [70] respectively.

Level of security Performance of secure computation techniques crucially depends on the
level of protection they provide (i.e. the supported adversarial power). Typically the stronger
protection results in significantly lower computational performance.

Deployment model In previous sections we have identified two main categories of deploy-
ment models that secure computation can have: centralized secure computation and distributed
secure computation. While these can not be compared directly due to the additional depen-
dence on the concrete technique implementation, their main difference comes from the need to
communicate with other parties participating in the computation.
The centralized secure computation enjoys the fact that it typically does not require communi-
cation with other parties to compute a function, while in case of distributed secure computation
such need exists and forms the basis of related techniques. With larger number of computing
parties the amount of communication would typically grow resulting in quick performance
degradation. When choosing and configuring techniques based on distributed secure computa-
tion, it is advised to use the minimal number of computing parties as possible to achieve the
desired application functionality.

Verifiability Verifiable computation typically involves additional work to produce the cor-
rectness proofs during runtime as well as to ensure integrity of the computation. Thus, it
inevitably has a negative impact on the performance of secure computation techniques that
support it.

Operations Each operation supported by a protocol suite has its own performance curve.
The level of performance can vary depending on the input size, as different parallelization
optimization can be applied and have more pronounced effect with larger inputs.
When specifying the secure computation algorithms one should also pay attention on which
operations are available and how these can be utilized to achieve the desired functionality with
the best performance. Often there will not be another way, but to implement a function (e.g.
finding a minimum) by combining multiple basic operations (e.g. addition, multiplication and
comparison) on a higher level. However, specialized protocols for specific functions may be
preferable to generic protocols in terms of performance. A protocol suite may provide more
complex but better optimized task-specific operations implemented as whole low-level protocols
that compute the desired outcomes with much better performance.
Finally, the operations required to implement a specific function may have significantly better
performance in a different secure computation technique than the one used for the rest of
algorithms. If the conversion cost is small, it may be a good idea to combine multiple protocol
suites in a single application to achieve better overall performance and functionality of the
application.

Data types The data types supported by a protocol suite can also have different performance.
Typically the data types of shorter lengths perform faster than the data types of longer lengths.
Hence, incorrect use of data type lengths (e.g. using large integers to hold small values) may lead
to performance decreases of multiple times. When minimizing the data types to be used, one
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should keep in mind that during the computation the values may grow. Thus, when choosing
an appropriate data type the maximum possible values should be considered to avoid overflows
leading to incorrect results. By smartly converting between the data types supported by the
protocol suite (or even different protocol suites) it is possible to gain better performance of the
application.

Resource requirements

Finally, the choice and configuration of a Protocol Suite can to some degree be affected by the
memory, CPU and network requirements of the secure computation technique it implements, as
the amount of resource consumption directly translates into financial cost. The MPC and GC
based techniques heavily rely on the network latency and bandwidth. If well parallelized, they
can also use more memory and CPU. The FHE techniques are known to be highly intensive on
memory and the CPU, and can easily consume powerful hardware.
It must be noted, that the required amount of resources also depends on the amount of data
to be processed. Hence, in the design phase of the application it is a good idea to have
an understanding of the potential amounts of data the application will have to process in a
limited time frame and test the application with generated test data and various protocol suite
configurations to detect the resource requirements of the real deployment.

2.2.3 Constructing SPEAR Application

Once there is a general understanding of the problem statement and application requirements,
the next step is to construct the SPEAR application. In D21.2 [22] we have presented the general
SPEAR architecture designed specifically for services and applications that need to securely
process private data. The deliverable describes the components of a SPEAR application, the
processes related with them, their distribution into packages as well as their deployment. As
part of the work we also covered multiple examples of how the architecture could be implemented
based on specific existing platforms and technology stacks. These examples can be used as the
starting point in developing a new application, or new stacks of suitable technologies compatible
with each other may be considered. The architecture is generic in nature, but still flexible
enough to allow building rather complex applications based on it and even can tolerate a degree
of deviations, e.g. by merging or reallocating some of the functionality. The design space for
constructing SPEAR applications is wide and while it is mostly driven by the requirements of
a specific application, we can still generalize a number of important architectural aspects to
consider in the application design.
The SPEAR architecture follows a client-server model where the server hosts the backend
application logic (both the general application service and the secure computation) which is
consumed by the client frontend according to the client’s role. The layers and components of
the architecture in D21.2 [22] are presented in Figure 2.2 and Figure 2.3 respectively for the
reader’s reference.
In order to construct an application based on the SPEAR architecture the following general
steps need to be undertaken:

1. Select the DAGGER Engine and Protocol Suites that will power the secure computation
on encrypted data. This was covered in Sections 2.2.1 and 2.2.2.

2. Design the general Application Backend that integrates with the DAGGER engine.

3. Design the general Application Frontend allowing the end users to access the backend.
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Figure 2.2: The layers of the overall SPEAR architecture.

4. Design the secure computation algorithms for analyzing encrypted data. The algorithm
specifications will be executed by the selected DAGGER Engine.

In the following sections we discuss the latter three steps and the design choices related with
them in more detail.

Application Backend

On the server side an application consists of a general application service backend and the
DAGGER engine that it integrates with. Depending on the choice of the DAGGER platform
and the application requirements these components can be either two separate layers or one
unified layer including both functionalities. For generality purposes the architecture represents
them as separate layers.
Aspects to consider when designing the Application Backend and the DAGGER engine are
depicted in Table 2.7 and described in detail below in this section.

Implementation platform The Application Backend powers the service logic that the end
users access via their client software. We can see three options to implement this component.

• Web platform. In the cloud setting it is natural to implement the application backend
as a web service accessible via a web browser. Web technologies are widely used because
their delivery method is simple and flexible. There is a wide choice of web platforms for
implementing the backend, e.g. Java, PHP, Ruby, Node.js or others. All of these provide
a full stack of standard technologies and tools supported by large communities. This
significantly simplifies and accelerates the development process.

• Custom software. Building a custom service software instead of a standard web service is
another option, should more customization be desired. However, this option would require
to spend additional resources on implementing the client-server communication and other
required functionality that may already be included in the existing web platforms.

• DAGGER engine. As a third alternative, the whole application backend could potentially
be implemented as part of the chosen DAGGER engine, if the latter is powerful enough
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Figure 2.3: The component view of the SPEAR architecture.

to support serving general purpose logic to multiple end user clients (i.e. support session
management).

Integration with DAGGER The application backend relies on the DAGGER engine when-
ever it is required to process private data. The integration with the DAGGER engine is done
via the Secure Service Interface (SSI) that the application can use in order to invoke the engine.
There are three integration options to consider:

• Single specific DAGGER. The application may be built using a single specific best suitable
DAGGER platform and optimize for it.

• Multiple specific DAGGERs. The application may be built using multiple different specific
DAGGER platforms and combine their best capabilities in a single application.

• Abstract DAGGER. The application may be built for an abstract DAGGER platform by
implementing an integration layer for multiple DAGGER platforms. This would minimize
the integration surface with the application backend and allow switching between various
platforms. However, it may require the secure computation algorithms to be optimized
for each platform separately. While this option doesn’t always allow to achieve the best
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Table 2.7: Aspect to consider when designing the SPEAR Application Backend.

Aspect Category Description
Implementation
platform of
Application
Backend

web platform a web service accessible via a web browser, simple
delivery, wide choice, simplified and accelerated
development process

custom software allows for better customization, requires
implementing the client-server communication
and other required functionalities

DAGGER
engine

implemented as part of the DAGGER engine, if
powerful enough to support multiple end user
clients

Integration with
DAGGER via SSI

single specific
DAGGER

optimize for a single best suitable DAGGER
platform

multiple specific
DAGGER

multiple different DAGGER platforms and
combine their best capabilities in an application

abstract
DAGGER

an abstract DAGGER platform via an
integration layer for multiple DAGGER
platforms, minimizes integration surface, allows
switching between platforms, does not always
achieve best performance but helps leveraging the
vendor lock-in problem

Storage engine handled by
DAGGER

better if direct manipulation of encrypted data is
required at source

external general
purpose storage
engine

preferred if data does not need to be handled
privately at source

Participants of
secure
computation

independent
computing
parties

computing parties are independent from the
input and result parties, this scenario is directly
supported by the SPEAR architecture

end user
involved in
computation

interaction with end user client is required to
compute a function: either take the role of an
additional computing party or can be allowed to
perform additional interactive operations

Authenticated
vs anonymous
queries

authenticated authentication of queries is needed in order to
access control the input and result phases

anonymous keep the user unidentified, where tokens are not
associated with the user but only identify a
unique data entry

performance without platform-specific optimizations, it does help to leverage the vendor
lock-in problem.

The implementation of the integration layer can be approached from two different di-
rections: a) one could first choose the desired DAGGER platforms and then write an
integration layer over their SSI interfaces; b) one could first implement a good abstract
SSI interface and then (himself or let the DAGGER platform developers do it) implement
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the translation modules for each particular DAGGER platform. The option (a) is easier
to achieve than option (b).

Depending on the chosen DAGGER and its configuration, the whole SPEAR stack (the appli-
cation service, the DAGGER component and the underlying infrastructure) may have to be
replicated across multiple SPEAR nodes, each running the same software with minor configu-
ration differences (e.g. keys, ip addresses, the role in the chosen secure computation technique
and the amount of computational resources required for that role) and hosted by an indepen-
dent computing party. This also means that the end user client has to communicate with all
the nodes of the SPEAR application, e.g. when providing input or querying for results. In the
replicated setups the public data of the application is typically identical across the nodes while
the encryptions of data handled by the DAGGER platform are different.

Storage Engine The selection of the secure storage depends on the application requirements
and the DAGGER capabilities. The storage can be handled by the DAGGER platform natively
or an external general purpose storage engine can be used via the application backend. The
native support may be preferred if efficient direct manipulation of encrypted data at source is
required, as it allows the engine to apply its optimizations based on the data representation in
the database. In both cases various ODBC/JDBC, NoSQL and other types of storage options
should be considered, since all of them have their advantages for certain types of tasks.

Participants of Secure Computation The general case handled by the SPEAR architec-
ture is that the secure computation part of the application is hosted and performed only by
the computing parties and independently from the input and result parties. However, one can
imagine an application, where the secure computation application hosted on the cloud requires
interaction with the end user client in order to compute a function. Such requirement can arise
if a) the chosen secure computation technique like FHE does not have enough key material to
perform some operation and needs to interact with the user who has the key; or b) the task-
specific protocol is utilized that by design or by purpose assumes interaction with the end user.
Section 3.2 describes an example application use case involving the participation of both the
server and the client in a secure computation. The SPEAR architecture does not specifically
disallow such a scenario. In fact, it can be implemented in multiple ways.

• Reduce to server side multi-party model. One way to achieve this functionality is to make
the end user to take an additional role of a computing party and host one of the SPEAR
nodes. However, this does require that the Protocol Suite with the secure computation
technique in question contains the versions of the protocols suitable to be deployed in
a multi-party setup with an additional computing party in mind. Otherwise, additional
work may have to be undertaken in order to implement/port the protocols in the Protocol
Suite to work in a multi-party setup. This option also allows the task-specific protocols
to be integrated with the programmable secure computation algorithms.

• Add interactive client-server operations. Another option to implement this scenario is
by supplementing the Protocol Suite Frontend component with the additional interactive
operations besides encryption and decryption, that are expected of the client to be per-
formed during computation. The interactive operations would need to exchange messages
with the corresponding DAGGER protocol suite whenever a query is made by the client.
The messages can travel either via the whole application stack (frontend, backend and
DAGGER engine) until they reach the destination, or take a shorter path by traveling
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directly to the DAGGER engine. In the former case each of the three components will
have to provide the required software infrastructure for transferring the messages back
and forth. In the latter case only the DAGGER component would have to pass through
the messages, but this would also require a more advanced DAGGER platform that can
handle direct client requests in the first place. In a sense, this seems like the matter of
shifting the implementation complexity between the application developer and the DAG-
GER developer.

Authenticated vs anonymous queries The input and result parties submit their queries
to the application over the encrypted channels. In some scenarios the parties need to be
authenticated and in others they do not.

• Authenticated queries. Authentication is needed in order to access control the input
and result phases of the application. For example, the authentication of queries can be
performed by the means of a central authentication server. After logging in the user
may be granted some kind of authenticated access tokens for performing specific kinds
of operations. When the Application Backend receives a query and the corresponding
token from the Application Frontend, it can verify the token by bouncing it through the
authentication server. Later the token can be invalidated after the required operations
have been completed.

Alternatively, the application can distribute a number of pre-generated access tokens
among the list of users, who can then perform the operations related with the token.

• Anonymous queries. When it is desired to keep the user unidentified (e.g. gather input
data anonymously), the anonymous access tokens or session IDs could be generated by
the application for each input query. In this case the token/ID would not be associated
with any particular user, but only identify a unique data entry. The tokens can later be
used to verify that the entries were submitted to all the SPEAR nodes successfully.

Query communication model

In the data collection phase the private data must be securely collected from the input parties
for storage and processing. In the analysis phase, the result parties would like to receive results
to their queries. We can think of the following models for organizing these processes.

• Distributed queries. An input party can provide the encryptions of its input data directly
to the computing parties according to the DAGGER configuration of the SPEAR applica-
tion. In this case, the input party would connect with the SPEAR node of each computing
party separately over secure channels, authenticate with each computing party and se-
curely send the inputs directly to them without any proxies. The results are received
in a similar way. This model provides a good level of control over the query submission
process. The client receives instant feedback about the status of its query. Furthermore,
the private data in the query can be verified and processed at the time of submission,
since all the computing parties are online. However, it may require additional measures
to be taken in order to synchronize the queries across all SPEAR nodes.

• Centralized queries. The queries may also be made in a centralized model, where a single
coordinating party first collects the inputs and later feeds them to the SPEAR application
for processing. When the results are available, they are passed to the result parties
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in a reverse direction. Actually, the whole public backend of the SPEAR application
could potentially be represented by that single coordinating node. This resembles the
Casual Secure Computation deployment model described in D21.1 [95]. The advantage of
centralized queries is that the computing parties do not have to be online during the data
collection phase or after data analysis phase. The main disadvantage is that it introduces
a single point of trust.

The raw data encryptions cannot always be handed to that single node due to the security
assumptions of many secure computation techniques. If a single node holds enough of
data key material, it may be able to reconstruct the original values which destroys the
security. Hence, before sending the input values v encrypted with the chosen secure com-
putation technique T (lets denote these encryptions as ET (v)) to the coordination party,
the input party would additionally encrypt them with the public keys of the intended
computing parties ECpk(ET (v)). This way the coordinator will not be able to see the in-
put encryptions, while the computing parties will be able to decrypt the inputs intended
for them using their secret keys DCsk(ECpk(ET (v))) = ET (v) and use the uncovered input
encryptions in secure computation. This model requires the clients to authenticate the
computing parties.

Having computed a function on private data, the computing parties would need a way
to securely send results to the result parties via the coordinator. Although this can be
similarly done using an asymmetric keypair, the result party may not always have an
asymmetric keypair (e.g. in case of anonymous queries). Hence, a symmetric key can be
agreed to between the result party and computing party. When making the query, the
result party can generate a symmetric key for each computing party and encrypt it with
the public key of the corresponding computing party. This way only the result party and
the computing party will know a common key. The computing party can then encrypt
the results with the symmetric key it received and send these to the coordinating node.

If both the client and the computing party have an asymmetric keypair, they can both
sign the sent data to achieve even more security by allowing the other party to verify who
the data came from.

Preserving order of inputs

In a distributed setting the SPEAR application consists of multiple SPEAR nodes, each hosted
by a single computing party. When the users make queries (e.g. provide inputs) to the SPEAR
nodes, they do so using secure network channels. The network is a complex topology, where
the packets are routed between the endpoints in a dynamic way based the distance, ping and
other real-time information about the network nodes along the route which can change very
quickly. As the SPEAR nodes are deployed in different locations, it can take different amount
of time to transfer the packets of similar size from a single client to each particular SPEAR
node. In fact, even if a single client repeatedly made a number of similar queries to the same
SPEAR nodes, the data might reach the nodes in different time-frames for each query. This
would actually hold even if the client was connected with the SPEAR nodes via direct wires,
since the CPU load of each physical computer at any given time can differ and thus cause the
packets to be processed at different times.
This introduces a problem when several clients attempt to make queries to the SPEAR applica-
tion, as the queries of different clients may be processed in different order at different SPEAR
nodes. In the data collection phase this might result in data entries from a single input query
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being stored in different order at each SPEAR node. If in such situation the secure compu-
tation were executed, wrong values would have been handed for processing to the underlying
protocols, effectively resulting in completely wrong computation outcomes. Hence, additional
mechanisms are required to ensure the correct order of entries in the databases of SPEAR
nodes. We describe a couple of example solutions below.

• Use session identifiers and transactions. When the client connects to the SPEAR nodes,
they could engage in a communication round to agree on a session ID for the client before
it can make a query. The session ID could also be generated and served to the client
by a central authority where the users authenticated himself. Then, all client’s queries
can be associated with that particular session ID and the SPEAR nodes can use it to
make synchronized transactions to the database. In the case with the central authority,
the SPEAR nodes may need to verify the session ID with the central authority to check
if the ID is valid (i.e. exists and not expired). This logic can be implemented in either
the application backend or in DAGGER engine. The option allows to detect any errors
related with data entry at the very early stage, but requires more synchronization rounds
than the option below.

• Use data entry identifiers. Alternatively, each data entry could be assigned a certain
unique identifier, either generated by the user client, provided to the user by the applica-
tion, or somehow derived from the user query. The data entries are stored by the SPEAR
nodes in the order they are received, but the entry identifiers are included with the data.
Later, in the computation phase, each data entry will have the same unique identifier
across all SPEAR nodes. The individual entries could be picked by the identifier, or all
the entries could be sorted by the identifier to get the same order across the deployment.
Before the computation, it may be required for the SPEAR nodes to communicate to
agree on the common intersection (a subset) of entries that exists on all the nodes. If a
SPEAR node does not have an entry with an identifier suggested by another node, then
it is discarded. This option requires only one synchronization round before the computa-
tion, but requires more storage space because of the need to store the identifiers. It also
doesn’t guarantee that all the data entries will be successfully stored on all the nodes.

Fault tolerance A well designed application is capable of recovering from various unintended
behaviors. While there are many such behaviors, some are especially important to consider in
case of secure computation applications.
A SPEAR application is built as a distributed service with the chosen DAGGER sub-platform
potentially performing joint computation over the network. The crashing of a SPEAR node and
network errors can introduce significant problems to the application if the software contains bugs
or is not well designed. For example the nodes hosted by other computing parties may become
out of sync, locked in a certain state, or even crash altogether. Therefore, the application should
be able to restart the crashed or interrupted operations and either a) continue where previously
stopped; or b) rollback and restart from a known checkpoint. Transactional processing of data
may help deal with such kinds of problems.
The application backend shall also verify the data sent from clients to avoid buffer overflows,
SQL injections, cross site request forgery and other attacks. An application processing private
data shall follow the best practices for application development.
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Application Frontend

On the client side the application can represent different actor roles. A data entry application
would implement the behavior of the input parties, while a data analysis application would
implement the behavior of the result parties. Hence, the application frontend should have all
the required functionality to support both use cases.
A general client application consists of the Application Frontend Logic that handles the user
interface and communicates with the Application Backend Logic, and also the Protocol Suite
Frontend that handles data encryption and decryption in a way that is compatible with the
selected DAGGER engine on the server side of the application. In cases, where the Application
Backend Logic is non-existent or is fully implemented as part of DAGGER engine, the client
may also contain a Secure Service Interface to communicate directly with the DAGGER engine.
The application designer has the following design choices related with client applications (Ta-
ble 2.8):

Implementation platform There are two ways to implement the client application.

• Web application. In this case the application is intended to be used with the standard
web browsers on PC and mobile devices, and is therefore implemented in languages (i.e.
HTML, CSS and JavaScript) supported by modern browsers and platforms. In theory it
can also be implemented as a Java applet (or similar alternative), but that would require
the user to install an additional browser plugin, which can become problematic due to
security policies, user permissions, user skill, platform compatibility and other reasons.
The advantage of the web browser-based option is that the application can be dynamically
downloaded over the network from the backend service. This significantly improves the
ease of deployment as well as the maintainability of client side parts of the application.

• Standalone client software. Alternatively, a standalone client can be designed as a
self-contained type of software that includes an integrated UI (e.g. Graphical User Inter-
face or a Command Line Interface) and the means for communicating with the backend.
A standalone client can be implemented using a range of compiled or interpreted pro-
gramming languages and therefore provides more customization flexibility (e.g. a custom
protocol for communicating with the SPEAR nodes). This option involves installing cus-
tom software to the user’s device, and as such it allows more mechanisms to ensure that
software deployment is performed securely and the software itself is legitimate. However,
the ease of deployment and maintainability of the software are greatly reduced compared
to the web client option.

Point of encryption The idea of protecting data comes from the need to protect the interests
of the data owners. The data should be accessible only to its owner and nobody else. For that
reason, all the the data must be encrypted at the owner’s control boundary, before it is handed
to the application for processing. Depending where the boundary lies we can identify two
possible points of encryption in the SPEAR architecture.

• At the client. The most common scenario is that the point of encryption lies right at
the input party’s client. First, the Application Frontend Logic component deployed to
the client uses the proper Protocol Suite Frontend component to encrypt the data. Next,
the encrypted data is submitted to the application backend or directly to the DAGGER
engine for further storage and processing. This model protects the data of each individual
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Table 2.8: Aspects to consider when designing the SPEAR Application Frontend and client
application.

Aspect Category Description
Implementation
platform of
Application
Frontend

web application used with web browsers, can be dynamically
downloaded, improves the ease of deployment and
maintainability

standalone
client software

self-contained software with integrated UI,
provides more customization flexibility and more
secure deployment

Point of
encryption

at the client right at the input party’s client, this protects the
data of each individual input party

at the proxy well monitored proxy encrypts the data before
passing it to the application

Bootstrapping
trust

trust based on
user preference

the user may load the application by accessing
the SPEAR node hosted by the computing party
of the user’s preference

auditing auditing the application he receives from any
party, potentially multiple nodes and compare to
detect lying party

central trusted
authority

central trusted authority with legal or contractual
obligations to host initial access point of
application

signed applets for web applications: run signed code via plugins
and verify authenticity

manual
installation

install standalone version, signed by all the
computing parties, least flexible option in terms
of delivery

Source of
randomness

Web
Cryptography
API

well-established cryptographic PRNGs

Combine
randomness
from multiple
sources

various techniques are available to seed the
software PRNG which then provides large
amounts of randomness

Result
verification

at Application
Frontend

should verify that all the nodes send identical
plaintext data

UI design of SPEAR
application

can greatly improve the user’s sense of security if
designed correctly

input party and fits well with both the centralized and distributed secure computation
techniques.

• At the proxy. Alternatively, we can imagine a situation, where the control boundary
includes more than one client, e.g. an organization with a number of employees. The goal
of the organization could be to allow its workers to securely process the corporate data.
Hence, it could set up a well monitored proxy that encrypts the data of its employees
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before passing it to the application. In a sense the organization with all its employees
acts as a single input party. If desired, this option can be further modified to include
the Application Backend inside the organization control boundary and let it play the
proxy role in communicating with the DAGGER engine hosted on the cloud. An example
application based on this model is described in Section 3.4.

Bootstrapping trust The idea of cloud-based applications is that besides their scalability
and ease of deployment they can also be easily accessed by the users over the network. The
most common type of cloud applications is a web application that is accessed by the user via
a web browser. However, there is an inherent fundamental problem with deploying secure
computation applications in the web. The initial application code is loaded from a single server
with a certain domain, while secure computation may assume a distributed deployment. As
web applications cannot be signed, the user must either trust the web server providing the
application web page or audit the entire client side code before using it. In a sense, it is a
variant of the “trusting trust” problem [127]. Below we discuss some of the options to approach
the problem when designing a SPEAR application.

• Trust based on user preference. In the distributed setting a SPEAR web application would
be replicated across a number of SPEAR nodes, each running identical software. The user
may load the application by accessing the SPEAR node hosted by the computing party
of users preference. For example, if a computing party is a representative of a group of
input parties, then that group would trust such computing party not to tamper with the
client software and prefer accessing the application via that party. A worse option would
be to try reduce the odds of accessing a SPEAR node under the adversary control by
randomly accessing one of the nodes.

From the technical side each SPEAR node could have either a completely independent
domain name, or use a numbered or named subdomain of a commonly agreed domain
name. In case of independent domains the known Same Origin Policy 1 of the browsers
will need to be bypassed. Fortunately, this can be done in a controlled manner by using,
e.g., HTML5 Web Messaging API 2, CORS 3 headers or WebSockets 4 [125].

Since the initial application is loaded from a single server, then it could potentially lie
about the domains or IP addresses of other SPEAR nodes. To leverage this to some
extent, trusted certificates are used by each SPEAR node to prove their identity. This
would require that the users know in advance (possibly from out-of-band channels) by
whom the application is hosted, so they can compare the identity with their knowledge.

• Auditing. In a setting similar to the previous one a user may have no preferred computing
party to load the application from. In this case the user could try auditing the application
he receives from any party. Furthermore, he could try accessing multiple nodes and
comparing the application code received from them for any differences (either by hand
or using some automated tool). This can help detect a lying party. If no differences are
detected, then either any one of them can be used, or none at all, as that would mean
that everyone lies. In the latter case the security assumptions of the application would be
broken, which defeats the whole point of using secure computation technology and, thus,
should never happen.

1Same Origin Policy – http://www.w3.org/Security/wiki/Same_Origin_Policy/
2HTML5 Web Messaging – http://www.w3.org/TR/webmessaging/
3Cross-Origin Resource Sharing – http://www.w3.org/TR/cors/
4WebSocket API – http://www.w3.org/TR/websockets/
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• Central trusted authority. An application could rely on a central commonly trusted au-
thority to host the initial access point of the application. For example, it could be the
same entity that authenticates the user. It could be independent or audited by all the
computing parties of the application. Such an entity can also have legal or contractual
obligation to ensure security of the application by participating and auditing efforts.

• Signed applets. A possible approach to the trust problem of web applications could be to
utilize the ability of browsers to run signed code via plugins. For example, the browsers
allow installing a Java plugin and then running signed Java applets loaded from the web.
If the client software of a SPEAR application is developed as a Java applet and signed by
a trusted party, then the user could verify its authenticity. Also, such an application is
packaged in a self-contained jar file, which is easier to verify using alternative mechanisms,
such as hash verification.

• Manual installation. Probably the most secure way for the user is to install a standalone
version of the application. It can be signed by all the computing parties and the applica-
tion developer after everyone has audited and agreed to its code and even the hardcoded
addresses for communicating with the computing nodes. However, this option is the least
flexible in terms of delivery.

Source of randomness On the client side the application frontend is required to encrypt the
user inputs and this requires cryptographically secure randomness for the security assumptions
to hold. One of the problems with the browsers is their ability to generate cryptographically
secure randomness. For a long time there was little to no support for such functionality. There
exist software implementations of pseudorandom number generators in JavaScript, but the
randomness they produce is rather weak for secure computation as they are not seeded with
good entropy. The possible options in that regard are:

• Newer browsers support the Web Cryptography API 5 that can generate cryptographically
random values using well-established cryptographic pseudo-random number generators
seeded with high-quality entropy.

• On the browsers that do not support the Web Cryptography API, it is necessary to gather
and combine randomness from multiple sources to get good enough entropy that could be
used for seeding the software PRNG in JavaScript. While there are various techniques,
including based on mouse movement, a good idea would be to ask a small amount of
cryptographically secure randomness from each SPEAR node and then, e.g., bitwise xor
it all together. The resulting randomness will also be cryptographically secure and good
to seed the PRNG, which can then be used for getting larger amounts of randomness
necessary for encrypting data inputs.

Result verification The client uses the SPEAR application by making requests and receiv-
ing responses. In a distributed setting the requests are made to all the SPEAR nodes of the
application. Based on security assumptions of the underlying DAGGER configuration, a num-
ber of SPEAR nodes may be expected to behave maliciously. They can also do so unwillingly
by error due to developer’s fault.
To reduce any errors, the application frontend should verify that all the nodes send identical
plain-text data. The encrypted values are difficult to verify, as the encryptions sent by the nodes

5Web Cryptography API – http://www.w3.org/TR/WebCryptoAPI/
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are expected to differ by design. Some assessment can be made by looking at the decrypted
value. If a computing party lied, the decryption may result in an unreasonable value.

UI design The User Interface of a SPEAR application can greatly improve the user’s sense of
security if designed correctly, or destroy the trust otherwise. It has to communicate the security
to the user in the best way possible. A good UI would allow the user to distinguish secure data
collection from standard web forms, so that the user can identify the moment when his extra
attention is necessary. For example, the UI could visually identify the computing parties and
communicate the state of input data encryption and processing.

Secure Computation Algorithms

Secure Computation Algorithms represent the business logic that exclusively processes private
data by operating with primitives exposed by the Protocol Suites. The algorithms are imple-
mented as Secure Computation Specifications by following a special SCS format that can be
understood by the DAGGER secure computation engine. These specifications are then exe-
cuted by the DAGGER engine. The development of secure computation algorithms is carried
out in the following four steps, that should be witnessed by the computing and result parties
to build understanding of the joint data analysis task.

1. Describe the data analysis task. First, the general problem statement given by the
stakeholders should be analyzed, followed by a description of how secure computation
systems can be used to solve the problem. The analysis task defines the requirements for
the system, e.g. which parties provide what data, how the data is combined and what
the results of the analysis are. The choice of a suitable secure computation system can
be guided by prototyping the task in plain-text pseudocode, as it helps gaining better
understanding of the kinds of algorithms and operations potentially required to solve the
problem. The topics related with this step are covered in Sections 2.1.1 and 2.1.2.

2. Specify the data model. The data model should be specified, using the descriptions of
the input and output data, which can depend on the structure of the existing databases
of the input parties. The input data has to be converted into the primitive data types
of the chosen DAGGER engine before it can be processed. The data model should also
show which data can and cannot be revealed to the secure computation system. More
details on this are provided in Section 2.1.3

3. Develop the business logic specification. Next, the application logic should be
written in the DAGGER language to perform the data analysis task. Since the secure
operations are much slower than their public counterparts, it is important to select the
right algorithms for each specific analysis task. For that reason the secure implementations
may end up somewhat different from the initial plain-text prototypes.

4. Integrate into the SPEAR application. Finally, the developed secure computation
algorithms have to be integrated into the SPEAR application. The algorithms compiled
to the SCS format are first deployed to the DAGGER engine. Then, for each kind of
query that the SPEAR application backend is designed to handle, the DAGGER engine
must be invoked to execute the corresponding SCS implementation.
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2.2.4 Protection of data

In order to securely process data, a SPEAR application relies on the DAGGER platform,
i.e. a secure computation engine and its protocol suites, that provide Security-as-a-Service to
the application. While their choice is crucial for the security of the final application, the way
these technologies are utilized by the data analysis algorithms is equally important. DAGGER
encapsulates and abstracts away most of the cryptographic details of the underlying secure
computation techniques. However, the application developer is still required to have certain
understanding of the base principles and techniques for implementing secure data analysis
algorithms in such a way that the processed data is protected at all times. In the following we
provide the guidelines for implementing secure computation algorithms based on the DAGGER
platform.

Programming model of Secure Computation

The DAGGER engine can be programmed to operate with a multitude of secure computation
techniques implemented as Protocol Suites, each representing a unique combination of data
representations, algorithms and protocols for storing and computing on encrypted data. A
data analysis algorithm can employ these techniques to process data securely. Depending on
the application requirements, it may use one specific technique, multiple different techniques
or multiple similar techniques with different configurations.
An instantiation of a secure computation technique represents an independent environment for
secure computation (also referred to as protection domain [21], secure environment or security
type) containing a set of data that is protected with the same resources based on that technique.
Thus, a secure computation algorithm would operate with a number of such secure environ-
ments, each powered by a specific secure computation technique configuration and securely
processing certain private data according to the algorithm. In this programming model we
also have an extra environment for storing and processing public data, that does not apply any
protection and is powered by the DAGGER virtual machine and the underlying infrastructure.
Next, we discuss the security aspects of this model with regard to the information and control
flow.

Information flow In secure computation algorithms we can clearly distinguish between a
number of environments in which the data is processed. Namely, we have an environment
for public data and one or potentially more environments for private data. When the data
providers encrypt the data, it is transferred from the public environment to one of the secure
environments. Then, the data can move from between the environments to achieve certain
application goals.
The information flow between the different environments must be strictly controlled because
the environments provide different levels of protection and moving data from a stronger to a
weaker level of protection is a security risk. Especially undesired is the unintended or too early
declassification (release) of information from a protected environment to the public environment.
The algorithms should not allow to determine inputs based on outputs. For that reason, all
parties must be informed of any points in the algorithm where the data crosses the boundaries of
secure environments, so that they can understand what data is changing level of protection (or
is being released completely) and assess the risks associated with that. This kind of assessment
can be automated by static security analysis tools that can track the information propagation
through these boundary crossing points and perform formal verification to ensure the algorithm
does not leak more data than desired.
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Control flow In traditional computer execution models the control flow of the program is
public, i.e. all branching decisions are made based on public unencrypted data. In secure
computation there is an additional notion of private data that is handled inside the secure
environments. This allows us to discuss two different kinds of control flow in secure computation
algorithms.

• Public control flow. In this case the algorithm specification (i.e. the list of instructions) is
public and is executed by a public VM or a CPU, just like any traditional software. The
branching is performed using public values and is therefore fast. The difference from the
traditional applications is that the private data is stored in encrypted form inside a secure
environment and is processed as such by the corresponding secure computation technique.
The secure computation algorithm publicly specifies which secure non-branching opera-
tions need to be performed on any particular piece of private data, and the respective
secure implementations of the specified operations are invoked by the DAGGER engine
when executing the algorithm specification.

This is a common way to implement MPC applications. It should be noted though, that in
this execution model the branching cannot be done based on private data. If it is necessary
to branch based on private value, that value must first be made public. However, this
may leak some information about the inputs and must be done very carefully: a) on a
minimum possible scale; b) only on values with low privacy risk; c) as late as possible,
preferably for the final results.

• Private control flow. There exist unconventional techniques that allow hiding the deci-
sion made based on private data without disclosing any information. On the algorithm
level this can be achieved by computing both branches obliviously. A simple mathemati-
cal example would be replacing the conditional statement if (b) x = y; else x = z;

with the formula x = b * y + (1 - b) * z;. Depending on the Boolean value of b, the
variable x will receive the value of either y or z; However, since both branches must be
computed and combined using secure computation, branching on private data can quickly
become a performance bottleneck and must therefore be used with caution.

Alternatively, there exist cryptographic techniques that allow evaluating arbitrary pri-
vate functions. An example of such technique based on universal circuits is presented
in Section 3.1. Private Function Evaluation can be useful whenever there is a need to
hide the function being computed (e.g. banks not willing to disclose the credit worthiness
checking procedure, or Tax and Customs Board not willing to disclose fraud detection al-
gorithms). The cryptographic techniques for hiding functions are usually built as low-level
task-specific protocols and can be integrated via the Protocol Suite mechanism.

Maximizing the entropy

One of the security goals is to maximize the entropy (measure of uncertainty) of the intermediate
values and the final outputs that are to be made public by the algorithm.

• Aggregation of data. One way to increase entropy is to apply data aggregation techniques.
Aggregation combines the individual data values into various trends and statistics. This
breaks the dependence of outputs on the inputs and makes it much harder to recover the
original values from the outputs. The more complex aggregation is, the better entropy it
can produce.
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• Large datasets. The amount of data in the aggregation also contributes to the entropy
of results. The larger the dataset, the harder it is to derive original values from the
aggregated result. As a nice bonus, more data also ensures statistically more interesting
results.

Hiding links to data sources

In many cases it will be necessary to reveal a vector of values indicating some information about
the original input entries. For example, one could learn whether or not some entry matches
certain conditions or belongs to a set. The problem is that the computing party can monitor
who submitted which encrypted entries during the data collection phase, e.g. by looking at IP
addresses or authentication information, and may be able to link that new information to the
data owner, which is not always desirable.
The links between the data and its provider can be removed during the computation phase
by obliviously shuffling (randomly permuting) the encrypted database rows. This hides the
initial order of rows and therefore removes the link between the order of input. Sometimes
new information about more than one column of a database may be revealed. In these cases
shuffling each column separately can also help.

Handling malicious queries

A SPEAR application must also consider protection against malicious queries by result parties,
who may deliberately attempt to exploit the query mechanism to learn new information or
influence the outcomes. The application developer should consider the following ideas to secure
the query mechanism.

• Access control of input and result parties can prevent unauthorized access to the appli-
cation or to certain types of queries. However, it does not protect against authorized
parties.

• Exceptional input detection. Corrupt input parties may attempt to provide exceptional
(invalid) values as inputs. This can affect the computation outcomes or even leak other
inputs. One should therefore reduce the dependence of outputs on exceptional values.
Since the private values are encrypted and cannot be seen, then the oblivious filtering
techniques (e.g. outlier detection) must be used. For example, the comparison operations
can be used for finding filters, while the addition and multiplication can be used to apply
filters.

• Minimum amount of entries. If there are too few input entries in the database, this can
be used to exploit simple algorithms, such as sum or mean. This can compromise the
privacy of input parties who provided their data in good faith. The queries a result party
can make must leak minimum amount of information about the inputs in the database.
Hence, limitations should be set on the minimum amount of entries in the database before
a data analysis algorithm can be executed by the result party. This relies on the idea
we discussed previously, that a larger amount of data provides better entropy of the
aggregation result.

• Differential privacy techniques, such as mixing controlled random noise into the compu-
tation, can be used to reduce chances of deducing inputs from outputs. However, this
also reduces the accuracy of outputs.
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2.2.5 Performance optimizations

Secure computation techniques have a significant impact on the performance of SPEAR ap-
plications compared to conventional applications that compute only on public data. Some
techniques are faster than the other, but in general they are all designed to protect data by
performing heavy-duty highly resource intensive cryptography. The distributed secure compu-
tation is typically mainly bottlenecked by the network communication, while the centralized
secure computation relies more on the computational resources. Depending on the techniques
employed by the data analysis algorithms the developer must apply appropriate optimization
techniques to get the most performance out of the application given its fixed configuration. In
the sections below we describe a set of optimization techniques applicable to secure computation
applications.

Data parallelism

Data parallelism is a form of parallelization that focuses on distributing the data across different
processor nodes, which operate on the data in parallel. It can be applied on regular data
structures like arrays and matrices by working on each element in parallel. Data parallelism is
closely related to Flynn’s SIMD (Single Instruction, Multiple Data) classification [43].

Communication overheads The MPC based secure computation techniques extensively
rely on the network communication to compute secure operations. Efficient use of the network
can improve the overall performance of secure computation algorithms. The data is transmitted
over the network in packets, each containing a header and a payload. However, the transmission
process involves certain overheads:

1. Each packet has a header that has to be transmitted causing bandwidth overhead.

2. Each packet has to be routed to the destination requiring a certain amount of routing
decisions resulting in time delays.

3. Each packet involves network protocol processing and device interrupts resulting in time
delays.

All these overheads can be reduced by sending few large packets instead of many small packets.
This will allow to save up on bandwidth as well as reduce communication rounds. In practice
this can mean a significant throughput improvement and consequently a strong performance
boost.

Operation vectorization The observation discussed above can be utilized to significantly
improve performance of secure computation algorithms by increasing the amounts of data each
secure operation processes in parallel. A vector processing technique like SIMD can be applied
here. The DAGGER engine can be thought of as a programmable computer with SIMD instruc-
tions (assuming it supports vectorized operations). Then, instead of executing many distinct
secure operations on single values, the operations should be executed on vectors of values. This
kind of vectorization should be practiced thought the algorithm to make all its operations more
efficient in the underlying protocols.
In reality the performance boost can be significant even if there is very little to process. Hence,
the programmer should choose to implement well parallelizable algorithms. At the same time,
vectorization should be practiced smartly, since too extensive use of this method may unwillingly
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result in a very large memory footprint. For example, the algorithms that process data in a
breadth-first manner will result in larger vectors, while the algorithms with smaller depth
will require less iterations to compute and therefore have less communication rounds. One
should also consider tailoring the algorithm for better balance between memory requirement
and performance [65].

Task parallelism

Task parallelism is a form of parallelization of computer code that focuses on distributing tasks –
concretely performed by processes or threads – across different processors in parallel computing
environments.

• Local task parallelism. In a multiprocessor system, task parallelism is achieved when each
processor executes a different thread or process on the specified data. A secure compu-
tation algorithm could utilize multithreading or multicomputing to compute independent
branches in parallel. This can help speed up the local computation.

• Scalable distributed computing. The processors in a distributed system run concurrently in
parallel. The task can be parallelized by splitting it into smaller independent subtasks and
distributing these among a cluster of processors for completion, similar to the MapReduce
model. In case of a SPEAR application, the DAGGER part of SPEAR can be replicated
onto additional hardware resources and marshalled by the SPEAR application to compute
a number of similar or different subtasks in parallel. This technique allows to securely
process large data sets in a massively scalable way. An example application utilizing this
scalable distributed computing approach is described in Section 3.3.

Data Type and Operation Optimization

Various secure computation techniques can have very different performance levels. In Sec-
tion 2.2.2 we have already covered how different properties as well as the secure operations
and data types of various techniques affect application performance. We therefore refer the
reader to revisit that section for more details on the topic. For the sake of completeness and
to signify the importance of data type and operation optimizations we here provide the list of
key optimizations covered earlier.

Operation optimizations

1. Target efficiency of operations that have most weight in the algorithm.

2. Combine fastest operations from multiple protocol suites.

3. Utilize optimized task-specific operations.

4. Experiment with input sizes to learn the performance curve of the operation.

Data type optimizations

1. Prefer smallest and simplest data types in the data model as these are generally faster.
For example, there is no point to hold small numbers in a 64-bit integer type.
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2. Combine fastest data types from multiple protocol suites. For example, operations on
integers may be faster in protocol suite A, while the operations on floating point numbers
are faster in protocol suite B.

3. Reduce complex data values to simpler types, when possible. For example, currency can
be converted from floating-point numbers to integers by multiplying by a large enough
constant to include enough decimal places after comma. After computation the values
can be divided by the same constant.

Efficiency-privacy trade-off

Algorithms can often be optimized at the cost of leaking some information. The general idea
involves reducing the amount of private data that has to be computed securely by the data
analysis algorithm. Since secure computation is very expensive, a reduced amount of data
would have a positive effect on the performance of the algorithm. The data reduction can
be achieved by making small controlled leaks of information that is known to have low enough
privacy risk, and then discarding part of the private data based on the revealed information. The
optimization boils down to finding an acceptable efficiency-privacy trade-off for the algorithm.
The applicability of such optimizations largely depends on the particular algorithm.
An example of this optimization would be computing a predicate on a table and declassifying the
availability vector to discard the entries that do not satisfy the condition. Otherwise the secure
computation algorithm would have to account for the whole availability vector and compute on
the whole table, resulting in much higher amounts of data that need to be processed.

Precomputation

Precomputation is the act of performing an initial computation before the run time to prepare
or generate some data in advance with the purpose of increasing algorithmic efficiency. We can
identify the following points where precomputation can be applied.

• Preparing unencrypted private data. The last chance to compute on private data in unen-
crypted form is at the client side of an input party before the data collection phase. There
is no need to compute a function with secure computation if it can be computed much
faster in clear text. Thus, the algorithms should be designed such that the computation
in encrypted form is minimized and the expected inputs are submitted to the SPEAR
application in the most prepared form eliminating the need or possibility to perform any
further preparation prior to secure computation.

• Preparing submitted private data. Another precomputation idea is that the input data
is “prepared” after the data collection phase but before the data analysis phase. This
may allow to significantly boost the performance of the analysis phase, especially if many
queries are to be made against the prepared private input data. This optimization has
been applied in the Tax Fraud Detection example in Section 3.3 where between the upload
and risk analysis phases there is also an aggregation phase. Similarly, in the Generic
Data Collection Application example described in Section 3.5, there is a separate data
preparation phase.

• Precomputation in protocols. Precomputation allows a secure computation technique to
perform the majority of the expensive computations in an offline phase. Typically, the
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offline phase does not depend on the computational task at hand. However, the require-
ment for precomputing may limit the usability of the protocols in certain scenarios where
quick reaction times are needed immediately after starting the secure computation appli-
cation. Task-specific protocols may similarly benefit from precomputation. For example,
the task-specific protocol for malware checking via Private Set Intersection described in
Section 3.2 has an offline phase.

Caching

The idea of caching is to store intermediate computation results in memory or in the database
in order to allow reusing these results in the future and avoiding their recomputation to increase
performance. Since secure computation is expensive, caching should be utilized by both the
DAGGER secure computation algorithms and the overall SPEAR application backend to store
any secure computation results that may become useful in the future. In a sense, caching has
similarities with precomputation, as both are storing some computation results for the future
use. However, caching can by applied at any point in time and code where any new computation
results emerge.

Optimizing for the underlying protocol

When designing applications based on secure computation, a developer also has to consider
which optimizations are or can be included in the underlying secure computation protocol.
This naturally depends on the application as well, but depending on the underlying protocol
and its optimizations, one can also benefit from optimizing the developed application for the
given protocol. This might allow the developer to achieve better performance than without
considering the properties of the underlying protocol and optimize the application.
As an example use case, when designing private function evaluation (PFE) using universal
circuits (UCs) as described in [72] and in Section 3.1, it can be discovered that a universal
2-input gate, i.e., a gate that can be programmed to compute any gate with 2 inputs and
1 output by one party without revealing the gate functionality to the other party, can be
achieved with Yao’s garbled circuit protocol with the third of the communication than with
the GMW protocol. The reason for this is that in Yao’s protocol we can assume that the party
who programs the universal gate to compute a specific gate is the garbler and therefore after
garbling the gate, he does not have to put additional effort into hiding the gate functionality.
However, for the case of the GMW protocol, the functionality of the gates are known to both
parties and therefore one needs to design a universal block that can be programmed to evaluate
any gate with two inputs and one output. The most efficient such blocks consists of 3 AND
and 6 XOR gates and therefore results in at least 3 times more communication between the
parties during evaluation for any such universal block or gate.

2.3 Deployment

Having designed and developed a SPEAR application one would have to deploy it to the real
world. In deliverables D21.2 [22] and D14.1 [30] the development and deployment model for
SPEAR applications and its DAGGER platform has already been covered. In this section we
provide some additional practical guidelines with regard to deployment of secure computation
applications.
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Hosting and delivery A typical SPEAR application would consist of the DAGGER platform
(engine, protocol suites, storage) and the SPEAR application (application backend, frontend
and the secure computation algorithms written in the DAGGER language. The DAGGER
engine, application backend and secure computation algorithms represent the server side node
of the SPEAR application and as such are hosted either on a number of cloud providers (one
per computing party) or in the premises of the computing parties, where they can fully control
the deployment. In the cloud deployments the cloud service providers act on behalf of and in
agreement with computing parties. A mix of cloud and private hosting can also be considered.
The application frontend must be delivered securely and in a trustworthy manner to the input
and result parties. For desktop client applications, this means ensuring the correctness and
authenticity of the code by techniques such as code signing. For the web applications it is also
important to inform the users of the correct URL.

Security From the security point of view the SPEAR nodes of the application must be
guaranteed to be physically well protected from the third parties so that the data encryptions
from the node are not stolen. Also, since non-collusion is difficult to achieve technically, personal
motivation and contractual/legal obligations shall be seeked as additional countermeasures to
reduce the risks. This can be a serious requirement in case of e.g. governmental institutions.
The SPEAR nodes must be interconnected with reliable communication channels (LAN or
WAN), that are encrypted and authenticated (e.g. TLS). This is one of the assumptions for
most MPC secure computation techniques as well. It must be noted, that the typical network
encryption is secure only against computationally bounded adversaries.

Exchanging credentials The computing parties will require a set of credentials in order to be
able to authenticate each other over the network. Each computing party must generate itself an
asymmetric keypair and securely exchange the public key credentials with the other computing
parties. Key exchange can be done via a separate authenticated out-of-band communication
channel. For example, the key could be handed over on a personal meeting after having visually
identified each other, or in encrypted form over the network. In the latter case the password
still has to be exchanged or, e.g., a national PKI infrastructure could be utilized instead.

Agreement During the deployment phase the computing parties have to agree with each
other, that they:

1. use the same version of SPEAR application.

2. use the same DAGGER platform and configuration, e.g. the engine and protocol suite
versions and parameters.

3. agree to the secure computation specified in the algorithms and in the backend of a
SPEAR application.

The first two goals can be achieved by exchanging the digests of the respective software pack-
ages and verify the digital signatures of the code. The application can potentially also be
programmed to perform such checks.
To achieve the third goal, each party must at least witness the development process. Ideally,
each party should also be able to independently audit the application source code and build
the final binaries. Auditing can be automated by the means of formal verification tools.
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Compatibility A computing party may have certain internal corporate policies which can
impose hardware or operating system requirements on the deployment environment. Large
companies and institutions can therefore prefer older or less common platforms, which can
become problematic due to compatibility reasons. Hence, the deployment requirements should
be taken into account early to avoid confusions in the deployment phase.

Testing A good idea is to test the production deployment before using it with real data. The
aspects to pay attention to are:

• Bugs. Secure computation or optimizations could have introduced bugs during devel-
opment or deployment. One way to check for bugs is to have the same computation
algorithm implemented on plain text and compare if it gives the same results with same
data as the deployed secure computation version.

• Accuracy. Secure data types may have cut corners to gain performance at the cost of
accuracy. It is therefore important to check if the secure application has any accuracy
loss compared to the plain text version

• Performance. One should also test performance with good generated test data similar to
the real one. This is to ensure that no surprises occur after deployment. For example,
on a development machine everything could have worked, but after moving to produc-
tion machine the differences in deployment and environments could negatively impact
performance.

Retirement After the application has completed its mission and is no longer needed, it is
important to correctly retire it. The data should be securely erased from the machines so that
it cannot be leaked or reused later. In the distributed setups it may often be enough erasing
the data one one single SPEAR node, since the values of all nodes are required to reconstruct
the secrets.

PRACTICE D21.3 Page 44 of 112



Application architecture for secure computation

Chapter 3

Example Applications

In this chapter, we provide example applications that were developed on top of the PRAC-
TICE architecture presented in deliverable D21.2 [22] by partners in the PRACTICE project.
The design decisions described in Chapter 2 has been made when constructing these applica-
tions, the respective partners provide description of the most important aspects considered.
The applications presented below are also highly optimized in most scenarios to achieve good
performance, which represents the capabilities of the secure computation technologies. In the
following sections, we present applications that use secure computation technologies, letting the
application requirements speak for themselves.
The applications are first presented in an overview section, after which their architecture is given
and possibly details on the implementation is provided. In the end of every section, we draw
conclusions about the application. In Section 3.1, privacy-preserving credit checking based on
private function evaluation via universal circuits is described. This prototype application uses
the ABY and Fairplay secure computation frameworks along with a tool developed for compiling
circuits into universal circuits to be able to evaluate functions in a private manner. Section 3.2
presents an application based on a task-specific protocol and its implementation using the ABY
framework: a malware checking mobile application between a large database holding known
malwares and a computationally weak mobile device with a couple of applications installed.
Private set intersection can be used to determine the malwares on the user’s mobile device. In
Section 3.3, privacy-preserving tax fraud detection using parallel computation is described and
is based on the Sharemind secure computation framework. This application has already been
deployed in Estonia and uses generic secure computation techniques to analyze value-added tax
declarations in a privacy-preserving manner. SEEED-proxy is presented in Section 3.4 that is
based on encrypted databases (SEEED) and enforces privacy of the data for cloud based web
applications. A generic data collection application, based on the FRESCO secure computation
framework, is detailed in Section 3.5.

3.1 Privacy-Preserving Credit Worthiness Checking Us-

ing Private Function Evaluation

Private function evaluation (PFE) enables two parties to jointly compute a secret function f ,
specified by one of the parties on the other party’s input x. The party providing the function can
also provide an input to the computation by including his input into the function description as
a constant. Since the function will be kept secret, his private input is also protected in this way.
An often cited example application of private function evaluation is credit worthiness checking
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in a privacy-preserving manner. On the one side, a client is applying for a loan at a bank,
and on the other side, the bank would like to check the credit worthiness of this customer.
This checking procedure, however, is desired to kept private by the bank. This means that the
bank’s checking criteria becomes the private function that is to be computed on the client’s
private inputs.
There exist specific protocols designed for PFE with linear complexity in the circuit size based on
homomorphic encryption and protocols with logarithmic overhead O(n log n) based on oblivious
transfer (OT). However, the concrete efficiency of these solutions is not clear since no practical
implementation is available. Universal circuits (UCs) and secure function evaluation (SFE)
or secure two-party computation provide another efficient solution for PFE. A UC can be
programmed to evaluate a circuit up to a given size, where the programming p becomes an
input to the universal circuit, i.e., f(x) = UC(x, p). Evaluating a UC with secure function
evaluation provides a generic solution for PFE, while UCs can be applied in various further
scenarios as well.

3.1.1 Application Overview

Any computable function f(x) can be represented as a Boolean circuit with x = (x1, . . . , xu)
input bits. Universal circuits (UCs) are programmable circuits, which means that beyond the
true u inputs, they receive p = (p1, . . . , pm) program bits as further inputs. By means of
these program bits, the universal circuit is programmed to evaluate the function, such that
UC (x, p) = f(x). The advantage of UCs in general is that one can apply the same UC for
computing different functions of the same size. An analogy between universal circuits and
a universal Turing machine allows to turn any function into data in the form of a program
description.
The most prominent application of universal circuits is the evaluation of private functions
based on secure function evaluation (SFE) or secure two-party computation. SFE enables two
parties P1 and P2 to evaluate a publicly known function f(x, y) on their private inputs x and y,
ensuring that none of the participants learns anything about the other participant’s input.
SFE ensures that both P1 and P2 learn the correct result of the evaluation. Many secure
computation protocols use Boolean circuits for representing the desired functionality, such as
Yao’s garbled circuit protocol [132, 80] and the GMW protocol [59]. In some applications the
function itself should be kept secret. This setting is called private function evaluation (PFE),
where we assume that only one of the parties P1 knows the function f(x), whereas the other
party P2 provides the input to the private function. P2 learns no information about f besides
the size of the circuit defining the function and the number of inputs and outputs.
PFE can be reduced to SFE [3, 113, 105, 76] by securely evaluating a UC that is programmed
by P1 to evaluate the function f on P2’s input x. Thus, P1 provides the program bits for
the UC and P2 provides his private input x into an SFE protocol that computes a UC. The
complexity of PFE in this case is determined mainly by the complexity of the UC construction.
The security follows from that of the SFE protocol that is used to evaluate the UC. If the SFE
protocol is secure against semi-honest, covert or malicious adversaries, then the PFE protocol
is secure in the same adversarial setting.
Efficient constructions considering both the size and the depth of the UC were proposed. The
first approach was the optimization of the size by Valiant [129], resulting in a construction
with asymptotically optimal size O(k log k) and depth O(k), where k denotes the size of the
simulated circuits. In this deliverable, due to the applications of private function evaluation,
e.g., diagnostic programs, blinded policies and database queries, we concentrate on the existing
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size-optimized UCs and note, that the asymptotically optimal size is Ω(k log k) [129, 131].

Applications of Private Function Evaluation

As mentioned before, UCs can be used to securely evaluate a private function using a generic
secure computation protocol. [27] shows an application for secure computation, where evaluat-
ing UCs or other PFE protocols would ensure privacy: when autonomous mobile agents migrate
between several distrusting hosts, the privacy of the inputs of the hosts is achieved using SFE,
while privacy of the mobile agent’s code can be guaranteed with PFE. Privacy-preserving credit
checking using garbled circuits is described in [48]. Their original scheme cannot represent
any policy, though by evaluating a UC, their scheme can be extended to more complicated
credit checking policies. [98] show a method to filter remote streaming data obliviously, using
secret keywords and their combinations. Their scheme can additionally preserve data privacy
by using PFE to search the matching data with a private search function. Privacy-preserving
evaluation of diagnostic programs was considered in [25], where the owner of the program does
not want to reveal the diagnostic method and the user does not want to reveal his data. Ex-
ample applications for such programs include medical systems [16] and remote software fault
diagnosis, where in both cases the function and the user’s input are desired to be handled
privately. In the protocol presented in [25], the diagnostic programs are represented as binary
decision trees or branching programs which can easily be converted into a Boolean circuit rep-
resentation and evaluated using PFE based on universal circuits. Besides, PFE can be applied
to create blinded policy evaluation protocols [47, 49]. [47] utilizes UCs for so-called oblivious
circuit policies and [35] for hiding the circuit topology in order to create one-time programs.
Further applications of PFE given in [88] are evaluation of branching programs on encrypted
data [63] and privacy-preserving intrusion detection [96]. Since PFE using UCs utilizes general
secure computation protocols, it is possible to outsource the function and the data to two or
multiple servers (using XOR secret sharing) and then run private queries on these. This is
not directly possible with other PFE protocols, e.g., with the protocol presented in [67] or the
homomorphic encryption-based protocols from [88, 89].

Applications of Universal Circuits Beyond Private Function Evaluation

Besides being used for PFE, UCs can be applied in various other scenarios. Efficient verifiabile
computation on encrypted data was studied in [41]. A verifiable computation scheme was
proposed for arbitrary computations and a UC is required to hide the function. [54] make
use of universal circuits for reducing the verifier’s preprocessing step. In [55], a multi-hop
homomorphic encryption scheme is proposed that also uses a universal circuit evaluator to
achieve the privacy of the function. When the common reference string is dependent on a
function that the verifier is interested in outsourcing, then the function description can be
provided as input to a UC of appropriate size. In [99, 42], universal circuits are used for hiding
queries in database management systems (DBMSs). The Blind Seer DBMS was improved in [99]
by making use of a simpler UC for evaluating queries, which does not hide the circuit topology.
The authors mention that in case the topology of the SQL formula and the circuit have to be
kept private, a UC can be utilized. As described in [13], the Attribute-Based Encryption (ABE)
schemes for some polynomial-size circuits can be turned into ciphertext-policy ABE by using
universal circuits. The ABE scheme of [53] also uses UCs.

PRACTICE D21.3 Page 47 of 112



Application architecture for secure computation

3.1.2 Application Architecture

In this section, we show how to construct a universal circuit from a standard circuit description
and how to program it accordingly. We validate our results with an implementation, creating a
novel toolchain for private function evaluation, using two existing frameworks as frontend and
backend from the PRACTICE architecture [22, Fig. 4.1] along with our tool. We emphasize
that our tool for constructing and programming UC is generic and can easily be adapted to
other secure computation frameworks or other applications of UCs.
The architecture of our toolchain for PFE using UCs is shown in Figure 3.1. In this section,
we describe its different artifacts and its use of the Fairplay [82] and ABY [34] frameworks. We
designed our UC compiler to work with these frameworks as frontend and backend, but it can
easily be adapted to other circuit formats and SFE tools as well.

Step 1. Compiling Input Circuits from High-Level Functionality using Fairplay:
Due to its easy adoptability, we use the Fairplay compiler [82, 18] with the FairplayPF exten-
sion [76] to translate the functionality described in the high-level Secure Function Description
Language (SFDL) format to the Fairplay circuit description called Secure Hardware Definition
Language (SHDL). The FairplayPF extension already converts circuits with gates with an ar-
bitrary number of input wires into gates with at most two input wires, which is required for
Valiant’s construction as well. However, in case of Valiant’s UC construction, there is another
restriction on the input circuit. It has to have fanout 2, i.e., the output wires of all the gates
and input wires can only be used as the input of at most two later gates.
In case the input circuit does not follow this restriction, an algorithm places a binary tree in
place of each gate with fanout larger than 2, following Valiant’s proposition: ,,Any gate with
fanout x+ 2 can be replaced by a binary fanout tree with x+ 1 gates” [129, Corollary 3.1]. This
is done using so-called copy gates, i.e., identity gates, each of them eliminating one from the
extra fanout of the original gate. An upper bound can be given on the number of copy gates.
The class of Boolean functions with u inputs and v outputs that can be realized by acyclic
circuits with k gates and arbitrary fanout, can also be realized with an acyclic fanout-2 circuit
with k ≤ k∗ ≤ 2k+ v gates [129, Corollary 3.1]. In [73], we give concrete examples on how this
conversion changes the input circuit size for practical circuits and show that in most cases, the
resulting number of gates remains significantly below the upper bound 2k + v.

Step 2. Obtaining the Graph of the Circuit: From the SHDL description of a C circuit
with at most two input and at most two output wires for each gate, the graph GC of the
circuit C can be directly generated: with the number of inputs u, the number of outputs v and
the number of gates k∗ in circuit C, GC has u+ v + k∗ nodes and the wires are represented as
edges in the graph. The first u nodes in the topological order correspond to the inputs, the last
v nodes to the outputs and the nodes in between them to the k∗ ordered gates. The resulting
GC graph has at most two incoming and at most two outgoing edges for each node, which is
denoted by GC ∈ Γ2(n) class of graphs.

Step 3. Generating Edge-Universal Graph Un: Knowing the number of input bits u,
the number of gates k∗ and the number of output bits v one can construct the corresponding
edge-universal graph Un, where n = u + v + k∗, with our input-output optimization from [72].
We note that no knowledge is necessary about the topology or the gate tables in circuit C for
this step. In Valiant’s universal circuit construction, two edge-universal graphs for graphs with
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Figure 3.1: Universal circuit compiler and toolchain for private function evaluation.
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at most one incoming and at most one outgoing edges for each node, i.e. Un,1 ∈ Γ1(n) and
Un,2 ∈ Γ1(n), are merged in order to obtain an edge-universal graph for graphs with at most
two incoming and at most two outgoing edges for each node, such that the poles are merged
and the edges coming into and going out from them become as follows: the edges in Un,1 will
be the first input and output for each pole, the edges in Un,2 will be the second input and
output. For efficiency reasons, we directly generate the merged edge-universal graph, i.e., an
edge-universal graph for Γ2(n), with the poles as common nodes.
We include our optimization for the input and output nodes from [72] and Valiant’s optimiza-
tions for n ∈ {2, 3}, but do not consider Valiant’s optimizations for n ∈ {4, 5, 6}. We include
an additional optimization, by means of which we can neglect those extra nodes that have only
one incoming edge when the graph is translated into a universal circuit description, since the
edges passing through them can be represented as wires.
We note that the edge-universal graph (with undefined function tables and control bits for the
universal switches) can be publicly generated. However, the party programming it has to either
generate or receive a copy of it for programming the control bits according to the topology of
the simulated circuit (i.e., to edge-embed GC into Un).

Step 4. Programming Un According to an Arbitrary GC Graph: The Γ2 graph of the
circuit GC with n nodes is partitioned into two Γ1(n) graphs GC

1 and GC
2 which are embedded

into the two edge-universal graphs that build up Un. Valiant proved in [129] that for any
topologically ordered Γ1(n) graph, for any (i, j) ∈ E and (k, l) ∈ E edges there exist edge-
disjoint paths in Un between the ith and the jth poles and between the kth and the lth poles.
Valiant’s method is described and the algorithm that uniquely defines these paths in Un is
detailed in [72]. We note that a graph with less than n nodes can also be embedded into Un,
in which case the result of the additional dummy gates are not outputted.
Once the embedding is performed, for defining the control bits, each node x has at most two
nodes that have ingoing edges to x, one is represented as the left parent and one as the right
parent of x in the edge-universal graph. The two consecutive nodes are also saved as left and
right children of x. Now, when x is a switching node and we take edges (v, x) and (x,w) in
the path, we save for x if parent v and child w are on the same or on the opposite side in the
edge-universal graph. This defines the control bit of each universal switch in the translated
universal circuit, where left and right parent and child translate to first and second input and
output, respectively. We note that in order to program Un correctly, we require that if x is the
left (right) parent of v in the edge-universal graph, then v is the left (right) child of x as well.

Step 5. Generating the Output Circuit Description and the Programming of
the Universal Circuit: After embedding the graph of the simulated circuit into the edge-
universal graph Un, we write the resulting circuit in a file using our own circuit description. In
the edge-universal graph, each node stores the program bit resulting from the edge-embedding
(control bit c of the corresponding universal switch) and each pole stores four bits corresponding
to the simulated circuit (the four control bits of the function table, c0, c1, c2, c3). Thus, after
topologically ordering Un, one can directly write out the incoming and outgoing wires for each
gate into a circuit file and the program bits to a programming file.
Our circuit description format starts with enumerating the inputs and ends with enumerating
the outputs. We have universal gates denoted by U , universal switches denoted by X or Y
depending on the number of outputs (X with two outputs and Y with one). We replace any
gates that have only one input by wires in the UC. The wires are represented in the following
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manner:

U in1 in2 out1

X in1 in2 out1 out2 (3.1)

Y in1 in2 out1

denotes that wire out1 (and possibly out2) is coming from a gate with input wires in1 and in2.
The program bits are not represented in the circuit format, but in a separate file, for each
universal gate we save a four-bit number representing the control bits and for each universal
switch we store a control bit. The output nodes are outputs of Y universal switches and are
marked in the end of the file as O o1 o2 . . . ov. The circuit and its programming are
given in plain text files.

Step 6. Evaluating Universal Circuits for PFE in ABY: As an example application
of UCs, we implement PFE using SFE of a universal circuit. We adapted the ABY secure
two-party computation framework [34] for this purpose. Firstly, since ABY uses the free-
XOR optimization from [75], we construct universal gates and switches with low ANDsize and
ANDdepth. With the cost metric we consider, X and Y gates have the same AND complexity,
optimized in [75] and are obtained as

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c⊕ in1

(out1, out2) = X(in1, in2; c) = (e⊕ in1, e⊕ in2) with e = (in1 ⊕ in2)c (3.2)

with ANDsize and ANDdepth of 1 for both universal switches. X gates are realized with one
additional XOR gate compared to Y gates.
Our efficient implementation of generic universal gates uses Y gates yielding

out1 = U(in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2), Y (c2, c3; in2); in1] (3.3)

with ANDsize(U) = 3 and ANDdepth(U) = 2. This universal gate implementation is generic
and works in all secure computation protocols. However, for Yao’s garbled circuits protocol, one
can further optimize it to ANDsize(U) = ANDdepth(U) = 1, as in some garbling schemes such
as the garbled 3-row-reduction [93] the gate being evaluated remains oblivious to the evaluator.
After constructing the efficient building blocks, the output circuit file of our UC compiler is
parsed, a circuit is generated accordingly and programmed with the input program bits. We
conclude that our toolchain is the first implementation of Valiant’s size-optimized universal
circuit that supports efficient private function evaluation.

3.1.3 Implementation Optimized for Efficient Private Function Eval-
uation

In this section we describe the challenges we faced while integrating three different tools to
perform the secure function evaluation of universal circuits via private function evalution.

Fairplay: Frontend for Translating Functionality

We use the Fairplay framework [82] as a circuit compiler, more specifically, its FairplayPF ex-
tension [76], which translates an SFDL function description to an SHDL circuit description,
allowing only gates with at most two inputs. The SHDL circuit description starts with enu-
merating the inputs, which is followed by the topologically ordered gates with their function
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tables and their input wires. If the gate is an output gate, it is specified in the same line (cf.
Listing 3.1).

Listing 3.1: Small example SHDL circuit

0 input

1 input

2 input

3 input

4 gate arity 2 table [ 1 0 0 0 ] inputs [ 1 2 ]

5 gate arity 2 table [ 0 1 0 0 ] inputs [ 0 4 ]

6 gate arity 2 table [ 0 0 0 1 ] inputs [ 4 3 ]

7 output gate arity 2 table [ 0 1 1 1 ] inputs [ 1 2 ]

Our UC Compiler

Firstly, we transform the circuit outputted by FairplayPF with fanin-2 and arbitrary fanout into
a circuit with fanin-fanout-2, denoted by C. This is an automatic transformation that takes
place via adding identity gates into the original circuit. This step is described in Section 3.1.2
as Step 1. Thereafter, the graph of this modified circuit GC is generated as described in Step
2. The construction of Valiant’s universal circuit and the embedding of GC takes place next,
which is the core of our UC compiler.
The output of the UC compiler consists of two files: one for the topology of the universal circuit
(cf. Listing 3.2 corresponding to Listing 3.1) and one for the programming corresponding to
the input circuit (cf. Listing 3.3). For every X and Y gates, one programming bit is specified
while for a universal gate U, an integer between 0 and 15 is given, specifying the function table
of the gate using four bits.
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Listing 3.2: Universal Circuit

C 0 1 2 3

X 1 0 4 5

X 0 1 6 7

X 3 2 8 9

X 2 3 10 11

X 10 4 12 13

X 7 9 14 15

X 5 11 16 17

X 8 6 18 19

X 16 5 20 21

X 12 17 22 23

X 18 15 24 25

X 6 19 26 27

U 24 23 28

X 28 25 29 30

X 22 28 31 32

U 29 32 33

X 33 30 34 35

X 31 33 36 37

X 34 27 38 39

Y 14 35 40

Y 36 13 41

X 20 37 42 43

Y 26 39 44

X 38 40 45 46

Y 42 21 47

X 41 43 48 49

U 45 49 50

X 50 46 51 52

X 48 50 53 54

U 51 54 55

Y 55 52 56

Y 53 55 57

Y 56 44 58

Y 47 57 59

Y 58 59 60

O 60

Listing 3.3: Programming

0

1

0

0

0

1

1

1

0

1
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ABY: Backend for Function Evaluation

In order to be able to evaluate the UC outputted by our UC compiler, we needed to add a new
gate type to ABY, that is, a universal gate. The three gate types of the universal circuit are
recapitulated in Listing 3.4, and their size-efficient implementation is detailed in Section 3.1.2.

Listing 3.4: ABY gates for PFE

/* Universal gate */

uint32_t output_wire = PutUniversalGate(uint32_t input_wire1 ,

uint32_t input_wire2 , uint32_t function_num );

/* X gate */

vector <vector <uint32_t > > output_wires = PutCondSwapGate(uint32_t input_wire1 ,

uint32_t input_wire2 , uint32_t control_bit );

/* Y gate */

wires[tokens [2]] = PutVecANDMUXGate(uint32_t input_wire1 ,

uint32_t input_wire2 , uint32_t control_bit );
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3.1.4 Conclusion

In this section, we have presented private function evaluation along with universal circuits as an
application of secure computation. Using the universal circuit compiler [72] for translating any
functionality into programming bits, i.e., input to the computation, any secure computation
framework can be enabled to compute this function, preserving privacy of both the user’s input
and of the functionality. Therefore, this application is usable in the programmable SPEAR
setting. In order to use this application, the function provider only needs to run our UC
compiler to retrieve his input corresponding to the desired computation and run the generic
secure computation framework for performing secure function evaluation.

3.2 Malware Checking via Private Set Intersection

Private set intersection (PSI) enables two parties to determine the intersection of their private
input sets without revealing anything but the elements in the intersection. This means that
given two parties with two sets X and Y they are able to compute X ∩ Y without revealing
any information about the elements outside the intersection. PSI has been widely studied in
the literature and different approaches appeared for various application scenarios.
On the one end, the naive approach is that the two parties send cryptographic hashes of their
inputs to each other which are then compared. This solution is the most efficient and widely
used in real-world applications but insecure due to the low entropy inputs. On the other end,
using generic secure computation would result in a secure but inefficient solution. Therefore,
more efficient, specific protocols were proposed for PSI.

3.2.1 Application Overview

The application we are looking at is malware checking between a large database D and a
mobile device M who has a few applications and restricted resources. Assume a company having
such a malware database wants to provide a malware checking application to its customers,
keeping both its database and the customers’ sensitive inputs private. In this scenario, the
customer, once having installed a number of applications on his mobile device M , can check if
any of these installed applications are in the malware database D or not. An overview of this
application is represented in Figure 3.2: here, we only require that the user learns which of his
applications are in the malware database.
Using private set intersection (PSI), the intersection of the malware database and the user’s
applications can be determined without revealing anything other than the intersection of the two
sets, i.e., the malwares installed on the user’s device. Our aim is to minimize the computation
on the user’s side and the communication between the server and the mobile device in the online
phase.

Proposed Solution The communication complexity of the state-of-the-art solution for PSI [108]
is O(N logN) where N is the size of the database. This is not desirable in our application sce-
nario due to the restricted power of the client device. We design a solution where the server
sends O(N) data in the preprocessing phase and for each query we have O(1) communication in
the online phase. Our solution for communication-efficient PSI utilizes several efficient protocols
and data structures for minimizing the communication in the online phase: 1-out-of-2 oblivious
transfers (OTs), Yao’s garbled circuit protocol (GC) and counting Bloom filters (CBFs).
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1-out-of-2 oblivious transfer (OT) enables two parties to exchange a message obliviously,
i.e., the sender sends two messages s0 and s1, the receiver sends a choice bit b and receives
the message that corresponds to his choice bit, i.e., sb. The sender does not get to
know which message was received by the receiver, and the receiver only gets to know the
message corresponding to his choice bit. OT extension protocols [11, 62] allow for the
precomputation of a small number of base OTs using public-key operations from which
any polynomial number of OTs can be computed using only more efficient symmetric-key
operations.

Yao’s garbled circuit protocol is a generic secure two-party computation protocol that al-
lows for the secure evaluation of any Boolean circuit. Linear (XOR) gates are evaluated
without additional communication or cryptographic operations and therefore the com-
plexity depends on the number of non-linear (AND) gates. Yao’s garbled circuit (GC)
protocol can be used as follows: the server garbles the circuit by assigning symmetric
keys to input wires and encrypting the output wires of a gate using the keys on the input
wires. The server sends the garbled circuit to the receiver, who needs to receive the keys
corresponding to his own input bits via oblivious transfers (OTs). Then, he can evaluate
the garbled circuit by decrypting the wires corresponding to his inputs. In our protocol,
we result in an efficient online phase by precomputing GCs offline.

A Bloom filter is a probabilistic data structure that can be used for efficiently testing if an
element is in a set or not. An n-bit Bloom filter corresponding to a set with m elements
is initialized s.t. all the bits are set to 0. The filter uses k hash functions with range that
map each of the m elements randomly into {1, . . . , n}. These bits in the Bloom filter are
then set to 1. For checking if an element is in the set, we check whether all hashes of
the element are set to 1. We note that false positives can occur but false negatives are
not possible. A counting Bloom filter (CBF) extends the notion of Bloom filters by
storing an array of counters instead of a bit for each element. It allows for deletion of
elements as well by decrementing the counters.
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Figure 3.2: Malware checking application
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We now detail the high level overview of the offline and online phases of our protocol. Assume
that there are N elements in the malware database owned by the server, and the client has a
small number of n applications installed on his mobile device.

Offline Phase

With shifting most of the computation in the precomputation phase, the offline phase becomes
as follows:

1. The server initializes a counting Bloom filter (CBF).

2. The server generates a 128-bit key k.

3. The server encrypts his N inputs using AES-128 under key k and inserts the encryption
of each element into the CBF.

4. The server garbles (at least) n AES circuits.

5. The server sends the CBF and the garbled circuits to the client.

6. The server and the client perform the initial OT phase of OT extension and precompute
(at least) 128n OTs.

Online Phase

After having the precomputation done in the offline phase, the online phase is as follows:

1. The client, for all his elements xi, performs a 1-out-of-2 OT for each bit to evaluate the
garbled AES circuit with the server’s input k and his input xi and therefore retrieves the
AES encryption of xi using the key k.

2. The client, for all encrypted elements x̃i, checks if the encryption is in the counting Bloom
filter CBF or not. If yes, the application is a malware stored in the database with high
probabilty.

3.2.2 Application Architecture

In this section, we show how we implement our PSI protocol using existing secure computa-
tion frameworks. The architecture of our toolchain for PSI for malware checking is depicted
in Figure 3.3. We describe its different artifacts and its use of the ABY [34] and ObliVM [81]
frameworks. For implementing our Android demonstrator, we use the ObliVM secure compu-
tation framework which is implemented in Java.

Step 1. Constructing counting Bloom filter CBF and key k As a first step, we generate
a 128-bit secret key k (later used for AES-128) and a counting Bloom filter CBF. The size of the
empty counting Bloom filter is 1.44εN log logN , where ε is a pre-defined security parameter.
The server chooses a 128-bit key k and encrypts each of his elements using AES-128 with this
key. Thereafter, he inserts all of these encrypted inputs into the CBF and sends over the CBF
to the user.
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Figure 3.3: Communication-efficient PSI framework.
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Step 2. Prepare garbled AES circuit We retrieve the plain AES circuit description
from the ABY secure computation framework [34]. This AES circuit is highly optimized
with 5 440 AND gates. In order to be able to retrieve the AES circuit from ABY, we need
to write every generated input, gate and output to a circuit file. We choose the SHDL circuit
description format for this and enable ABY to write out any circuit while building the circuit in
the framework. After retrieving the plain AES circuit in SHDL format, we read the file in using
the ObliVM secure computation framework and the server creates the garbled circuit in
the offline phase. The garbled labels are then written into a file and are sent to the evaluator
(client). For using it in the online phase, the server stores two garbled labels (corresponding to
0 and 1) for each input bit of the client (sj,0, sj,1 for all j ∈ 0, . . . , 127).

Step 3. Precomputing oblivious transfers Still in the offline phase, we compute the base
OTs of the OT extension of [62] using public-key operations and then using OT extension we
perform the OT precomputation from [17]. For each AES circuit, we precompute 128 oblivious
transfers since 128 OTs are needed to be performed in the online phase for each element. The
client chooses a random bit r while the server chooses two random masks m0 and m1. The
parties run an OT protocol using OT extension on these randomly chosen values and the client
thereafter retrieves the random mask corresponding to her random bit mr. We implemented
this in the ObliVM framework based on the already existing OT extension implementation
of [62].

Step 4. Evaluate AES circuit After precomputing 128 OTs, in the online phase the client
masks his input bit b with r and sends this masked bit to the server. The server, having s0
and s1 messages, sends the receiver m0⊕ s0 with m1⊕ s1 of the received masked bit was 0 and
m0 ⊕ s1 with m1 ⊕ s0 if the masked bit was 1. The client can then retrieve the correct s0 or s1
depending on the value of mr. Using OT precomputation, we eventually perform all the OTs
in the offline phase and only XOR operations in the online phase. After retrieving all the keys
for her input wires, the client can iteratively evaluate the AES circuit and retrieve the result.
Then it is checked if the result is in the counting Bloom filter or not.

3.2.3 Conclusion

In this section, we have presented another application of secure computation. This application
however is task-specific, i.e., is usable only in case the parties want to compute the intersec-
tion between their two input sets. A special, more-efficient protocol is designed to solve this
problem instead of using generic secure computation. This enables two parties, a server and
a computationally weaker client to compute their set intersection in an interactive, private
manner.
In the final application, the behavior of the parties is the same as for generic secure computation:
they input the elements of their private sets to the framework and receive as output the elements
that are present in both their sets, i.e., in the intersection. This enables them to compute the
intersection privately, they do not get to know any information about the elements outside of
this intersection. Our motivating malware checking application scenario is an example use case,
our framework can be useful in other real-life applications as well. A possible example is an
airline comparing the list of passangers for a given day with the so-called ,,no fly list” of people
who are prohibited to travel in or out of the given country.
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3.3 Privacy-Preserving Tax Fraud Detection using Par-

allel Computation

In this section, we demonstrate how the performance of large-scale MPC applications can
significantly be improved in some cases by using parallel computation methods inspired by well-
known parallel programming paradigms such as MPI [44] and MapReduce [32]. We observe that
these methods are also advantageous in the MPC domain for optimizing the communication
cost of oblivious algorithms. The cloud environment is ideally suited for performing such
computations, since they require a large number of processor cores to run many independent
computations in parallel. The elastic cloud allows to seamlessly scale the amount of used
hardware to support larger volumes of input data.
We describe the general principles for such parallel computation methods and exemplify their
use with a tax fraud detection prototype application [20] built on the Sharemind MPC plat-
form [19]. Our benchmark experiments of the prototype performed in the AWS EC2 public
cloud demonstrate unprecedented cost-efficiency in processing data volumes of this size using
MPC1. Note that the general method described here is agnostic of the underlying MPC primi-
tives and not limited to the Sharemind platform, as we consider optimal scheduling of abstract
oblivious algorithms.

3.3.1 Application Overview

Tax fraud detection is described as one of the application scenarios for secure computation in
PRACTICE deliverable D12.2. We summarize the scenario also here and discuss a proposed
deployment and prototype in the context of Estonia [20].
A tax fraud detection system collects transaction data from companies, which is analyzed by the
government’s tax authority to detect fraud. This scenario is an ideal use-case for MPC, since
honest companies do not want to disclose their private transaction data and the government is
only interested in identifying the fraudulent enterprises.
As part of the PRACTICE project, a prototype application that analyzes value-added tax (VAT)
declarations in a privacy-preserving manner was built on the Sharemind platform [20]. Share-
mind uses a passively secure secret sharing based protocol suite to enable extracting meaningful
information from private data while maintaining confidentiality.
A Sharemind deployment consists of many computing servers, each hosted by a different entity.
Private data is first secret-shared and then loaded into Sharemind with each server-hosting
party receiving a random share of the data. The parties can then jointly perform secure com-
putations on the data, without actually seeing it. Afterwards, the result of the computation
can be declassified only if all parties give their consent. Currently, the most efficient protocols
on Sharemind require three non-colluding computing parties [19]. If the parties are chosen
with clearly non-collusive relations, the direct perception of security for data owners is greatly
improved. For the tax fraud detection scenario, a possible deployment model in Estonia is
depicted on Figure 3.4.
Risk analysis computations are performed jointly by the different organizations. Instead of
sending the VAT declarations directly to the tax board, the VAT declarations are secret-shared
between the computing parties. The performed computations are agreed upon beforehand
when each party is satisfied that the algorithms do not disclose private information. Auditing
and verification methods can be used to ensure that the servers do not deviate from these
agreed-upon algorithms [104, 78].

1We are thankful to Amazon Web Services for their generous support in performing these experiments.
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Figure 3.4: Deployment model of a tax fraud detection system using secure multi-party com-
putation

As output of the risk analysis, only the tax board receives the risk scores for companies with
suspicion of fraud, and can then investigate further. The transactions of honest companies need
not be revealed. The companies maintain a degree of control over their data, since the Traders
Association as a representative of the private sector is one of the server hosts. The third server
host in this model acts as a neutral party. Alternatively, the application could be set up as
a two-party computation between the tax authority and a representative organization of the
private sector, using for example efficient two-party secure computation methods described in
PRACTICE deliverable [70].

3.3.2 Application Architecture

The general idea common to all parallel computation techniques is to divide the input data
into a number of smaller blocks that can be processed independently in parallel. The interme-
diary results of these subtasks can then be used in further computation or combined to a final
result. This simple idea can be used to greatly enhance the running time and reduce the total
communication cost for various oblivious algorithms.
We used this idea to significantly speed up aggregation of transaction data in the tax fraud
detection application. In our prototype, the whole computation process is divided into three
distinct phases:

1. Upload – the secret-shared tax declarations are uploaded into Sharemind and initial data
validation is performed.

2. Aggregation – the data from each declaration is aggregated to enable risk analysis to be
performed very efficiently. This is the most computation-intensive phase, however, data
from each declaration can be processed independently, which allows for a high degree of
parallelization.

3. Risk analysis – The results of the parallel aggregation are merged into a single large
analysis table on which the risk analysis algorithms are performed. The output of this
phase is the list of companies’ registry codes with suspicion of fraud.

The computation process is also depicted graphically on Figure 3.5.
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Figure 3.5: The performed computations in the prototype MPC tax fraud analysis system

The most costly computation that is performed in the aggregation phase is the oblivious aggre-
gation of transaction sums for all unique pairs of transaction partners, essentially a GROUP
BY query in SQL terms. In general, we can describe the computation on a database of two
column vectors containing pairs (ki, xi), where ki ∈ K are the key column values and xi ∈ S
are the data values that need to be aggregated. That is, we want to aggregate the xi values
that have a common key value ki. The result is an aggregated table with pairs (kj, yj), where
each kj ∈ K is unique, and the corresponding yj value is an aggregate of xi values, whose key
value is kj. Different aggregation functions can be considered besides summing the values, such
as computing the average or finding the minimum/maximum element.
This kind of grouped aggregation is very natural to divide into independent computational
tasks that aggregate a subset of the data. The intermediary tables can be later concatenated
and aggregated to the final result. Moreover, if the data can be divided into disjoint subsets
according to key values, then the final aggregation can be omitted as the intermediary results
can simply be combined to get the final aggregated table.
Using this approach, we divided the transaction data of different companies into separate
database tables already in the upload phase. The aggregation phase could then be run in
parallel on these separate data sets. For the final risk analysis phase, the aggregated tables
were concatenated into a single large table, on which the risk analysis algorithms were per-
formed, as described in [20].
There are two reasons why this parallel approach is gainful in terms of performance in the MPC
setting. First, if the round or communication complexity for the algorithm is superlinear, we
can reduce the total complexity by running the computation on smaller batches of the input.
Also, the independent parallel subtasks can be divided between different physical nodes, which
allows to use more network links for the whole computation, increasing the available bandwidth
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capacity. This is especially relevant for MPC as communication tends to be the bottleneck for
most state-of-the-art protocols. Naturally, scaling the number of computation nodes is much
easier to do in a cloud computing environment.
In our cloud experiments running the tax detection application, we also noticed that indepen-
dent Sharemind computation processes running on separate threads but on the same physical
nodes were still able to leverage the available network capacity more efficiently than a single
process using SIMD parallel computations. This is due to the fact that parallel processes can
dynamically interleave their local computations and network communication, such that the
network link has a constant high load. This property is more relevant for secret sharing based
protocols, as the ones used in Sharemind, since they have a higher round-complexity but overall
lower communication cost compared to constant-round protocols, such as Yao’s garbled circuits
protocol [80].

3.3.3 Cloud Deployment

We now describe how we deployed and benchmarked our prototype in the AWS EC2 environ-
ment. We estimated that the first version of the prototype system could perform risk analysis
on a month of Estonian economy in 10 days using about ¤20 000 worth of hardware in a
local deployment. Following the interest from the PRACTICE advisory board on assessing
the viability of performing these computations in the cloud, we performed some algorithmic
optimizations to the prototype and prepared it for a large-scale cloud deployment.
In the cloud setting, the computation servers would still be managed by the same three non-
colluding organizations, however the actual physical servers would be hosted by one or many
cloud service providers (see Figure 3.6).

Figure 3.6: Tax fraud detection system deployed in the cloud. Different party’s servers are
hosted by one or many cloud providers.

The confidentiality of the data is similarly protected against the organizations managing the
servers. However, additional trust assumptions about the cloud providers need to be made.
Using different cloud service providers for hosting each party’s servers provides the best security
guarantees, but is not ideal for performance. Different possible deployment models are described
below in Table 3.1.
The different models offer a trade-off between security assumptions and performance. In the
future, secure hardware solutions such as Intel SGX could help reduce the trust assumptions
that need to be made about the cloud provider as described in Section 4. In our benchmarks
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Table 3.1: Descriptions of different possible cloud deployment models

Cloud deployment
model

Possible attacks Security
assumptions

Performance

Single cloud
provider – all
Sharemind servers are
hosted by the same
cloud provider

If the cloud provider
has access to all
computing servers, it
can read all the
private data

The cloud provider
must be trusted not
to access the data on
the servers

The servers can be
connected in a LAN,
offering the highest
performance

Two cloud
providers – two out
of three parties host
their servers using one
cloud provider, the
third party uses a
different cloud

The cloud provider
hosting two servers
can deduce the private
data over time by
reading the contents
of encrypted network
communication of
both servers

The cloud provider
hosting two party’s
servers must be
trusted not to access
the private keys of the
servers’
communication
channels

Performance degrades
due to latency as the
physical distance of
the two clouds
increases

Three cloud
providers – all
parties use different
cloud providers

If two cloud providers
collude and monitor
communication they
can deduce the private
data over time

The cloud providers
must be non-colluding

Performance degrades
further due to latency
between all pairs of
servers

on AWS EC2, we simulated all three of these models by running the computation servers in
different geographical EC2 regions to introduce latency.
To allow for a high number of parallel processes in the aggregation phase, we deployed each of
the three party’s servers as a group of four EC2 instances, totaling in 12 computing instances.
Each set of 3 instances were running 20 Sharemind processes in the aggregation phases, whereas
the risk analysis phase uses only a single process. An additional instance acted as the client
that uploaded data into the computing nodes. Figure 3.7 illustrates this instance deployment
using two EC2 Europe-based regions.
For Sharemind and many other methods of secure computation, a fast network connection is
critical for performance. Thus, we chose to use EC2 c3.8xlarge instances in all our benchmarks,
since it was the cheapest instance type having a 10 Gigabit network connection at the time
of our experiments, and also supported Amazon’s Enhanced Networking technology, improving
overall network performance2. The number of instances and parallel processes to use was then
estimated by profiling the application with the largest used data set in a local deployment.
To be able to to compare results, we used the same instance type setup in all the bench-
marks. In Table 3.2, we summarize the different regional settings that we benchmarked. These
correspond to the cloud deployment models described in Table 3.1.

3.3.4 Benchmark Results

We used three input data sets with different size in our benchmarks (see Table 3.3). The largest
data set corresponds to the estimates of Estonia’s Tax and Customs Board on the number of

2The c3.8xlarge instance was one of the largest EC2 instance types at the time for computation-intensive
applications with each instance having 32 CPU cores and 60GiB of memory. It supports also Amazon’s Enhanced
Networking, which is claimed to increase packets per second performance and reduce network jitter and latencies
for the instance, which is advantageous for secure computation performance.
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Figure 3.7: Amazon EC2 deployment within 2 Europe-based regions using a total of 80 Share-
mind processes to aggregate data in parallel

Table 3.2: The three regional instance deployments used, modelling one or many cloud providers

Regions Client Computation servers Latency (round-trip)
1 us-east -

c3.8xlarge
us-east - 12x c3.8xlarge < 0.1ms between all nodes

2 eu-west -
c3.8xlarge

eu-west - 8x c3.8xlarge
eu-central - 4x c3.8xlarge

< 0.1ms between eu-west nodes
19ms – eu-west, eu-central

3 us-east -
c3.8xlarge

us-east - 4x c3.8xlarge
us-west - 4x c3.8xlarge
eu-west 4x c3.8xlarge

77ms – us-east, us-west
133ms – us-west, eu-west
76ms – us-east, eu-west

taxable persons and performed business transactions in one month in Estonia. Each company’s
tax declaration is an XML-file consisting of a summary report for the current taxation period
and a detailed list of all sales and purchase transactions performed with different business
partners.

Table 3.3: Descriptions of the three data sets used in the benchmarks

No. of companies No. of transaction partner pairs Total no. of transactions

20 000 200 000 25 000 000

40 000 400 000 50 000 000

80 000 800 000 100 000 000

In the upload phase, declarations were uploaded to the 80 Sharemind processes, each process
receiving a single declaration at a time. After aggregating the data, the results were moved
together into a single process running on three instances, and the remaining instances were
closed. Note that each party only moves data shares between instances that it controls. The
single process then merged the data and performed the risk analysis computations.
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The running times of all computations are presented on Figure 3.8. The performance of the
prototype has significantly improved compared to the earlier version and is well within practical
limits as the analysis only needs to be performed once in a single tax period (each month).
We were unfortunately unable to perform the benchmark with the largest data set in the
multi-continent deployment due to some technical synchronization issues that occurred in the
high-latency environment.
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Figure 3.8: Running times of the computations in different deployments and varying amount
of data

As can be expected, in multi-region deployments the computations are slower due to the in-
creased latency. The aggregation phase is affected most, as the bulk of the computations are
done there. Upload times are also affected since some secret-shared data validation is required.
The risk analysis itself is very fast. However, the optimized algorithm introduces some admis-
sible leakage. In particular, for every company that is flagged with potential fraud, we leak
the number of transaction partners that the company reported in the current period. This
information might be used to identify a specific company, if it has a very unique number of
business partners. The computing parties would then learn that this company has been flagged
with suspicion of fraud. Ideally, only the tax authority should get this information.
The leakage occurs since the risk analysis procedure requires to also flag all the business partners
of a suspicious company. We also implemented a more brute-force approach, that obliviously
iterates over the entire analysis table of companies when flagging the business partners to hide
their amount.
The total cost of a single run of the entire computation is very low for a privacy-preserving
computation of this scale (see Table 3.4 and Table 3.5). Total communication refers to the total
sum of one-way communication between all computing instances during the whole computation,
measured by incoming network messages. Instance costs are calculated by charging to the full
hour separately for the parallel phases (upload, aggregation) and the risk analysis step.
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The depicted costs include the price for running the instances and also data transfer between
different EC2 regions (communication within a single region is free). Data transfer costs become
increasingly important in multi-region deployments, forming up to 12% of the total cost. In a
real-world deployment, these costs would also be higher if the servers are hosted by different
cloud providers, as communication between AWS regions is cheaper than communication to the
public Internet. The depicted costs do not reflect expenses for data storage, which would be
added for a persistently deployed system that stores all data from previous periods.

Table 3.4: Running times, total exchanged communication and running times of benchmarks
using the fast risk analysis algorithm

Deploy-
ment

Input
data size

Total
communication
(GB)

Data
transfer
cost

Total time
(hour:min:s)

Instance
cost

Total
cost

us 20k 290.5 - 38:44 $26.88 $26.88

us 40k 587.8 - 01:23:10 $48.72 $48.72

us 80k 1202.2 - 02:47:53 $70.56 $70.56

2-eu 20k 307.1 $3.99 01:14:36 $56.82 $60.81

2-eu 40k 619.4 $8.05 02:25:12 $82.28 $90.33

2-eu 80k 1264.0 $16.43 05:05:16 $133.21 $149.63

2-us,1-eu 20k 308.1 $6.13 04:26:15 $119.11 $125.25

2-us,1-eu 40k 625.5 $12.46 08:53:00 $210.18 $222.64

Table 3.5: Running times, total exchanged communication and running times of benchmarks
using the risk analysis algorithm with total privacy

Deploy-
ment

Input
data size

Total
communication
(GB)

Data
transfer
cost

Total time
(hour:min:s)

Instance
cost

Total
cost

us 20k 1324.8 - 02:55:40 $36.96 $36.96

us 40k 4744.0 - 09:29:57 $89.04 $89.04

us 80k 17859.1 - 33:34:07 $221.76 $221.76

2-eu 20k 1383.2 $17.44 22:38:25 $180.46 $197.90

2-eu 40k 4958.3 $62.28 48:41:02 $353.13 $415.41

2-eu 80k 21643.3 $271.34 111:16:25 $757.34 $1028.67

In a real-life scenario, the data would be uploaded over a longer period of time and aggregation
would also be continuous, processing new data as it is uploaded. An elastic cloud-computing
environment would allow scaling the amount of hardware used dynamically, without requiring
all the instances to run during the whole period. As such, the hardware costs would not differ
much overall.
The c3.8xlarge instance type provides 32 CPU cores and 60GB of RAM. However, during ag-
gregation, peak usage did not exceed 78% of total available CPU and 15% of RAM in any
experiment. Average loads were 40% and 10% respectively for CPU and RAM. Although max-
imum bandwidth used was measured up to 4 Gbit/s for a single instance, which suggests more
data could have been processed in a single process during aggregation to saturate the network
connection without slowing down the computation, thus increasing cost-efficiency. With the
largest dataset, a total of 1.2 terabytes of one-way communication was performed for the fast
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risk analysis implementation, which also stresses the importance of a fast network connection
to achieve good performance.

3.3.5 Conclusion

The results of our cloud benchmarks fully demonstrate that deploying and running a large-
scale application performing secure computations has become very cost-efficient, particularly in
an elastic cloud computing environment. We observed that parallelized distributed computa-
tion methods can significantly improve the performance of MPC applications processing large
volumes of data.
By performing these experiments, we gained much experience and insight into deploying large-
scale MPC applications in the cloud. In the future, automatic service provisioning tools to
deploy MPC in the cloud would make such deployments easier and bring MPC further toward
the cloud.
Our prototype application could still be further improved, especially the uploading process.
Currently, we manually divided data between Sharemind processes, but an automatic load
balancer would be a more general and convenient solution for future applications and help
make the current uploading phase faster. Also, tighter integration with cloud provider specific
technologies and best practices could increase performance and practical security.

3.4 SEEED-proxy

The SEEED-proxy application presented in this document is based on our technique for en-
crypted databases (SEEED) described in previous deliverables D22.2 [90] and D22.3 [23]. Par-
ticularly, we refer to deliverable D22.2 Section 6.2 for adjustable encryption, how to transform
SQL queries to their encrypted version and how SEEED supports joins. Furthermore, ad-
vanced techniques like SQL query splits that enable complex SQL queries on encrypted data
are described in D22.3 Section 5.4.2. Finally, details of the prototypical implementation of our
encrypted database are discussed in D22.3 and its placement within the SPEAR & DAGGER
framework is elaborated in deliverable D21.2 [22]. The trust assumptions and attacker model
are the same as in the previous deliverables and can be summarized as follows:

1. Data confidentiality preserved amongst honest-but-curious SaaS and DBaaS providers

2. The application computing on sensitive data is trusted

3. Hardware, operating systems and browsers of end users are trusted

4. SEEED(-proxy)’s software components at cloud customer are trusted

SEEED-proxy enforces data confidentiality for cloud based web applications that are backed by
a database in this model. It enables company employees to be able to access privacy-preserving
business web applications in a simple and familiar way by using their browsers. Despite the fact
that the applications only process encrypted data, the applications must allow the employees to
process and manipulate the data according to their daily work. This includes data insertions,
updates and deletions and especially data queries. Also, very complex analytic queries that
are not uncommon in modern business applications must be supported. All processing steps
have to be possible without revealing unencrypted data to the cloud providers. Furthermore,
it should be easy for the companies to set up and manage all software components that are
required to protect their business application. It is infeasible to deploy and control the software

PRACTICE D21.3 Page 67 of 112



Application architecture for secure computation

components on every device of the end users, e.g. the employees should be able to access the
web applications with their browsers without installing additional software. Therefore, a proxy
solution should be used that is deployed at a centralized point in the company’s network. Every
message between the end users’ browsers is routed through this proxy, has to be inspected and
sensitive data must be protected.
Thereby, the proxy provides the company with full control over its sensitive corporate data.
Furthermore, the proxy should be application agnostic, i.e., it must not be required to update
the proxy if the application changes or new applications are installed.

3.4.1 Application Overview

In summary, SEEED-proxy presented in this document aims to fulfill the following requirements:

1. Application agnostic: Applications are modified or explicitly written for SEEED-proxy,
but no software components deployed at the cloud customer must be updated or modified
by anybody to support new/updated applications.

2. Application at SaaS and database at DBaaS: A company wants to use the full
potential of cloud computing – the application and the database are outsourced to the
cloud.

3. Data confidentiality at SaaS and DBaaS provider: Confidentiality for the com-
pany’s data is enforced at SaaS and DBaaS providers abiding the defined trust model (see
Section 3.4).

4. Structured data: The company’s data is stored as structured data in a database.

5. HTTP based web application: The end users utilize their browsers to access the web
application that is hosted by the SaaS provider. The communication between the browser
and the application is based on the HTTP(S) protocol.

6. Control over encryption keys at cloud customer: All encryption keys are stored in
the cloud customer’s realm. The customer is able to configure which keys are allowed to
be published.

7. Collaboration amongst end users possible: The end users (employees) must be able
to collaborate while the company’s secrets are protected.

8. Support for complex queries: The application allows the employees to fulfill their
business tasks. Complex analytic queries that contain range queries, sorts and sum oper-
ations must be directly possible on encrypted data at the DBaaS provider.

The main idea is to offer end users the possibility to access and process data in the cloud
while data is protected to a certain degree. Therefore, a protocol is required that allows
data requests and manipulations. The standard protocol we chose for this task is OData
[2]. OData is a resource-based web protocol standard originally defined by Microsoft and
standardized at OASIS in Version 4.0. The main idea is to establish uniform semantics for
a client-server communication by defining the creation and consumption of REST APIs. All
accessible resources are identified with uniform resource indicators (URI). Clients request and
edit resources using simple HTTP(S) [40, 109] requests.
The OData protocol defines the communication between a client and OData services. An
application that utilizes OData offers one or multiple OData service endpoints that provide
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a data interface for the client-side application code. The protocol allows any client to access
data that is exposed by a source. The source might be a database, spreadsheets or custom
applications. The HTTP methods GET, POST, PUT and DELETE are used to query, insert,
update and delete data, respectively. Responses from an OData service are either XML-based
AtomPub [60] or JSON based messages [1].

3.4.2 Applicability assessment of different approaches

In the following we analyze a typical web application setup and discuss different approaches for
installing SEEED-proxy. The application itself resides on an application server in the company’s
network or in the cloud at an SaaS provider. The same applies for the database, which resides
at an on-premise database server or at a DBaaS provider. A high-level overview is given in
Figure 3.9.

End User Application Server /
SaaS Provider

Database Server /
DBaaS Provider

2 13

3

Figure 3.9: Typical web application scenario with different encryption points

In the remainder of this text, it will be stated explicitly if the applications or databases reside
on-premise. There are varying approaches that utilize different points to enforce data confiden-
tiality (blue boxes in Figure 3.9). We will reference these points as encryption points throughout
this discussion. The choice of an encryption point has distinct advantages and disadvantages.
Components on the right hand side of an encryption point handle only encrypted data and
the components on the left hand side handle plaintext. As the region left of the encryption
point must be trusted to guarantee security of the data, it is also called trusted computing
base (TCB).

Encryption point 1: Encryption point 1 leads to the largest TCB: everything but the DBaaS
must be trusted to achieve an acceptable level of data security. Either a trusted SaaS
provider must be assumed or the application must be deployed at an application sever in
the realm of the company. This shows inherent drawbacks of this design: if the cloud cus-
tomers want to use cloud based applications, the solutions do not provide any protection
against attackers targeting the SaaS provider.

Encryption point 2: The encryption keys are stored in a key store next to the proxy, because
the proxy takes care of the encryption and decryption of data. As a result the company
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can focus on protecting this one key store and the proxy itself from attackers and curious
administrators. Additionally, the access can be restricted and monitored.

Encryption point 3: The general idea of solutions deployed in the end users browser is to
minimize the TCB. Only the hardware, operating system and browser must be trusted.
No central server is required, but the solution must be deployed and updated on every
device and the end users have to use a supported browser. Managing application specific
settings on every device and synchronizing keys between all devices already becomes a
complicated tasks with a few end users. Since every device needs a key store, the attack
surface is bigger than with other encryption points and it is infeasible for the company to
restrict and monitor attacks on every device.

We chose encryption point 2 since it is an efficient trade-off between minimizing trust as-
sumptions (drawback of encryption endpoint 1) and maximizing maintainability (drawback of
encryption endpoint 3): It supports a rich set of functionalities required for complex business
applications to process data in the cloud. Additionally, this approach is application agnostic,
i.e., the proxy does not have to be updated if the application changes or a new application is
used.

3.4.3 Application Architecture

In the following we elaborate on the use-case in a more detailed fashion, namely in the per-
spective of the chosen encryption point. Subsequently we present the message protocol used
internally by SEEED-proxy to fulfill the requirements mentioned in Section 3.4.1.

DBaaS Provider

Database

SaaS Provider

Resources

OData Connector

SQL Trans-
formation

Component

Data 
Re-encryption

Component

End User

CryptoProxy

JunctionProxy

Database

Browser

Internet Gateway

Cloud Customer

SaaS Servers DBaaS Servers

Figure 3.10: SEEED-proxy architecture
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DBaaS provider

The company’s structured data is stored in an SQL database at a DBaaS provider (cf. re-
quirement 4). All data items in this database should be protected, but applications still have
to be able to perform as many calculations as possible directly on the protected data without
changing the database management system (DBMS). Thereby, the strength of databases – fast
data processing – can be utilized.
SEEED-proxy uses adjustable encryption (see Deliverable D22.2, Section 6.2) to reach this goal,
because this encryption approach offers a rich set of operations on encrypted data and the only
necessary change at the DBMS is an additional operator to sum up encrypted values. With
adjustable encryption even complex business queries can be executed at the DBaaS provider
(cf. requirement 8).

SaaS provider

One important requirement for SEEED-proxy is that it is application agnostic, i.e., it must
be able to protect web applications without any updates of SEEED-proxy’s software compo-
nents. Therefore, SEEED-proxy must be able to extract all sensitive data values from all
transferred messages without knowing specifics about the applications that are deployed at the
SaaS provider. We use the following notations to differentiate messages that are transferred
between the SaaS provider and the end users’ browsers:

Content data message: messages that contain sensitive data which has to be protected by
SEEED-proxy.

Metadata message: messages that contain meta information about the content data.

Application resource message: messages that contain client-side application resources such
as HTML, CSS and JavaScript.

Two concrete tasks must be solved by SEEED-proxy: all content data and metadata messages
have to be identified and relevant data values must be extracted. As a first step, SEEED-
proxy assumes that content data and metadata messages are strictly separated from applica-
tion resource messages. Figure 3.10 shows this separation: an OData connector contains the
application logic and a separate interface for resources is provided. For the information extrac-
tion, SEEED-proxy assumes that a standard data transport protocol is used for the transfer
of content data and metadata messages. This allows a fast extraction of information from a
predefined structure. Without loss of generality, OData is used as a standard data transport
protocol throughout this section to keep the text comprehensible.
For the design of SEEED-proxy, we focus on applications in which the application logic is
encapsulated in database queries. The OData connector publishes OData services that are
callable (via HTTP(S)) by client-side code. The connector is a (nontrivial) bridge between
OData requests and the database. The main task is to transform the requests that are received
at an OData service to SQL queries, executing them at the database and transforming the
result sets back to OData responses.
Several libraries exist that are able to perform these tasks for OData messages for several
database management systems, but they only support plaintext databases, i.e., all incoming
OData requests are transformed to SQL queries for plaintext databases. For that reason,
we extend the original connector with external components to support adjustable encrypted
databases. A SQL transformation component converts the created queries to onion SQL queries
that support adjustable encrypted databases. For other processing steps, the extended OData
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connector uses a data re-encryption component. This data re-encryption component is able
to decrypt and re-encrypt values, but only if the corresponding keys were published before.
Upon re-encryption, it performs a proxy re-encryption which means that one ciphertext is
re-encrypted to another ciphertext without revealing the plaintext. The data re-encryption
component is not able to create encryption keys by itself, and the publishing decision is solely
in the hands of the cloud customer.

Internet gateway

Before messages can be processed, there has to be a possibility to intercept all messages. The
Internet gateway of the cloud customer is used to deploy proxies that fulfill this task, because
it is a single point between the local network and the Internet where all messages pass through.
The proxy components – JunctionProxy and CryptoProxy – form the heart of SEEED-proxy.
The JunctionProxy intercepts and examines every request and response passing through the
Internet gateway. Its main task is to decide for every intercepted message whether it should be
redirected to the CryptoProxy or directly forwarded to the application server. The CryptoProxy
performs the customer-side processing of OData messages. It uses a database that is deployed
on the same server to handle complex data queries. Note that the CryptoProxy is the only
entity in the setup with access to the keys.

End user

The end users (employees) use a web browser on their preferred device to connect to SEEED-
proxy protected web applications. The end users’ devices must be connected to the company’s
network to call SEEED-proxy protected web applications, because otherwise the connections
are not routed through the Internet gateway.

3.4.4 Message flow overview

Figure 3.11 gives an overview of SEEED-proxy’s message flow when the end user calls a web
application in his browser. Many details are left out because this message flow overview should
just give an insight in the complexity of the problem that is solved by SEEED-proxy. For
that reason, this message flow does not show the separation of the proxy in two components.
Instead, one combined proxy is assumed here.
The message flow starts with an end user that enters the application’s URL in his browser’s
address bar or clicks on a link to the application. Firstly, the browser requests the application’s
resources. The corresponding messages are passed through the proxy. Yet, they are not pro-
cessed, because they do not contain any sensitive information. The resource requests are left
out in all subsequent message flows.
Afterwards, the browser sends the OData request (message 1). The proxy at the Internet
gateway intercepts and examines the request and processes it if necessary. For this basic
example, we assume that no sensitive information is contained in the request and therefore
no processing of such is required (in the following we explain the processing of sensitive data
values in a request). The request is then forwarded to the OData service provided by the OData
connector (message 2).
The OData connector converts the OData request to an SQL query for plaintext databases
and passes this query to the SQL transformation component (message 3). This component
transforms the incoming query to one or multiple onion SQL queries. The transformation
depends on the current onion and layer configuration. Therefore, the SQL transformation
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Figure 3.11: Message flow in SEEED-proxy overview

component requests the current onion and layer configuration from the database at the DBaaS
provider (messages 4, 5). Then, it performs the transformation of the incoming SQL query to
an onion SQL query as explained in previous deliverable D22.2 [90]. The difference between
the incoming and transformed query is that the attribute, table and operation names (only for
sum operations) are replaced to fit the current settings in the database that utilizes adjustable
encryption. No sensitive information is contained in the onion SQL query, because we have
assumed that the OData request does not contain any sensitive information.
A transformation might not be possible if no layer (encryption scheme) with a required func-
tionality is exposed in the database. The necessary steps to expose these layers are explained
in Section 6.3 of deliverable D22.2. Furthermore, a split of the onion SQL query and post
processing might be necessary for complex queries (see deliverable D22.2). For the message
flow in this section, we assume that no layer removal is required and the onion SQL query is
fully executable at the DBaaS provider.
After the transformation, the SQL transformation component returns the result back to the
OData connector (message 6) and the connector executes the onion SQL query on the database
(message 7). The database only contains encrypted data, therefore a result set with encrypted
values is passed back to the OData connector at the SaaS provider (message 8). The OData
connector converts the result set to an OData data response (the data values are still encrypted)
and returns it back to the proxy (message 9). The proxy decrypts the values in the content
data response and forwards the processed message to the end user’s browser (message 10).
The end user receives the response from the web application he requested. All content data is
presented in plaintext and the end user does not even notice that the content data was stored
in an encrypted database in the back end.
Business web applications normally offer a set of predefined content data requests. The appli-
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cation vendors design these for a large group of customers, a specific business area or a specific
customer. These predefined content data requests are loaded when the end users open a web
application in their browser. The results are displayed in, e.g., tables and figures. However,
the application vendor cannot anticipate all needs of end users and therefore strives to provide
a flexible application: the end users can influence the content data request by interacting with
a UI. For instance, the end users may want to sort, load further or filter for specific entries.
However, the interaction only influences predefined content data requests. Usually, it is not
possible for the end users to execute arbitrary data requests. OData offers a server side data
model, i.e., all calculations are done at the server and only the result is transferred. In many
cases, only a subset of the requested data is loaded if the result has too many entries. The re-
quest URL determines which data resource is loaded from the application server and how many
entries should be transferred. Mechanisms such as keys, associations and order by statements
are used to limit and order the data request and thereby the data response.

Example: Simple data request

First, we examine the most simple content data request to explain the message flow: retrieving
an entity set. This content data request is simple, because it does not require data values inside
the URL that are used to request the OData resource. The following is an example URL for
the retrieval of an entity set:

http :// host/service/orders

Firstly, the JunctionProxy intercepts the HTTPS GET request, finds a X-SEEED-proxy header
and redirects the request to the CryptoProxy. No processing of the original request is done in
this simple example, because the URL does not contain any sensitive data values. The content
data request is passed back to the JunctionProxy and forwarded to the OData service at the
OData connector.
The OData connector transforms the OData request to an SQL query that could be executed if
a plaintext database was used. The query is then sent to the SQL transformation component,
the current onion and layer setting is requested, the onion SQL query is loaded from a cache of
already transformed queries or created dynamically and the onion SQL query is passed back.
The OData connector executes the onion SQL query at the DBaaS provider and requests the
onion and the layer configuration of the encrypted values. Then, it creates the OData data
response, together with the layer and onion information. Only the layer is dynamic metadata,
but the CryptoProxy does also need the onion for decryption. An example line in an OData
data response has the following form:

<d:totalSales m:type="Edm.Decimal" s:onion="1" s:layer="2">

Epw738ceS+Ao7yP1JA5gCAoa6uJhiWqHIWT4r ...

</d:totalSales >

The OData connector adds the X-SEEED-proxy header with the value dataResponse to the
response and passes it back to the JunctionProxy where the custom header is recognized and
the message is redirected to the CryptoProxy. The CryptoProxy extracts the onion, layer
and property name of every line with an encrypted value, retrieves the corresponding static
metadata from its cache and decrypts every value in the OData response. All ciphertexts are
replaced by the corresponding plaintexts and all previously inserted metadata is removed to
recreate the original expected OData response. This exemplary line in the OData response
corresponds to the encrypted line above:

<d:totalSales m:type="Edm.Decimal">72701.8 </d:totalSales >
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Finally, the plaintext OData response is passed back to the JunctionProxy and is forwarded to
the end user’s browser.

Example: Complex content data request

So far, we only examined the request of an entity set. The processing becomes more complex if
sensitive data values are involved in the request. For instance, OData uses keys in the request
URL to distinctly identify a single entry in an entity set. The most important query options
are: restricting the content data request with a filter parameter ($filter), ordering results
according to one or multiple defined properties with $orderby, paging entries with $skip and
$top or any combination of these query options.
$orderby, $skip and $top do not require to add sensitive data values to the request and thus
do not need further processing. The message flow equals the flow explained so far. As for
the other content data requests, OData requires to add data values to the request. Listing 3.5
shows examples for OData request URLs with data values.

http :// host/service/orders (53)

http :// host/service/weekday(day=30, month=04,year =2015)

http :// host/service/categories (1)/ products

http :// host/service/categories (1)/ products (20)/ price

http :// host/service/orders?$filter=totalSales gt 10

http :// host/service/orders?$filter=totalSales gt 10 and customerName eq ’Bob ’

Listing 3.5: Exemplary OData request URLs with data values

Every key string in the URL consists of the column name and a key value (if more than one key
is used). For instance, the second URL in Listing 3.5 contains the key values 30, 04 and 2015

for the column names day, month and year, respectively. The filter strings contain a column
name and a constant filter value, e.g., constant value 10 and the column name totalSales in
the fifth URL.
All constant data values and column names contained in URLs have to be used in the SQL
query created by the OData connector, because they restrict the expected result set. However,
the data values in the URLs may leak sensitive information about the request and subsequently
about the response if they are not encrypted before they reach the SaaS provider. For instance,
if every employee with a salary greater than 500, 000$ is requested and only one row is returned,
an attacker might be able to infer this person. Only the CryptoProxy has access to the keys,
therefore it has to perform the encryption.
The main change is that CryptoProxy encrypts the data values before it is passed back to the
JunctionProxy. Handling the filter entries is complex, because the required encryption depends
on the concrete operation: e.g., equality checks (eq, neq) need deterministic encryption and
comparisons such as greater than gt or less than lt require order preserving encryption. The
CryptoProxy must therefore inspect the URL in detail and decide which type of encryption
is required. It then reads the static metadata from its cache and utilizes the stored usage
attribute to choose the correct onion. However, it might be necessary to remove a layer before
the operation can be performed, because the used layer does not match the current layer in
the database. For that reason, the CryptoProxy must transfer the used layer to the OData
connector.
The CryptoProxy encodes the used layer in the URL. The OData connector transfers the URL
to the data re-encryption component. There, the layer information is extracted and layers
at the encrypted data values are removed if necessary. Listing 3.6 shows processed URLs
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that correspond to the URLs in Listing 3.5. Every ciphertext is Base64 encoded and X’...’

surrounds every binary value (default OData behavior). Note, that the corresponding SQL

http :// host/service/orders(X’gGd2H6aAiz9JX1pnG13EF ... ’:2)

http :// host/service/weekday(day=X’Za4G1y ...’:1, month=X’jgCLDx ...’:2,

year=X’MR0WMLX ... ’:2)

http :// host/service/categories(X’7 b4N7l ... ’:2)/ products

http :// host/service/categories(X’7 b4N7l ... ’:2)/ products(X’gGd2H ... ’’:3)/ price

http :// host/service/orders?$filter=totalSales gt X’AReTa /... ’:1

http :// host/service/orders?$filter=totalSales gt X’AReTa /... ’:1

and customerName eq X’Ce3ERa ...’:3

Listing 3.6: Exemplary OData request URLs with data values after processing

query for plaintext tables that is created by the OData connector already contains encrypted
data values. For that reason, there is no need for the SQL transformation component to handle
the data values during transformation but only the correct encryption layers must be chosen.
The following example shows an SQL query that is passed from the OData connector to the
SQL transformation component:

SELECT weekday FROM weekdays

WHERE day = ’Za4G1y ...’ AND month = ’jgCLDx ...’

AND year = ’MR0WMLX ...’

An exemplary corresponding final onion SQL query is:

SELECT weekday_RND FROM ENC_weekdays

WHERE day_DET = ’Za4G1y ...’ AND month_DET = ’jgCLDx ...’

AND year_DET = ’MR0WMLX ...’

3.4.5 Conclusion

In this section we highlighted how SEEED can be extended to enforce data confidentiality for
cloud based web applications amended by database systems. The main idea is to utilize intelli-
gent message flows between the HTTP based web application and the CryptoProxy. Thereby,
SEEED-proxy adds the security benefits of adjustable encryption to a complex setup where the
application is deployed at an SaaS provider and a protected database is deployed at a DBaaS
provider.
Although this complex application environment setup is assumed, data confidentiality is en-
forced by only two proxy components and no plaintext values leave the cloud customer’s infras-
tructure without being encrypted if not explicitly specified by the cloud customer. Even layer
removals – which weaken security characteristics – are only possible if the keys have been pub-
lished by the CryptoProxy. This decision is solely in the hands of the cloud customer and the
publishing is restrictable by fine-grained security policies. Furthermore, every key publishing
request is logged and can be reviewed by the cloud customer at any time.
Additionally, SEEED-proxy is application agnostic. Neither the JunctionProxy, nor the Cryp-
toProxy have to be updated to support new applications. The applications only have to abide
the defined messages flows and use the components provided by SEEED-proxy.
Finally, the end users can collaborate with each other, because the proxy components at the
Internet gateway intercept every message and all encryption and decryption operations are
done there. No key synchronization or special hardware is necessary for the collaboration of
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end users. Instead, they are allowed to use any device, as long as every connection goes through
the proxies. While providing a rich set of functionalities, the same security guarantees as for
SEEED apply to SEEED-proxy.

3.5 A Generic Data Collection Application

A number of potential applications using secure computation proceed in the following two
phases: First, data is collected from some set of parties we will call data providers. The data
collected is private to each data provider, and is therefore protected in a secure computation
system such that it will not be revealed to any other party. Second, once data has been collected
from the data providers a (typically distinct) set of parties, we will call data users, can use the
secure computation system to perform various analyses on the collected dataset. For the data
providers the secure computation system will ensure that the the data users only learn results
of analyses approved by the data providers (such as a limited set of statistics), and no other
information about the collected data set. For the data users the system can ensure that the
results of analysis they request are only learned by the requesting party. This means that no
other party in the system will learn which analysis the data users are interested in.
Such applications are useful whenever, for legal or business reasons, the data providers can or
will not provide the data users or any other party with the collected data set in the clear. In
such cases the secure computation system can allow for data sets to be utilized in ways that
simply can not be done in any other way.
One example of such an application is the benchmarking prototype presented in D23.2 of
PRACTICE. In this prototype, financial data on a large amount of customers in a particular
business segment is collected from a consultancy house. Banks then use the secure computation
system to benchmark potential customers against the best practices in the particular segment.
The application thus allows the consultancy house to keep their data set secret (which it is
obligated to do by its customers) while allowing the banks to benchmark their own costumers.
In the scenario described in D23.2 the consultancy house is the only data provider and the
banks using the system are the data users. However, an obvious extension, which was also
suggested in D23.2, would be to add more data providers to add additional data to the data
set and make it even more valuable as a data foundation for the banks.
Another potential example could be in medical research. Here medical researchers could be
interested in doing statistic analysis on confidential health records held across multiple hos-
pitals and general practitioners. However, the hospitals and doctors are not allowed to share
information on their patients. In this setting we could first securely collect the joint data set of
health records from all hospitals and general practitioner and then let medical researchers run
statistical analyses on the dataset using secure computation.
In this section we will describe an application supporting the first phase of the above mentioned
application pattern, i.e., the data collection phase. Additionally, the application supports the
what we call a data preparation phase, where generic operations are done to the collected data
sets order to produce a single consistent data set. The data collection application can then be
used to bootstrap any father application following the described application pattern.
The rest of this section is structured as follows. In Section 3.5.1 we give a high level overview of
the data collection application. In Section 3.5.2 we describe the architecture of the application
focusing on its logical components, their physical deployment and their interaction.
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3.5.1 Application Overview

The application described in this section is being developed in the project Big Data by Security
(BDbS) (http://www.bigdatabysecurity.dk/) founded by the Danish Industry Foundation.
The project focuses on demonstrating how secure computation can be used to enable Big Data
analytics by allowing analysis on data sets that could otherwise not be collected or analyzed
for privacy and security reasons. In this context the generic data collection application will
be used to support prototypes of applications in the financial and energy sector all following
the above application pattern. There is no formal connection between the BDbS project and
PRACTICE apart from technologies developed in PRACTICE being used in BDbS project.
The data collection application is focused on providing a simple and user friendly interface for
the data providers to upload bulk data to the secure data collection system, which can then
later be used for analysis. It also provides an interface for a special organizer to design and
manage the data collection process. Additionally, the data collection application provides the
ability to transform the individually collected data sets from each data provider into a single
coherent data set, appropriate for the later data analysis. These can be simple operations
such as removing duplicate entries or linking records between data sets provided by distinct
data providers. It can also be a set of more complicated procedures such as checking for data
corruption. We call this data preparation.
In the following we first describe the types of users involved in the application and then describe
in more detail the data collection process of the application.

Users

There two main types of users involved in the application namely the organizer and data
providers. The third user type the secure computation hosts as mentioned above are mainly
there to ensure the security requirements of the application.

• A single organizer defines and manages the data collection process. I.e., the organizer
decides what data is needed from each of the data providers in order to create the desired
data set. He also decides how data provided will be prepared to form the desired data
set. Additionally the organizer drives the data collection process by deciding when to go
from one phase of the data collection process to another, as described below. We stress
that the organizer does not have full control of data collection system. In particular, he
does not have access to the data provided by the data providers, he simply dictates what
types of data is required from each provider.

• Data providers hold the raw data needed in for the data collection and provides it as
instructed by the organizer. I.e., if the instructions of the organizer are acceptable to the
data provider she uploads her data to the data collection system.

Note that different types of data may be collected from different data providers. E.g.,
in the medical research example above general practitioners may be able supply data on
patients not held by the hospitals and vice versa.

The data provider should be involved as little as possible in the application and should
ideally only have to upload a single file to the system.

• The secure computation hosts are the parties that host the underlying secure computation
servers implementing the data collection application. They do not play an active role in
the data collection. However, if they collude they will be able to break the confidentiality
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of the collected data. Thus they must be chosen such that the data providers can trust
that at least one of the hosts will act honestly. This can typically be achieved by letting
at least one of the hosts be a trusted representative of the data providers.

Data Collection Process

In the data collection application the final data set to be collected is assumed to be structured
as a single table with each row containing a, possibly hidden, ID identifying uniquely the data
record in the row. Each row is assumed to have a label identifying the type of information held
in the given row (such as a customer ID or similar).
Here we go through the complete process of such a data collection using the application. We
take the point of view of the end user treating the data collection application abstractly as a
single service implemented in the cloud. However, as we shall see the in following section, the
application is concretely implemented as a distributed system using secure computation. At
the end-user level, however, the process proceeds in the following three phases:

Figure 3.12: Definition phase: The organizer (ORG) uploads a job description.

Definition (Figure 3.12) Before initiating a data collection the organizer must decide what
data must be collected from each of the data providers and how these data sets must be
prepared to form the final data set. Once these decisions are made the organizer start
the data collection by specifying them using a web-interface to the application.

He first designs a template for each of the data tables to be collected from the data
providers. The template describes what data the data providers must provide and in
which format.

The organizer then commits to which method to use for any data preparation procedure.
As described above this can include, e.g., removal of duplicate records from multiple data
providers. We note that this decision must be fixed before the data collection is started
and should not be allowed to change at a later stage.

Finally the organizer gives a short textual description for the data collection and its
purpose. We call the collection of all this information the job description of the data
collection. Once the organizer has finalized it, it is uploaded to the data collection appli-
cation and the actual data collection process can begin.
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Figure 3.13: Collection phase: Data providers (DP) reads job description and uploads data.

Collection (Figure 3.13) The data providers can now via a web-interface log in to the data
collection application in order to read the description of the data collection job. If the data
provider finds the job description acceptable (including how data will be manipulated in
the data preparation phase), he will upload his data to the data collection application.
He does so by downloading the template table he has been assigned by the organizer in a
convenient format such as a csv or excel file. The data provider then fills out the template
with actual data and uploads the file to the application.

All uploaded data is securely stored in the data collection application using the secure
internal representation of the underlying secure computation system (typically secret shar-
ing). This way, once it leaves the data providers client, no data is available to the appli-
cation in clear text.

During this phase the organizer can monitor the status of the data collection process.
Once sufficient data has been collected or a set time limit has be reached the organizer
can stop the data collection phase.

Preparation (Figure 3.14) Once the data collection phase is over and if sufficient data has
been collected the organizer starts the data preparation phase. Using secure computation
this phase transforms the data tables collected individually from each data provider into
a single coherent data table. This is done using whatever method was committed to by
the organizer in the definition phase. If the data preparation process involves checking if
the provided data tables are valid or corrupted the organizer will be informed the result
and can choose to cancel the data collection effort. Otherwise, the data collection process
ends successfully and the collected dataset will be ready for analysis.

3.5.2 Application Architecture

The application architecture is an example of the so called outsourced secure computation model.
Namely, end users of the application simply act as clients who securely provide input to and
read output from the application. To achieve the security requirements of the core of the
application is implemented using a secure multi-party computation system. However, only a
few selected parties host the underlying secure computation servers. This is in contrast to the
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Figure 3.14: Preparation phase: Organizer starts data preparation. Data sets are transformed.

more traditional model of a secure computation system, as seen in the theoretical literature,
where each user is control their own secure computation server.
The outsourced model has a number of benefits: It is easier to manage since the complex task
of deploying and maintaining the secure computation servers can be left to a few parties with
the required technical skills. Since the performance of many secure computation technologies
decreases as the number of secure computation servers increases, the outsourced model also
performs and scales better as the number of servers can be kept to a small constant regardless
of the number end-users. The outsourced model is also more flexible as end-users can be added
and removed dynamically without having to re-deploy the secure computation system. Finally,
outsourcing the secure computation minimizes the required online time for the end-users. I.e.,
the end-users only have to connect to the application in order to actively give input and read
output. This means that when the end-user is not actively using the application, he can forget
about it and turn-off his machine. In contrast, in the traditional model each end-user would
have to be keep their secure computation server live for the duration of the applications life
time, even when they are not actively interacting with the system.
The main drawback of the outsourced model is that the end-users have to trust the parties
hosting the secure computation servers to do the secure computation honestly. However, de-
pending on the secure computation technology used, if only a single (or small group) of these
parties behaves honestly security will not be broken. Thus, this trust issue can usually be solved
by choosing this set of parties such that each end-user feel they have a trusted representative
within the set.
We note that a similar architecture to the one described here was used for the confidential
benchmarking prototype described in WP23. This is no coincidence, in fact the architecture
of the application described in this chapter was heavily based on our experience from the
benchmarking prototype.

Components

The diagram in Figure 3.15 illustrates the major software components of the data collection
application and how they are connected. Below we describe each of these components in more
detail.
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Figure 3.15: Software components of the data collection application.

End User Client The client component mainly consists of the UI for the users (i.e., the
organizer and data providers). It takes the form of a simple web-application that the
users interact with via their browsers and is implemented in a combination of HTML,
JavaScript and other standard web-technologies. The clients for the organizer and data
providers are very similar sharing a common look and feel. However, since the data
providers use their client to upload confidential data to the application it must include
special functionality to securely share the data across the secure computation servers.

Middleware The main responsibility middleware component is to connect the various other
components in the system. It is implemented in Java using a number of subcomponents.
E.g, It contains a web-server in order to serve and communicate with the end user clients,
a JDBC component for interaction with the database and small custom component for
interaction with the FRESCO based secure computation component.

Database All data is stored in a standard database. Concretely we use MySQL, but essentially
any off-the-shelf database could be used. The confidential data provided by the data
providers is secured by collecting and storing it in the internal representation of the
secure computation system, such as secret sharing. This way the data is protected from
the secure computation hosts holding the database.

Secure Computation The secure computation component handles any secure computation
done by the application. I.e., this is the component used for the data preparation phase.
The component is implemented in Java using the FRESCO framework as developed in
deliverable D14.2. It in turn consists of two main subcomponents: one component im-
plementing the concrete secure computation to be done for the various data preparation
procedures (what is known as the SCS component in the deliverable D21.2), and another
component implementing the secure computation technology used to actually perform the
computation (known as the SCE in D21.2).

The flexibility of the FRESCO framework means that the underlying secure computation
technology does not need to be fixed. Instead it can be adapted to the concrete scenario
without changing the application significantly. This means that for a concrete usage
scenario we can pick a secure computation technique best suited for the job. This is key,
for a very generic application such as this one, because it is intended to be use to support
many different scenarios.
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Physical Deployment

Figure 3.16: Physical deployment of the data collection application.

As described above the application is an example of the outsourced secure computation model.
I.e., the secure computation is outsourced to a few secure computation servers, while the end
users simply act as clients to the system by securely providing inputs and reading outputs from
the secure computation servers. The diagram in Figure 3.16 illustrates how the deployment of
application could look like in the case of two secure computation servers. In the diagram we
only illustrate the organizer as end user since the picture would more or less be the same for
the data providers.
As also mentioned above the end users client is a simple web-application in the browser of his
mobile phone or desktop computer. The client communicates over HTTPS with the middleware
components at each of secure computation servers. Note, that the client is connected to both
servers. This is in order to securely share his input across the servers (in case of a data provider).
Each of the secure computation servers are essentially identical and host both the middleware,
data base and secure computation components. The middleware component is connected to the
data base using JDBC and interacts with the secure computation component using regular a
regular Java interface. Once, secure computation is started the secure computation components
communicate directly using TCP/IP connections and using TLS for any communication that
needs to be secured.
In this setup the secure computation servers should preferably be high-performance machines as
the secure computation process can be rather demanding. However, secure computation is only
actually used in the data preparation phase. In the definition and collection phase the secure
computation servers may not have as much power. Therefore, as a cost saving mechanism in
the cloud computing setting, we could consider a setup where the servers are moved to an
expensive high-performance machine only during the data preparation phase.

3.5.3 Conclusion

In this section we have described a generic application for confidential data collection based on
secure computation. The application is meant as a building block for data analytics applica-
tions involving analysis against a data foundation collected in a early phase of the application
lifetime. Having such a generic building block is valuable, in order to considerably shorten the
development time of applications following a certain application pattern that we often see in
secure computation based data analytics scenarios.
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We have additionally presented the architecture of the application which is heavily inspired by
our work on the prototypes in WP23 of PRACTICE. In particular the Secure Credit Assessment
and Survey prototypes. The architecture follows the same outsourced secure computation model
where used in the PRACTICE prototypes which has a number of benefits in terms of usability,
performance and scalability.
A prototype of the described application will be implemented and used in the project Big
Data by Security founded by the Danish Industry Foundation, to build prototypes solving
confidentiality problems in the banking and energy sector. The implementation will be based on
the secure computation framework FRESCO developed in WP14 and described in D14.2. Thus,
this application nicely demonstrates how the work of PRACTICE both in terms of architecture
of secure computation applications and secure computation development frameworks has been
useful even outside of the PRACTICE project.

PRACTICE D21.3 Page 84 of 112



Application architecture for secure computation

Chapter 4

Hardware-Enhanced Security for
Secure Multi-Party Computing

As outlined in Chapter 5 of D23.1 [101], algorithms for secure multi-party computation (SMPC)
usually provide security based on distributed cryptographic algorithms.
Minimizing trust assumptions and using only a minimal trusted computing base is a common
goal of IT security. Traditional security on the application layer is usually dependent on the
complete software stack (operating system, firmware, and the application itself). Using hard-
ware to protect security critical components can (a) reduce the trusted computing base, (b)
increase efficiency by providing a verifiable TCB, and may allow replacing complex multi-party
protocols with a simple computation that is protected by trusted hardware.
For SMPC, the traditional cryptography-only approach of SMPC has several shortcomings that
can be mitigated by adding hardware-based security protections:

High Cost Depending on the function to be computed, the corresponding circuit can be com-
plex and thus the computation and memory cost of the function evaluation is very high.
This may render SMPC for certain functions too expensive for many practical applica-
tions.

Limited Scalability In practice, computations may involve many players (e.g. voting) or may
require large data sets (databases or even big data). For these scenarios SMPC may not
scale well enough to be viable in practice.

State Similarly, if computations require a state to be kept between different function evalua-
tions (e.g. a database), SMPC may not be the optimal approach in practice.

Software Vulnerabilities A final word of caution is that SMPC assumes correct implementa-
tion and undisturbed execution of the specified algorithms at the parties that are deemed
to be trusted. Similarly, keys and state need to be kept confidential and integrity pro-
tected. Hardware security may help implementing these assumptions.

SMPC assumes that certain “trusted” participants follow the protocol as specified. This in-
cludes the centralized compute node in the traditional model as well as, e.g., certification
authorities in the cryptographic protocols. One way to further reduce this high level of trust is
to augment the compute architecture by introducing hardware-enhanced security.
The following two sections (published as [12]) survey capabilities and relevant products for
hardware-based security.
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Figure 4.1: Common hardware security concepts devices (adapted from [38]).

4.1 Basic Concepts of Hardware-enhanced Security

The trusted computing base (TCB) of a device consists of hardware and firmware components
that need to be trusted unconditionally. The remainder of the platform is usually denoted as
“Rich Execution Environment (REE)”. In this chapter we denote such hardware and firmware
components as trust anchors of the computing system.
Figure 4.1, adapted from [38], illustrates trust anchors present in a typical device. Individual
trust anchors are shown in gray. The numbered dotted boxes (1-5) represent common security
mechanisms and illustrate the trust anchors needed to implement each mechanism. In the
following subsection (Sections 4.1.1) we describe the security mechanisms. We use bold font
whenever we introduce a concept shown in the figure for the first time.

4.1.1 Basic security mechanisms

Platform integrity

The integrity of platform code (e.g., the device OS) can be verified either during system boot
or at device run-time. This allows device manufacturers and platform providers to prevent
or detect usage of platform versions that have been modified without authorization. Two
variations of boot time integrity verification are possible.
In secure boot, the device start-up process is stopped if any modification of the launched platform
components is detected. A common approach to implement secure boot is to use code signing
combined with making the beginning of the boot sequence immutable by storing it within
the TCB (e.g., in ROM of the device processor chip) during manufacturing [7]. The processor
must unconditionally start executing from this memory location. Boot code certificates that
contain hashes of booted code, signed with respect to a verification root, such as the device
manufacturer public key stored on the device, can be used to verify the integrity of the booted
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components. The device must be enhanced with cryptographic mechanisms to validate the
signature of the system component launched first (e.g., the boot loader) that can in turn verify
the next component launched (e.g., the OS kernel) and so on. If any of these validation steps
fail, the boot process is aborted. Integrity of the cryptographic mechanisms can be ensured
by storing the needed algorithms in ROM. The immutable boot sequence and a verification
root together with an integrity-protected cryptographic mechanism provide the needed trust
anchors for secure booting.
In authenticated boot, the started platform components are measured but not verified with
respect to any reference values. Instead these measurements are logged in integrity-protected
volatile memory. The boot loader measures the first component launched which in turn
measures the next one and so on. The recorded measurements represent the state of the
platform components after boot, and can be used for local access control enforcement or remote
attestation (cf. later this section). Two trust anchors are used to implement authenticated boot:
integrity-protected volatile memory and a cryptographic mechanism.
Boot time integrity alone is not sufficient if an attacker can modify the system after it has been
booted. In runtime platform integrity verification, a trusted software (or firmware) component
monitors the integrity of the platform code continuously [102] and repairs modified components
automatically if possible [71]. The integrity of the monitor itself can be verified using the above
described boot integrity verification techniques.

Secure storage

A mechanism to store data on the device to disallow unauthorized access by Rich Execution
Environment (REE) components is called secure storage. Sensitive data kept in secure storage
should not leak to an attacker even if the REE is compromised. A common way to implement
secure storage is to augment the device hardware configuration with a confidential and integrity-
protected device-specific key that can be accessed only by authorized code. Such a device
key may be initialized during manufacturing and stored in a protected memory area on the
processor chip. To protect against key extraction by physical attacks, manufacturing techniques
like protective coatings may be used. In addition to the device key, implementation of secure
storage requires trusted implementations of necessary cryptographic mechanisms, such as an
authenticated encryption algorithm. Data rollback protection requires the inclusion of writable
non-volatile memory (e.g., a monotonic counter) that persists its state across device boots.
To summarize, two trust anchors are needed for secure storage: a device key and cryptographic
mechanisms. Note that securely storing cryptographic keys is useful only if cryptographic
algorithms using these keys are protected as well.

Isolated execution

The term “isolated execution” refers to the ability to run security-critical code outside the con-
trol of the untrusted Rich Execution Environment (REE). Isolated execution combined with
secure storage constitutes a trusted execution environment (TEE), which allows implementa-
tion of various security applications that resist REE compromise. We explain possible TEE
architectures in Section 4.1.2. Here we introduce the trust anchors needed to implement a
TEE, which are a subset of the device hardware TCB. Conceptually the TEE can be seen as a
component of the TCB.
A TEE can expose the functionality of predefined cryptographic mechanisms to the REE with
the guarantee that the cryptographic keys never leave the TEE. While predefined common
cryptographic operations are sufficient for many services, certain applications require isolated

PRACTICE D21.3 Page 87 of 112



Application architecture for secure computation

execution of application-specific algorithms. Proprietary one-time password algorithms for on-
line banking constitute one such example. To support isolated execution of arbitrary code,
the device hardware configuration must provide an interface (TEE entry) through which
the executable code (trusted applications) can be loaded for execution using the protected
volatile memory.
A TEE code certificate can authorize code execution within the TEE and authorize trusted
applications to access the device key and other device resources such as confidential data (e.g.,
DRM keys) and hardware interfaces (e.g., the cellular modem or NFC). Furthermore, the access
that any trusted application has to the device key and other device resources may be controlled
based on the platform state that was measured and saved during an authenticated boot process.
A software or firmware component called TEE management layer provides a runtime en-
vironment for trusted applications and enforces access control to protected resources like the
device key (more details in Section 4.1.2). The integrity of the management layer must be ver-
ified either as part of the boot time platform integrity verification (and runtime monitoring) or
on demand when trusted applications are loaded for execution [85]. Realization of isolated ex-
ecution can make use of the following trust anchors: isolated memory (volatile or non-volatile),
cryptographic mechanisms and verification root.

Device authentication

An external service provider can use device authentication to verify the identity of the device
(and its TEE). The identity may include device manufacturer information that can imply
compliance to external service provider requirements.
The device hardware configuration typically has a unique immutable base identity which
may be a serial number from a managed name space or a statistically unique identifier ini-
tialized randomly at manufacture. A combination of a verification root and the base identity
allows flexible device identification. An identity certificate that is signed with respect to the
aforementioned verification root binds an assigned identity to the base identity. International
Equipment Identifier (IMEI) and link-layer identities such as Bluetooth and WiFi addresses are
examples of device identities.
A device certificate signed by the device manufacturer can bind any assigned identity to the
public part of the device key. Signatures over device identities using the device key provide
device authentication towards external verifiers.

Attestation and provisioning

An externally verifiable statement about the software configuration running on a device is called
remote attestation. Remote attestation allows an external service provider to verify that a device
is running a compliant platform version. A common way to implement remote attestation is to
provide statements signed with the certified device key over authenticated measurements (e.g.,
cryptographic hash digests) of the firmware and software components loaded at boot time.
The process of securely sending secrets and code to the TEE of the target device is called
provisioning. Many security services require a security association between an external service
provider and the TEE of the correct user device. For example, a bank might want to provision
a key to the TEE of a customer device for on-line banking authentication. In some cases,
service providers also need to provision TEE code that operates on the provisioned secrets,
such as proprietary one-time password algorithms. Device authentication provides the basis
for TEE provisioning. Data can be provisioned encrypted under a certified device key. Device
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architectures, grey boxes are not controlled by the REE device OS.

certificates do not include user identities and thus provisioning user authentication must be
implemented by other means.
Note that all cryptographic keys needed for secure storage, isolated execution, device authen-
tication, attestation and provisioning can be derived from the same device key.

4.1.2 TEE architecture

The isolation needed for a TEE can be realized in various ways, ranging from separate security
elements to secure processor modes and virtualization. Depending on the used isolation tech-
nique, different TEE architectures are possible. Figure 4.2, adapted from [57], depicts a generic,
high-level TEE architecture model that applies to different TEE architecture realizations.
We call a processing environment that is isolated from the REE device OS as TEE instance. A
TEE architecture realization may support one or more TEE instances. In TEE architectures
that are based on dedicated security chips [128] and processor modes [8, 121], typically a single
TEE instance is available. Virtualization [84] and emerging processor architectures [97, 86] are
TEE examples in which each REE application may create its own TEE instance. TEE instances
are created (or activated) and accessed using the TEE entry interface. Applications running in
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the REE device OS access TEE services through a TEE API that allows REE applications to
execute trusted applications and to read and write data to and from them.
If only a single TEE instance is available, the same TEE instance typically allows execution of
multiple trusted applications. The TEE management layer can be implemented in software as
a full-fledged embedded OS, a set of libraries, a small interpreter that runs within the TEE or
in device hardware and firmware. It provides the interface through which trusted applications
communicate with REE applications and invoke cryptographic operations within the TEE. In
terms of size and complexity, the management layer is likely to be significantly smaller than
the REE device OS and thus, its attack surface is smaller. In TEE architectures, where each
REE application creates its own TEE instance, a management layer may not be used.

4.2 Research Solutions

In the following we discuss various concepts and research efforts that continue to extend and
improve trusted computing research. Observe that we mainly focus on the recent research
directions in embedded systems. A detailed survey on research in traditional trusted computing
is available in [100].

4.2.1 Alternative trusted computing designs

One of the earliest works that describe the use of secure co-processors to assure isolated execu-
tion (cf. Section 4.1.1) is the report on the 4758 Secure Coprocessor [37]. It describes the design
of a physically isolated, tamper-resilient execution environment which implements a TEE that
communicates with the CPU to execute certain tasks securely on a separate processor and
memory [133]. Following this work, it was investigated how remote parties can gain assurance
that a particular application has been executed in the TEE of some particular device (cf. Sec-
tion 4.1.1). A trust chain was devised by which the TEE itself can vouch for the execution of
a particular code, which in turn may load and execute other code [120]. The device key of the
TEE is embedded by its manufacturer, who vouches for the correct operation of that TEE.
Drawbacks of secure co-processors are the high additional costs and the generally low com-
putation performance. Copilot [102] alleviates this problem by using the co-processor only
to monitor and assure the integrity of the actual computation performed by the main CPU.
Overshadow [29] uses hardware-assisted virtualization to enforce different views on memory for
user applications and OS kernels, thus ensuring the integrity and confidentiality of applications
despite OS compromise.
Some works have also investigated the extension of the CPU itself to enable the measurement
of executing code and to establish a TEE. For instance, the AEGIS system architecture [124]
extends the CPU interface with facilities for loading, measuring and authenticating software
modules, and uses these facilities to provide authenticated execution of tasks in real (non-
virtual) memory. Similarly, it was proposed that a CPU vendor could provide trusted software
modules (TSMs) [36]. The code segments of TSMs are extended with authentication codes
which are automatically verified when they are loaded into the cache banks of a CPU during
execution.
Leveraging such a trusted loader or regular secure/authenticated boot (cf. Section 4.1.1), a
minimal security kernel can be launched which then in turn ensures a measured and isolated
execution of software tasks. In particular, the PERSEUS system architecture [103] proposes
to leverage a secure microkernel for strong isolation between a multitude of software security
services. The NGSCB [39] proposes an ultimately trusted security kernel to support secure
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applications in a secure world mode, while Terra [52] argues that a Chain of Trust must be
established from platform initialization to the hypervisor and the individual executed applica-
tions. Trusted hypervisors such as sHype [111] and TrustVisor [84] follow this design and use
a minimal security kernel that provides strong isolation between higher layer applications.

4.2.2 Remote attestation

Remote attestation (cf. Section 4.1.1) begins with the initial measuring of the bootloader
and OS [68, 116]. IMA [112, 64] extends the Linux kernel with facilities to measure loaded
code and data according to predefined policies. During attestation, the software measurements
maintained by the kernel can then be signed by the device key (cf. Section 4.1.1) and the kernel
in turn can be verified based on the measurements performed by the boot loader and platform
firmware. As an alternative, secure OS kernels such as PERSEUS or TrustVisor only measure
certain isolated security services, which are then used by regular applications to perform secure
transactions on their behalf [103, 84]. The security services are designed to provide maximum
flexibility while maintaining low internal complexity and external dependencies, thus simplifying
the process of measuring, validating and establishing trust in a particular software [5, 115].
When extending a secure channel protocol with remote attestation, care must be taken that
the reported measurements actually originate from the particular platform that is to be at-
tested [58]. Multiple works have proposed protocol extensions for secure channels such as SSL
and IPsec [9, 115] and extend the resulting networks into security domains of assured distributed
access control enforcement (e.g., [83, 26]).
A general problem in remote attestation is the disclosure of the often privacy-sensitive software
state to the verifying entity (verifier). To address the problems of privacy but also scalability
when dealing with large amounts of software integrity measurements, property-based attesta-
tion [110, 28] proposes to attest concrete properties of software. For this purpose, the loaded
software is equipped with property-certificates which ensure that the software has certain prop-
erties. During attestation, the platform then proves the existence of the required properties of
the loaded software to the verifier. However, the identification and extraction of the desired
software security properties from software remains an open problem [92].

4.2.3 Low-cost trusted execution environments

With the rise of resource-constrained embedded systems as part of complex monitoring and
control infrastructures, a recent line of research investigates the possibility to perform attesta-
tion (cf. Section 4.1.1) and isolated execution (cf. Section 4.1.1) even on such low-end devices.
These works typically assume that common approaches like secure co-processors or complex
CPU modes are too expensive in terms of production cost or energy consumption. Instead,
they aim to provide a limited trusted computing functionality for the purpose of automated
verification and trust establishment in larger IT infrastructures.

Software-based attestation

If the device does not support a hardware-protected key needed for remote attestation (as
described in Section 4.1.1), attestation can be implemented in software. A typical software-
based attestation scheme exploits the computational constraints of a device to make statements
about its internal software state [118, 117]. The prover must compute a response to a given
attestation challenge within a certain time. When receiving the correct response in the expected
time, the verifier has assurance that only a specific attestation algorithm could have been
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executed within that time frame. The attestation algorithm is typically implemented as a
specific checksum function that iteratively merges information gathered from the device. A
formal analysis of software-based attestation [10] has shown the challenges of formalizing the
underlying assumptions.
Several variations and extensions to software-based attestation have been proposed, ranging
from implementations for different platforms to more fundamental changes to the software-based
attestation concept, such as repeated challenge-response procedures [66, 79] or using memory
constraints [51, 130], and self-modifying or obfuscated algorithms to prevent manipulation of
the attestation algorithm [119, 56, 117]. Multiple works consider the combination of software-
based attestation with hardware trust anchors such as TPMs [114, 77] and SIM-cards [66] to
authenticate the prover device.

Minimal Attestation Hardware

The Secure Minimal Architecture for Root of Trust (SMART) [33] is designed to enable remote
attestation and isolated execution at the lowest possible hardware cost (see also [46]). SMART
realizes this using a custom access control enforcement on the memory bus, allowing access
to a particular secret key in memory only if the current CPU instruction pointer (IP) points
to a known trusted code region in ROM (secure storage). This way, the secret key is only
accessible when the CPU is executing that trusted code and can thus be used to authenticate
the execution of that ROM code to other parties. In particular, by letting the trusted ROM
code measure and execute arbitrary code, the design can be extended to a freely programmable
trusted execution mechanism or simply be used to attest the local platform.
While SMART is more efficient and easier to validate than software-based attestation, it suf-
fers from certain practical drawbacks. In particular, SMART offers no exception or interrupt
handling, requiring a platform reset and memory clearing in case of unexpected errors. To
prevent interruption of the trusted code, the hardware access control in SMART assures that
the corresponding code region can only be entered at the first address and exited at its last
address. However, memory protection based on the CPU instruction pointer may still be ex-
ploited with code re-use attacks, where the semantics of code is changed based on stack or other
data manipulation [45].

CPU-based task protection

Another approach to isolated execution and possibly low-cost trusted execution are Software
Protected Modules (SPM) [123]. They extend the CPU instructions to provide trusted execution
based on execution-dependent memory protection, allowing tasks to request protected memory
regions and query the protection status of other tasks in the system directly from the CPU. This
way, protected tasks can inspect and attest each other in local memory. For communication
and multi-tasking, protected tasks can declare code entry points which may be called by other
tasks with the desired arguments, while other portions of code are protected by the platform.
However, when communicating with other tasks on the local platform, one needs to assure that
the other task’s entry points and protection status have not been changed since the last local
attestation.
Sancus [97] extends an openMSP430 CPU to implement SPM in hardware. However, the
problem of handling interrupts and unexpected software faults remains unsolved, and additional
modifications are required to sanitize the platform memory upon device reset. To assure to local
tasks that a particular other task has not been modified (e.g., by malware), the CPU provides
a number of cryptographic tokens and secure hashes of individual loaded tasks. As a result,
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Sancus imposes relatively high hardware costs for the targeted low-end systems, imposing a
100% area increase for providing eight secure modules [97]. By managing tasks through CPU
instructions, Sancus imposes certain restrictions on the memory layout of a task, .e.g., limiting
capabilities for shared memory or peripherals I/O. Another implementation of SPMs is provided
in the Fides hypervisor [122]. Fides can provide secure interruption and communication between
processes, which, however, seems to be achievable also with typical task isolation by trusted
hypervisors or security kernels.

Execution-aware memory protection

TrustLite [74] extends the concepts of SMART [33] and SPM [123] to provide a programmable,
execution-aware memory protection subsystem for low-cost embedded devices. TrustLite’s EA-
MPU allows running a number of protected tasks (Trustlets) in parallel without requiring
additional CPU instructions. Moreover, the EA-MPU can be programmed to provide individual
Trustlets with shared memory and exclusive peripherals access, enabling the construction of
secure device drivers and other platform services. TrustLite also proposes a modified CPU
exception engine to prevent information leakage to OS interrupt handlers. This allows the
OS to perform preemptive multitasking of Trustlets similar to regular tasks, thus facilitating
integration of Trustlets with existing software stacks.
To address the assumption of SMART and Sancus that all system memory is cleared on plat-
form reset, TrustLite deploys a Secure Loader that initializes the EA-MPU at boot-time, thus
allowing an efficient re-allocation and protection of sensitive memory regions prior to REE invo-
cation. Additionally, instead of having the hardware managing identification tokens for secure
inter-process communication (IPC) as in Sancus, TrustLite assumes that low-cost embedded
systems do not require the re-allocation or upgrade of TEE tasks at runtime but that TEEs
can remain in memory until platform reset.

4.3 Hardware-enhanced Security in Commercially Avail-

able Products

Over the past years, several trusted computing research concepts have been realized in industry
products, and in many cases such products have fostered new opportunities to build and research
trusted systems. In the following sections we review some of the main technologies as well as
standardization efforts.

4.3.1 Virtualization and dynamic root of trust

Many mobile and ultra-mobile laptop platforms feature hardware-assisted virtualization tech-
nology, such as Intel R©Virtualization Technology (Intel VT). A central design goal of Intel VT
was to simplify the implementation of robust hypervisors. Intel VT adds two new operation
modes: VMX root mode for hypervisors and VMX non-root mode for virtual machines. VMX
root mode is very similar to the normal Intel Architecture without Intel VT while VMX non-root
mode provides an Intel Architecture environment controlled by a hypervisor. A Virtual-Machine
Control Structure (VMCS) was introduced to facilitate transitions between VMX root mode
and VMX non-root mode and can be programmed by the hypervisor to establish boundaries
on a VM, including access to memory, devices and control registers. While operating in VMX
non-root mode, the execution of certain instructions and events cause a transition to VMX root
mode called a VMexit. The hypervisor can retrieve details as to the cause of the VMexit by
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reading the VMCS and process the event accordingly [94]. Intel VT introduced a generalized
IO-MMU architecture which enables system software to define constraints on DMA devices,
restricting their access to specific subsets of physical memory allowing for a smaller TCB [4].
Another major capability of modern systems is the DRTM. Available as Intel R©Trusted Ex-
ecution Technology (Intel TXT) or AMD Secure Virtual Machine, this technique enables a
CPU to perform a runtime re-initialization and establish a new software TCB (TEE payload),
irrespective of the trustworthiness of previously loaded software. For this purpose, the TCG
TPM was extended with a set of DRTM PCRs which can be reset at runtime by the CPU
by sending a TPM command from the appropriate operation mode (TPM locality). The Intel
GETSECS[SENTER] instruction initiates the DRTM. The CPU resets the DRTM PCRs and
loads an Authenticated Code Module (ACM) into an isolated execution environment. The
ACM performs a series of platform configuration checks, configures DMA protection for the
TEE payload and extends the TEE payload hashes into the TPM PCRs.
DRTM technology has been used to securely execute critical software payloads such as SSH
logins, X.509 eMail signatures, or to protect banking secrets [85, 50, 24]. Intel TXT has also
been used in combination with Intel VT to initiate a trusted hypervisor, which in turn provides
multiple TEEs to the individual running VMs [84]. The generalized IO-MMU allows hypervi-
sors to be “disengaged”, i.e., to only perform an initial configuration of VM boundaries, thus
providing only a minimal external interface and complexity [69]. Alternatively, a “disaggre-
gated” hypervisor may reduce its TCB by delegating drivers for peripherals control to other
VMs [91], or to construct a trusted path, providing secure user I/O for TEEs [134].

4.3.2 Userspace trusted execution

Intel R©Software Guard Extensions (Intel SGX) are a set of new instructions and memory access
changes to the Intel Architecture to support TEEs. The extensions provide the ability to instan-
tiate one or more TEEs (enclaves) that reside within an application inside a REE. Accesses
to the enclave memory area against software (not resident in the enclave) are prevented by
hardware. This restriction is enforced even from privileged software, such as operating systems,
virtual machine monitors and BIOS.
The enclave lifecycle begins when a protected portion of an application is loaded into an en-
clave by system software. The loading process measures the code and data of the enclave and
establishes a protected linear address range for the enclave. Once the enclave has been loaded,
it can be accessed by the application as a service or directly as part of the application. On first
invocation, the enclave can prove its identity to a remote party and be securely provisioned
with keys and credentials. To protect its data persistently, the enclave can request a platform
specific key unique to the enclave to encrypt data and then use untrusted services of the REE.
To implement Intel SGX memory protections, new hardware and structures are required. The
Enclave Page Cache (EPC) is a new region of protected memory where enclave pages and
structures are stored. Inside the EPC, code and data from many different enclaves can reside.
The processor maintains security and access control information for every page in the EPC in
a hardware structure called the Enclave Page Cache Map (EPCM). This structure is consulted
by the processor’s Page Miss Handler (PMH) hardware module, as shown in Figure 4.3. The
PMH mediates access to memory by consulting page tables maintained by system software,
range registers and the EPCM. A Memory Encryption Engine (MEE) protects the EPC when
using main memory for storage [86].
Enclave binaries are loaded into the EPC using new instructions. ECREATE starts the loading
process and initializes the Intel SGX Enclave Control Structure (SECS) which contains global
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information about the enclave. EADD loads a page of content into a free EPC page and records
the commitment into the SECS. Once the EPC page has been loaded, the contents of the page
are measured using EEXTEND. After all the contents of the enclave have been loaded into
the EPC, EINIT completes the creation process by finalizing the enclave measurement and
establishes the enclave identity. Until an EINIT is executed, enclave entry is not permitted.
Once an enclave has been loaded, it can be invoked by application software. To enter and exit an
enclave programmatically (e.g., as part of a call/return sequence), new instructions, EENTER
and EEXIT, are provided. While operating in enclave mode, an interrupt, fault or exception
may occur. In this case, the processor invokes a special internal routine called Asynchronous
Exit (AEX) which saves and clears the enclave register state and translation lookaside buffer
(TLB) entries for the enclave. The ERESUME instruction restores the processor state to allow
the enclave to resume execution.
To enable attestation and sealing, the hardware provides two additional instructions ERE-
PORT and EGETKEY. The EREPORT instruction provides an evidence structure that is
cryptographically protected using symmetric keys. EGETKEY provides enclave software with
access to keys used in the attestation and sealing process. A special quoting enclave is de-
voted to remote attestation. The quoting enclave verifies REPORTs from other enclaves on the
platform and creates a signature using a device specific (private) asymmetric key [6].
Intel SGX minimizes the TCB of trusted applications to the critical portion of the application
and hardware. This simplifies the creation and validation of remote attestation reports, as
remote verifiers no longer have to understand multiple TEE management layers and their de-
pendencies. While requiring CPU extensions, Intel SGX does not require any dependencies on
the TPM, a hypervisor or a separate trusted operating system. Further, it is protected against
hardware and software attacks on RAM. Finally, Intel SGX enables application developers to
directly deploy trusted applications inside REE applications [61].

4.4 Combining Hardware Security and SMPC

We will now discuss viable approaches for combining security through cryptographic protocols
with novel hardware-security mechanisms. All three approaches are complementary and can be
combined to increase the efficiency, practicality, and security of SMPC.

Protecting Cryptographic Algorithms and Storage The first and most straightforward
approach is to use platform security features to improve the security of a deployed SMPC
scheme. The goal is to deploy a given SMPC algorithm on a given compute platform while
maximizing use of the security features of a platform. This can be done by following the
subsequent set of best practices that leverage capabilities of a trusted execution environment:
The first approach to enhance SMPC protocols is to use hardware acceleration to speed up
crypographic primitives. On modern Intel Platforms, optimized hardware support is usually
offered for AES and SHA. Furthermore, optimized libraries for RSA, ECC, and long-integer
arithmetic are available.
The second approach is to isolate the execution of SMPC algorithm from interferences and
attacks. A simple form is task or virtual machine isolation. Moving SMPC tasks into a separate
VM can render attacks from other VMs more difficult.
The strongest form of isolation are so-called Trusted Execution Environments (TEEs) (such
as Intel SGX discussed above). A TEE allows to execute a SMPC algorithm in isolation.
Unlike Virtual Machine and Task isolation, TEEs also protect the workload from attacks by a
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compromised virtual machine monitor or operating system. Furthermore, a TEE allows other
parties to validate the software integrity by means of attestation.

Resolving Performance Bottlenecks The second approach is to analyze a SMPC algo-
rithm for performance bottlenecks and re-implement the functionality of these performance
bottlenecks within a trusted execution environment.
One example is to use Intel SGX to implement encrypted search or private membership tests
and then use these higher-level primitives in a larger SMPC system.
This approach can be implemented gradually. In the extreme case, a complete algorithm can be
distributed into multiple TEEs, executed in confidentiality and isolation, and can then output
the desired results after cross-validation with its peers. This would replace a SMPC algorithm
by TEE-protected computation of the corresponding circuit/function.
The drawback of using TEEs is a change into a fundamentally different trust model where the
players need to trust the hardware security capabilities offered by the hardware vendor. In the
traditional security model of MPC, the goal is that each participant only needs to trust itself.

Implementing Trusted Third Parties A third approach to leverage trusted execution
environments is to use these services to implement and execute trusted third parties (TTP)
required by a protocol. The idea is that one party executes the trusted third party services
in a TEE. Other parties can use the attestation capability to verify that the TTP is correctly
implemented and executed.

4.5 Using Hardware to Enhance Protection of Applica-

tions

In the previous sections, we surveyed hardware capabilities such as Trusted Execution Envi-
ronments (TEE) that can be used to augment the capabilities of the PRACTICE architecture.
In Section 4.4 we then discussed generic approaches to use such hardware security capabilities
to enhance security and efficiency of secure multi-party computations.
We will now have a closer look at some of the proposed applications that have been presented
in this document and discuss potential integration and benefits of secure hardware.

4.5.1 Malware Detection using Private Set Intersection

The goal of this application described in Section 3.2 is to determine whether a given application
signature (e.g. an android app identifier) is listed in a large database of known malware.
Technically, the goal is to compute an intersection between a small set (installed application
identifiers) and a larger set (the malware database).
One approach to solve these application requirements is to use the primitive of “Private Set
Intersection (PSI)” that is described in deliverables D11.1 [107] and D13.1 [70]. This approach
already uses hardware cryptographic acceleration offered by today’s platforms.
If one requires trust into TEEs, then one viable approach is to use the TEE to implement the
complete functionality of private set intersection. This approach has been described in [126].
The goal of the paper is to provide malware look-up such that the server does not learn what
malware exists on what device and the client does not learn the complete malware database.
The key idea of the design is that the server provides a TEE that can be used as a look-up
proxy by a client. The client can the load his malware identifier into this TEE (privacy of the
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apps) while the TEE cycles through the database (loading / unloading portions). After cycling
through the encrypted malware database, the TEE can declare the subset of applications that
are malware. The cycling through the database hides the applications that are looked up from
the server. The execution is performed on a server since the database is larger and the server
is usually more powerful than a client (e.g. a phone).

4.5.2 Privacy-enhanced Tax Fraud Detection

Section 3.3.1 discusses the detection of fraudulent claims to reimburse value-added tax using
MPC. The goal is to scan transactions while determining whether certain transactions are
deemed fraudulent. The requirement from the government is to detect fraudulent transactions.
The privacy requirement from the monitored enterprises is to not reveal transactions that are
not fraudulent.
The first approach to increase efficiency is to scale the computing power available by parallel
computation. Sharemind, part of the PRACTICE architecture, offers different trust models and
different efficiency levels. As indicated in Section 3.3.1, the most efficient algorithms require
three independent parties that are assumed to work correctly and that are assumed not to
collude.
As a consequence, the three independent parties can best be protected using three independent
Trusted Execution Environments (TEEs). This provides similar independence and isolation
while allowing to re-use the existing software components. Unlike the normal Sharemind de-
ployment using three independent (additional) parties, we can now provide three hardware
TEEs that provide the same service using only one additional third party.
Instead of placing three TEEs at independent parties, we can now add one TEE to the services
at the tax authority, one TEE can be implemented at the monitored enterprise, and a single
independent party is needed to provide the third TEE. This substantially enhances the efficiency
of the Sharemind system while reducing the requirement for independent parties. This scenario
adds hardware protection to the cryptographic protections of Sharemind.
If all parties agree that trust in hardware alone is sufficient and no additional layer of crypto-
graphic defense is needed, then a similar service could be implemented using two TEEs: One
TEE would be deployed on a server at the tax authority that implements the fraud detection
system. Another TEE is deployed at the monitored companies to collect transaction data.
Since the company can validate (attest) the TEE at the tax authority, it can verify that its
privacy is fulfilled. The tax authority can also attest a company TEE to ensure that the right
data is monitored and submitted.
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Figure 4.3: High-level architecture of Intel SGX Page Miss Handler (PMH). Processor memory
requests are sent to the PMH for translation and access control checks. As part of Intel SGX,
the PMH has been extended to check whether a memory access was initiated by an enclave.
For non-enclave accesses, the PMH redirects any access to the EPC to non-existent memory
(abort page). For an enclave access (an access by enclave to its protected linear address range),
the PMH checks that the translated address is an EPC page. Furthermore,the PMH consults
the EPCM to verify that the EPC page belongs to enclave requesting access, the correct linear
address was used to access the page, and access permissions are consistent with the request.
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Chapter 5

Conclusion

In this document we extended the description of a general architecture using secure computa-
tion started in deliverable D21.2 [22]. The goal of this work was to present general guidelines
for developing and deploying actual applications that use secure computation technologies, e.g.,
from the PRACTICE architecture. Along with these, we have detailed several example appli-
cations that have been developed by project partners on top of the tools from the PRACTICE
architecture, e.g., building on top of the ABY, Sharemind, SEEED and FRESCO frameworks.
Moreover, we provide guidelines on how to include secure hardware into applications that use
secure computation, i.e., how these can benefit from using additional security guarantees pro-
vided by the hardware used.
The main contributions of this work can be summarized as follows:

• Chapter 2 serves as the core of this work, where the general guidelines are drawn from
the architecture and example applications. Firstly in Section 2.1 we describe architec-
tural drivers such as a) identifying the problem for which we use secure computation,
b) identifying the usage scenario of secure computation and the expected roles of the
actors who participate in the secure computation, and c) analyzing data and assessing
the risk corresponding to losing privacy. Then, we consider aspects when it comes to
the design, i.e., to the selection of the DAGGER engine (Section 2.2.1), including
its available protocol suite, integration support and programming paradigm as well as
the performance level, secure storage, and development tools it provides. Selecting the
DAGGER protocol suite (Section 2.2.2) depends on the underlying secure computa-
tion technique, the deployment and usage models it supports, the level of security it pro-
vides, if verifiability and integrity checks are provided, as well as the functionalities it can
implement, its performance and the corresponding resource requirements. Furthermore,
we discuss aspects in connection with the construction of the SPEAR application
(Section 2.2.3). This includes a discussion on how to construct the Application Back-
end on the server side, what are the possible query communication models and solutions
for preserving the order of inputs in the databases of SPEAR nodes, as well as the de-
sign choices related to the construction of the Application Frontend and the necessary
steps for the development of secure computation algorithms. Thereafter, guidelines are
given for implementing secure computation algorithms based on the DAGGER platform
to achieve the desired protection of data (Section 2.2.4). This includes aspects related
to the security of the programming model of secure computation, how to maximize the
entropy, i.e., the measure of uncertainty of the intermediate values, how to hide links to
data sources and handle malicious queries within the SPEAR application. Last but not
least, an assessment of the possible performance optimizations is given (Section 2.2.5),
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which includes techniques such as parallelization of data and tasks, optimization for data
type and operations, for the underlying protocol, precomputation and caching as well as
a discussion on how trading off some privacy might result in more efficiency.

• Chapter 3 describes example applications that show examples for different applica-
tions utilizing these design choices. Firstly, privacy-preserving credit worthiness
checking (Section 3.1) is described based on private function evaluation, where one of
the parties possesses a private function to be computed on the other party’s input. This
is achieved using the ABY secure computation framework and public, so-called universal
circuits that are programmed to implement the desired private circuit. Then, a malware
checking mobile application (Section 3.2) is presented, using private set intersection
between a large database and a small amount of applications installed in a mobile phone
with restricted resources. Thereafter, privacy-preserving tax fraud detection (Sec-
tion 3.3.1) is described, based on Sharemind, making use of parallelization to achieve
performance improvements that enable use of secure computation technologies for a real-
world application scenario, i.e., detecting tax fraud in Estonia in a privacy-preserving
manner. SEEED-proxy (Section 3.4), based on encrypted databases, achieves data pri-
vacy for cloud based web applications. As our last example application, a generic data
collection application (Section 3.5) is described, based on Fresco. Here, the computing
parties collect data from so-called data providers, after which they allow data users to
perform analysis on the collected dataset, using secure computation technologies.

• Chapter 4 then describe aspects when it comes to using secure hardware alongside with
secure computation technologies. After providing the basic concepts for hardware-
enhanced security (Section 4.1), the latest research solutions for trusted computing
are recapitulated (Section 4.2), including alternative trusted computing designs, a de-
scription of remote attestation techniques, and low-cost trusted execution environments.
Thereafter, commercially available products, provided by Intel, that make use of
hardware-enhanced security are described (Section 4.3). Combining hardware se-
curity and secure computation and its possible approaches are described afterwards
(Section 4.4) and two examples for using hardware to enhance protection of appli-
catins from Chapter 3 are described (Section 4.5).

In this document, we present a large set of general guidelines with novel examples on how to
integrate different secure computation tools into applications developed and how to deploy them
in the cloud. Our guidelines describe advantages and disadvantages of available solutions from
which developers can choose from, which can provide useful information for the designers of
secure computation based applications. However, as can be seen in our application scenarios,
every application has its unique requirements and possibilities, and therefore, a throrough
analysis of available techniques is needed for the design of novel applications.
We believe that this deliverable, alongside with D21.2 [22] and D14.1 [30] can be sensefully used
by developers of real-life applications as guideline for their design process and it helps providing
insights to the different available techniques and research solutions.
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Chapter 6

List of Abbreviations

ABE Attribute-Based Encryption

ACM Authenticated Code Module

AEX Asynchronous Exit

AWS Amazon Web Services

BF Bloom Filter

CBF Counting Bloom Filter

DAGGER Distributed Aggregation and Security Services

DBaaS Database as a Service

DBMS Database Management System

DP Data Provider

DSL Domain Specific Language

EPC Enclave Page Cache

EPCM Enclave Page Cache Map

FHE Fully Homomorphic Encryption

GC (Yao’s) Garbled Circuit

HE Homomorphic Encryption

IMEI International Equipment Identifier

Intel TXT Intel R©Trusted Execution Technology

Intel SGX Intel R©Software Guard Extensions

Intel VT Intel R©Virtualization Technology

MEE Memory Encryption Engine

MPC Multi-Party Computation

MPI Message Passing Interface

ORG Organizer

OT Oblivious Transfer

PRACTICE D21.3 Page 101 of 112



Application architecture for secure computation

PaaS Platform-as-a-Service

PFE Private Function Evaluation

PHE Partically Homomorphic Encryption

PMH Page Miss Handler

PRACTICE Privacy-Preserving Computation in the Cloud

PSI Private Set Intersection

REE Rich Execution Environment

RPC Remote Procedure Call

SaaS Software as a Service

SCE Secure Computation Engine

SCS Secure Computation Specification

SECS Intel SGX Enclave Control Structure

SFE Secure Function Evaluation

SFDL Secure Function Description Language

SHDL Secure Hardware Description Language

SHE Somewhat Homomorphic Encryption

SMART Secure Minimal Architecture for Root of Trust

SMPC Secure Multiparty Computation

SPEAR Secure Platform for Enterprise Applications and Services

SPM Software Protected Module

SSI Secure Service Interface

TCB Trusted Computing Base

TCG Trusted Computing Group

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLB Translation Lookaside Buffer

TSM Trusted Software Module

TTP Trusted Third Party

UC Universal Circuit

URI Uniform Resource Indicator

VAT Value-Added Tax

VM Virtual Machine

VMCS Virtual-Machine Control Structure

WP Work Package
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Winandy. Security architecture for device encryption and VPN.

[6] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology
for CPU based attestation and sealing. In Hardware and Architectural Support for Security
and Privacy (HASP), New York, NY, USA, 2013. ACM.

[7] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap archi-
tecture. In Security and Privacy (S&P), Washington, DC, USA, 1997. IEEE.

[8] ARM. ARM security technology — Building a secure system using Trust-
Zone technology. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.

doc.prd29-genc-009492c/index.html, April 2009.

[9] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger,
Gianluca Ramunno, and Davide Vernizzi. An efficient implementation of trusted channels
based on OpenSSL. pages 41–50.

[10] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian Wachsmann. A
security framework for the analysis and design of software attestation. In Conference on
Computer and Communications Security (CCS). ACM, November 2013.

[11] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In ACM CCS’13, pages
535–548. ACM, 2013.

[12] N. Asokan, Jan-Erik Ekberg, Kari Kostiainen, Anand Rajan, Carlos V. Rozas, Ahmad-
Reza Sadeghi, Steffen Schulz, and Christian Wachsmann. Mobile trusted computing.
Proceedings of the IEEE, 102(8):1189–1206, 2014.

[13] Nuttapong Attrapadung. Fully secure and succinct attribute based encryption for circuits
from multi-linear maps. IACR Cryptology ePrint Archive, 2014:772, 2014.

PRACTICE D21.3 Page 103 of 112

http://www.json.org/
http://www.odata.org/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html


Application architecture for secure computation

[14] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

[15] Manuel Barbosa, Bernardo Portela, Berry Schoenmakers, Niels de Vreede, Guilaume
Scerri, and Bogdan Warinschi. PRACTICE Deliverable D13.2: efficient verifiability and
precise specification of secure computation functionalities, 2016.

[16] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza
Sadeghi, and Thomas Schneider. Secure evaluation of private linear branching programs
with medical applications. In European Symposium on Research in Computer Security –
ESORICS’09, volume 5789 of LNCS, pages 424–439. Springer, 2009.

[17] Donald Beaver. Precomputing oblivious transfer. In CRYPTO, volume 963 of Lecture
Notes in Computer Science, pages 97–109. Springer, 1995.

[18] Assaf Ben-David, Noam Nisan, and Benny Pinkas. FairplayMP: a system for secure
multi-party computation. In ACM CCS’08, pages 257–266. ACM, 2008.

[19] Dan Bogdanov. Sharemind: programmable secure computations with practical applica-
tions. PhD thesis, University of Tartu, 2013.
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